A fast and area-efficient FPGA-based architecture for high accuracy logarithm approximation

Size: px
Start display at page:

Download "A fast and area-efficient FPGA-based architecture for high accuracy logarithm approximation"

Transcription

1 A ast and area-eicient FPGA-based architecture or high accuracy logarithm approximation Dimitris Bariamis, Dimitris Maroulis, Dimitris K. Iakovidis Department o Inormatics and Telecommunications University o Athens rtsimage@di.uoa.gr Abstract. This paper presents a novel hardware architecture or the approximation o the base- logarithm o integers at a high accuracy. It is based on a generalized piecewise linear approximation approach, which allows a large number o linear segments to approximate the logarithm unction. Contrary to state o the art architectures that utilize up to six linear segments or the approximation, the implementation o the proposed architecture employs up to 04 linear segments, while retaining low FPGA resource requirements and high requency. The exploitation o the capabilities o modern FPGAs results in low resource utilization. More speciically, up to 39 slices, one BlockRAM and one multiplier are utilized on a Xilinx Virtex-5 FPGA. The approximation error depends on the number o segments used and is lower than the comparable architectures by ive orders o magnitude. Thus, the proposed architecture is suitable or use as a component in systems that require ast, accurate and resource-eicient logarithm calculation.. Introduction Accurate high throughput computation o the logarithm is a undamental requirement or a variety o applications including signal and image processing, telecommunications, biomedical and industrial applications. For example in [], massive logarithmic transormations are required or the pre-processing o thousands o microarray data samples. In this case inaccurate computations o the logarithm can lead to erroneous medical decisions. As another example we could consider real-time pattern recognition systems [], where inaccurate computations o eatures based on the logarithm can lead to a deteriorated recognition perormance. Hardware architectures that have been proposed or the approximation o the base- logarithm include implementations o several amilies o algorithms, including power series [3] and polynomial methods [4], high-radix algorithms [5], the CORDIC (Coordinate Rotation Digital Computer) algorithm [6] and piecewise linear approximation methods [7-0]. The iterative CORDIC algorithm has commonly been used or logarithm approximation; however implementing it as a pipelined circuit in an area-eicient way on FPGA remains a challenge. A vast number o implementations based on table lookup and polynomial approximation are examined in [], but possible optimizations based on the available FPGA resources are not

2 taken into account. Alternatively, many hardware architectures aiming at crude, however ast approximation o the logarithm, implement the piecewise linear approximation approach based on Mitchell s method [7]. According to this approach the logarithm unction is approximated by a small number o consecutive linear segments. In [] and [8] this method was implemented by using only two segments; in [9] our segments were used; whereas in [0] a VLSI architecture that uses two, three and six segments was proposed. Inspired by Mitchell s method, and motivated by the need o combining both computational eiciency and approximation accuracy, we propose a novel architecture or the approximation o the base- logarithm in a ast and area-eicient way, exploiting the capabilities o modern FPGAs. The proposed architecture implements a generalized piecewise linear approximation o the logarithm unction that allows or a large number o linear approximation segments, providing up to ive orders o magnitude lower approximation error than the other piecewise methods. The achieved approximation accuracy depends on the number o segments used, which aects the size o a ROM that is used or storing the parameters that control the computation. The implementation o the ROM using a single FPGA BlockRAM minimizes both the slice and the BlockRAM requirements, resulting in a small circuit that occupies less than 0.5% o the total slices on a Xilinx XC5VLX0T FPGA. The rest o this paper is organized in three sections. Section describes the logarithm approximation approach and the FPGA implementation o the proposed architecture. The results o the experiments conducted are presented in Section 3. The conclusions o this study are summarized in Section 4.. Logarithm Estimation via Piecewise Linear Approximation A piecewise linear approximation approach that involves three steps is considered. It involves the calculation o the integral part o the logarithm, the linear approximation o the ractional part o the logarithm by one segment and the piecewise linear approximation o the ractional part by several segments. The piecewise linear approximation o the third step is perormed by splitting the linear approximation produced in the second step into s consecutive linear segments. The steps are described in detail below:.. Step The integral part o the logarithm, l ( x ) log( x i = ), is determined by the position o the Most Signiicant Bit (MSB) o the input number x, where n n+ x < l i = n ( ()

3 5 Logarithm (,) (, ) ( 3,3) ( 4, 4) log( Step Step Input number x Fig.. Steps and o logarithm approximation B c seg(+ l ( A c seg( 0 0 seg(/s l ( (seg(+)/s Fig.. l as a unction o l.. Step The ractional part o the logarithm, i.e. l = log ( l i (, is estimated by linear approximation between the points ( n,n) and ( n+,n+), n=,,, o the unction log ( resulting in Eq.. The approximated ractional part is li ( x x l ( = = () li ( + li ( li (

4 .3. Step 3 In the third step, a new approximation l ( o the ractional part o the logarithm is derived as a unction o l (. It is obtained by piecewise linear approximation between the points ( n,n) and ( n+,n+) using s linear segments o equal length. The ractional part l ( determines the segment seg( to which x belongs, according to Eq. 3. seg( = s l ( (3) As illustrated in Fig., or an input number x, the endpoints A and B o the segment seg( are elevated by c seg( and c seg(+ and their coordinates are derived by Eqs. 4 and 5 respectively. The equation that deines the linear segment AB is simpliied to the equivalent Eq. 6 producing the equation used or the calculation o l (. It is worth noting that the resulting approximation is continuous, since the consecutive segments are not elevated independently, but share an endpoint. In particular, the right endpoint o a segment seg( is elevated by the same amount c seg(+ as the let endpoint o segment seg(+, thereore ensuring the continuity o the resulting approximation. seg( seg( A, + c seg ( (4) s s seg( + seg( + B, + c seg ( + (5) s s ( c c ) ( s l ( seg( ) l ( = l ( + cseg ( + seg ( + seg ( (6) The optimal parameters c i can be determined by minimizing the approximation error E (Eq. 7), which represents the sum o the relative dierences between the actual and approximated values o the logarithm. E = ( l i ( + l ( ) x log ( log ( (7).4. Implementation The proposed architecture is implemented as a ully pipelined circuit, in order to achieve a throughput o one result per clock cycle. It consists o 6 pipeline stages and one dual-ported ROM. The ROM stores the parameters c i in a ixed point representation and is implemented on a single FPGA BlockRAM. This representation consists o a b-bit wide mantissa, whereas the exponent e is common or all parameters c i and is not stored in the ROM. Figure 3 illustrates the structure o the pipelined circuit. In the irst pipeline stage, a priority encoder is used to locate the

5 x 6 priority encoder l shiter i ( l ( log s + log s 5 4 Dual-port ROM s b 3 b b 4 b 5-log s 5 5-log s+b + 5-log s+b prepend e leading zeroes 6 5-log s+b+e + 5-log s+b+e l ( log ( Fig. 3. The implementation o the logarithm approximation architecture MSB o the input number x. The output o the priority encoder is the integral part l i ( o log (. In the second stage a shiter is used to isolate the ractional part l (. For the calculation o l (, we have regarded s as a power o two. Thus, the quantities seg( and s l ( seg(, needed or the calculation o Eq. 6, can be calculated rom the ixed-point representation o l ( by separating its bits into two parts, without perorming any arithmetic or logic operations. In order to proceed with the calculation o l (, seg( and s l ( seg( are calculated at the end o the second stage. The third stage involves two concurrent

6 Table. Error E o piecewise linear approximation methods Method Segments Error E Mitchell et al. [7] 3.99E-03 SanGregory et al. [8].89E-03 Hall et al. [9] 4.65E-04 Abed et al. [0] Proposed architecture.e E E E E E-09 ROM lookups at addresses seg( and seg(+, retrieving the parameters c seg( and c seg(+. In the ourth stage, c seg( is subtracted rom c seg(+ and in the ith stage the result is multiplied by s l ( seg( using one o the on-chip multipliers. In the last stage, the results o the ourth and ith stage added to l (, producing l (, which is concatenated to l i ( in order to produce the inal log ( approximation. 3. Results Experiments were conducted to evaluate the perormance o the proposed architecture. The results are accompanied with comparisons with state o the art architectures implementing piecewise linear approaches or logarithm approximation. The proposed architecture or the approximation o the base- logarithm o 6-bit integers was implemented on a Xilinx Virtex-5 FPGA (XC5VLX0T-3) which eatures 690 slice lip-lops and LUTs, 64 DSP48E multiplier blocks and 48 36kbit BlockRAMs. The number o linear segments s and the width b o the parameters c i are adjusted so that the ROM resides on a single 36kbit BlockRAM and the multiplier is implemented on a single 5 8 bit multiplier o a DSP48E block. Thereore s ranges rom to 04, whereas b ranges rom to 4 bits. The logarithm approximation output is a ixed-point value that utilizes 4 bits or the representation o the integral part, whereas the ractional part occupies up to 3 bits. In order to evaluate the proposed architecture compared to the other piecewise linear approximation approaches, the obtained approximation error E was calculated or each method, as shown in Table. The method proposed by Hall et al. [9] surpasses the other approaches and achieves E= These piecewise linear approximation approaches [8-0] aim to provide a ast approximation o the logarithm that requires ew hardware resources. Due to their design considerations, they employ hardwired logic in order to increase the accuracy o [7]. In contrast to the aorementioned methods, the proposed architecture yields considerable gains in accuracy by eiciently using the available FPGA resources, instead o relying on hardwired error-correcting logic. We have implemented Hall s

7 Table. Comparison o the proposed architecture to Hall et al. [9] Hall et al. [9] Proposed architecture Segments s Bits b Slices Frequency 80MHz 38MHz 303MHz 88MHz BlockRAMs 0 Multipliers Error E.65E-04.37E E-07.83E-09 approach [9] on the same FPGA and compared it to the proposed architecture. The results are presented in Table and reveal that the error E can be decreased by ive orders o magnitude (E= ) when using the proposed architecture, by utilizing one BlockRAM and only moderately increasing the occupied slices. It is important to note that the 39 slices required by the proposed architecture represent less than 0.5% o the total FPGA area. In order to reach similar accuracy using more complex methods, such as polynomial [4] or CORDIC [6], signiicantly more FPGA resources would be required. We have synthesized the loating point logarithm approximation architecture presented in [4] on the same FPGA. It achieves a lowest approximation error in the order o E=0-8 (or a 3-bit mantissa), which is higher than that o the proposed architecture, while requiring a similar number o slices and 6 times more multipliers. Also, the CORDIC architecture, which produces ixed point output, does not take advantage o BlockRAMs or multipliers and occupies nearly 8 times more slices than the proposed architecture or E in the order o Conclusions We presented an FPGA-based architecture or ast and area-eicient approximation o the base- logarithm on FPGA devices. The novel eatures o this architecture can be summarized in the ollowing: It implements a piecewise linear approximation o the logarithm unction using a large number o linear segments, in order to achieve up to ive orders o magnitude higher accuracy than the comparable methods. In contrast to the state o the art implementations, it is designed to exploit the available FPGA resources, such as BlockRAMs and multipliers, in order to provide low FPGA area utilization and high requency. The irst eature allows the proposed architecture to be used in a variety o FPGA designs as a generic component that provides highly accurate logarithm calculation. The second eature enables a signiicant reduction in FPGA slices by using only one BlockRAM or the implementation o the dual-ported ROM and one FPGA multiplier, also allowing the architecture to reach a high requency potential, thus rendering the proposed architecture suitable or high-throughput applications.

8 Other logarithm approximation architectures implementing piecewise linear approximation [8-0] use up to a maximum o 6 segments, whereas they cannot be reconigured to urther increase the number o segments, as the number o segments is hardwired. The proposed architecture overcomes this limitation, consequently increasing the accuracy, while retaining the low FPGA area requirements and the requency advantages o these methods. Thus, it can be embedded into any FPGAbased application that requires ast and accurate logarithm approximation or throughput-sensitive and real-time applications. Acknowledgement This work was realized under the ramework o the Reinorcement Program o Human Research Manpower ( PENED ED34), co-unded 5% by the General Secretariat or Research and Technology, Greece, and 75% by the European Social Fund. Reerences [] D.M. Rocke and B. Durbin, Approximate variance-stabilizing transormations or geneexpression microarray data, Bioinormatics, Vol. 9 no. 8, pages , 003. [] D. Bariamis, D.K. Iakovidis, D. Maroulis, Dedicated hardware or real-time computation o second-order statistical eatures or high resolution images, Lect. Notes in Comp. Science, Volume 479 LNCS, Pages 67-77, 006 [3] D. M. Mandelbaum, and S. G. Mandelbaum, A Fast, Eicient Parallel-Acting Method o Generating Functions Deined by Power Series, Including Logarithm, Exponential, and Sine, Cosine, IEEE Trans. on Parallel and Distributed Systems, vol. 7, no., pp , Jan [4] J. Detrey, F. de Dinechin, Parametrized loating-point logarithm and exponential unctions or FPGA, Micropr. and Microsys., Vol. 3, Issue 8, pp , Dec [5] J.-A. Pineiro, M.D. Ercegovac, J. D. Bruguerax, High Radix Logarithm with Selection by Rounding, Proceedings o the IEEE Int. Con. on Application-Speciic Systems, Architectures, and Processors, pp. 0-0, July 00 [6] J. E. Volder, The CORDIC Trigonometric Computing Technique, IRE Trans. Electronic Comp., 8: , 959. [7] J.N. Mitchell Jr., Computer Multiplication and Division Using Binary Logarithms, IRE Trans. Electronic Comp., :5-57, 96. [8] S.L. SanGregory, R.E. Sierd, C. Brother, and D. Gallagher, A Fast, Low-Power Logarithm Approximation with CMOS VLSI Implementation, Proc. IEEE Midwest Symp. Circ. and Syst., Aug [9] E.L. Hall, D.D. Lynch, and S.J. Dwyer III, Generation o Products and Quotients Using Approximate Binary Logarithms or Digital Filtering Applications, IEEE Trans. Comp., vol. 9, pp , Feb [0] K. H. Abed and R. E. Sierd CMOS VLSI Implementation o a Low-Power Logarithmic Converter, IEEE Trans. Comp., vol. 5, pp , Dec 003. [] D. Lee, A. Abdul Gaar, O. Mencer and W. Luk, Optimizing hardware unction evaluation, IEEE Trans. Comp., vol. 54, no., pp , Dec 005.

Computations Of Elementary Functions Based On Table Lookup And Interpolation

Computations Of Elementary Functions Based On Table Lookup And Interpolation RESEARCH ARTICLE OPEN ACCESS Computations Of Elementary Functions Based On Table Lookup And Interpolation Syed Aliasgar 1, Dr.V.Thrimurthulu 2, G Dillirani 3 1 Assistant Professor, Dept.of ECE, CREC, Tirupathi,

More information

Adaptable, fast, area-efficient architecture for logarithm approximation with arbitrary accuracy on FPGA

Adaptable, fast, area-efficient architecture for logarithm approximation with arbitrary accuracy on FPGA Adaptable, at, area-eicient architecture or logarithm approimation with arbitrary accuracy on FPGA Dimitri Bariami, Dimitri Marouli*, Dimitri K. Iakovidi Department o Inormatic and Telecommunication, Univerity

More information

An FPGA Implementation of the Powering Function with Single Precision Floating-Point Arithmetic

An FPGA Implementation of the Powering Function with Single Precision Floating-Point Arithmetic An FPGA Implementation of the Powering Function with Single Precision Floating-Point Arithmetic Pedro Echeverría, Marisa López-Vallejo Department of Electronic Engineering, Universidad Politécnica de Madrid

More information

Efficient Double-Precision Cosine Generation

Efficient Double-Precision Cosine Generation Efficient Double-Precision Cosine Generation Derek Nowrouzezahrai Brian Decker William Bishop dnowrouz@uwaterloo.ca bjdecker@uwaterloo.ca wdbishop@uwaterloo.ca Department of Electrical and Computer Engineering

More information

PROJECT REPORT IMPLEMENTATION OF LOGARITHM COMPUTATION DEVICE AS PART OF VLSI TOOLS COURSE

PROJECT REPORT IMPLEMENTATION OF LOGARITHM COMPUTATION DEVICE AS PART OF VLSI TOOLS COURSE PROJECT REPORT ON IMPLEMENTATION OF LOGARITHM COMPUTATION DEVICE AS PART OF VLSI TOOLS COURSE Project Guide Prof Ravindra Jayanti By Mukund UG3 (ECE) 200630022 Introduction The project was implemented

More information

Fast evaluation of nonlinear functions using FPGAs

Fast evaluation of nonlinear functions using FPGAs Adv. Radio Sci., 6, 233 237, 2008 Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Advances in Radio Science Fast evaluation of nonlinear functions using FPGAs

More information

Fast Evaluation of the Square Root and Other Nonlinear Functions in FPGA

Fast Evaluation of the Square Root and Other Nonlinear Functions in FPGA Edith Cowan University Research Online ECU Publications Pre. 20 2008 Fast Evaluation of the Square Root and Other Nonlinear Functions in FPGA Stefan Lachowicz Edith Cowan University Hans-Joerg Pfleiderer

More information

Vendor Agnostic, High Performance, Double Precision Floating Point Division for FPGAs

Vendor Agnostic, High Performance, Double Precision Floating Point Division for FPGAs Vendor Agnostic, High Performance, Double Precision Floating Point Division for FPGAs Xin Fang and Miriam Leeser Dept of Electrical and Computer Eng Northeastern University Boston, Massachusetts 02115

More information

Double Precision Floating-Point Multiplier using Coarse-Grain Units

Double Precision Floating-Point Multiplier using Coarse-Grain Units Double Precision Floating-Point Multiplier using Coarse-Grain Units Rui Duarte INESC-ID/IST/UTL. rduarte@prosys.inesc-id.pt Mário Véstias INESC-ID/ISEL/IPL. mvestias@deetc.isel.ipl.pt Horácio Neto INESC-ID/IST/UTL

More information

Twiddle Factor Transformation for Pipelined FFT Processing

Twiddle Factor Transformation for Pipelined FFT Processing Twiddle Factor Transformation for Pipelined FFT Processing In-Cheol Park, WonHee Son, and Ji-Hoon Kim School of EECS, Korea Advanced Institute of Science and Technology, Daejeon, Korea icpark@ee.kaist.ac.kr,

More information

Pipelined Quadratic Equation based Novel Multiplication Method for Cryptographic Applications

Pipelined Quadratic Equation based Novel Multiplication Method for Cryptographic Applications , Vol 7(4S), 34 39, April 204 ISSN (Print): 0974-6846 ISSN (Online) : 0974-5645 Pipelined Quadratic Equation based Novel Multiplication Method for Cryptographic Applications B. Vignesh *, K. P. Sridhar

More information

High Speed Special Function Unit for Graphics Processing Unit

High Speed Special Function Unit for Graphics Processing Unit High Speed Special Function Unit for Graphics Processing Unit Abd-Elrahman G. Qoutb 1, Abdullah M. El-Gunidy 1, Mohammed F. Tolba 1, and Magdy A. El-Moursy 2 1 Electrical Engineering Department, Fayoum

More information

Optimized Design and Implementation of a 16-bit Iterative Logarithmic Multiplier

Optimized Design and Implementation of a 16-bit Iterative Logarithmic Multiplier Optimized Design and Implementation a 16-bit Iterative Logarithmic Multiplier Laxmi Kosta 1, Jaspreet Hora 2, Rupa Tomaskar 3 1 Lecturer, Department Electronic & Telecommunication Engineering, RGCER, Nagpur,India,

More information

Implementation of Optimized CORDIC Designs

Implementation of Optimized CORDIC Designs IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 3 August 2014 ISSN(online) : 2349-6010 Implementation of Optimized CORDIC Designs Bibinu Jacob M Tech Student

More information

FPGA Implementation of a High Speed Multistage Pipelined Adder Based CORDIC Structure for Large Operand Word Lengths

FPGA Implementation of a High Speed Multistage Pipelined Adder Based CORDIC Structure for Large Operand Word Lengths International Journal of Computer Science and Telecommunications [Volume 3, Issue 5, May 2012] 105 ISSN 2047-3338 FPGA Implementation of a High Speed Multistage Pipelined Adder Based CORDIC Structure for

More information

Design and Implementation of Low-Complexity Redundant Multiplier Architecture for Finite Field

Design and Implementation of Low-Complexity Redundant Multiplier Architecture for Finite Field Design and Implementation of Low-Complexity Redundant Multiplier Architecture for Finite Field Veerraju kaki Electronics and Communication Engineering, India Abstract- In the present work, a low-complexity

More information

Performance Analysis of CORDIC Architectures Targeted by FPGA Devices

Performance Analysis of CORDIC Architectures Targeted by FPGA Devices International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Performance Analysis of CORDIC Architectures Targeted by FPGA Devices Guddeti Nagarjuna Reddy 1, R.Jayalakshmi 2, Dr.K.Umapathy

More information

High Speed Radix 8 CORDIC Processor

High Speed Radix 8 CORDIC Processor High Speed Radix 8 CORDIC Processor Smt. J.M.Rudagi 1, Dr. Smt. S.S ubbaraman 2 1 Associate Professor, K.L.E CET, Chikodi, karnataka, India. 2 Professor, W C E Sangli, Maharashtra. 1 js_itti@yahoo.co.in

More information

A 4096-Point Radix-4 Memory-Based FFT Using DSP Slices

A 4096-Point Radix-4 Memory-Based FFT Using DSP Slices A 4096-Point Radix-4 Memory-Based FFT Using DSP Slices Mario Garrido Gálvez, Miguel Angel Sanchez, Maria Luisa Lopez-Vallejo and Jesus Grajal Journal Article N.B.: When citing this work, cite the original

More information

Design and Implementation of Effective Architecture for DCT with Reduced Multipliers

Design and Implementation of Effective Architecture for DCT with Reduced Multipliers Design and Implementation of Effective Architecture for DCT with Reduced Multipliers Susmitha. Remmanapudi & Panguluri Sindhura Dept. of Electronics and Communications Engineering, SVECW Bhimavaram, Andhra

More information

FPGA Implementation of Discrete Fourier Transform Using CORDIC Algorithm

FPGA Implementation of Discrete Fourier Transform Using CORDIC Algorithm AMSE JOURNALS-AMSE IIETA publication-2017-series: Advances B; Vol. 60; N 2; pp 332-337 Submitted Apr. 04, 2017; Revised Sept. 25, 2017; Accepted Sept. 30, 2017 FPGA Implementation of Discrete Fourier Transform

More information

I. Introduction. India; 2 Assistant Professor, Department of Electronics & Communication Engineering, SRIT, Jabalpur (M.P.

I. Introduction. India; 2 Assistant Professor, Department of Electronics & Communication Engineering, SRIT, Jabalpur (M.P. A Decimal / Binary Multi-operand Adder using a Fast Binary to Decimal Converter-A Review Ruchi Bhatt, Divyanshu Rao, Ravi Mohan 1 M. Tech Scholar, Department of Electronics & Communication Engineering,

More information

IEEE-754 compliant Algorithms for Fast Multiplication of Double Precision Floating Point Numbers

IEEE-754 compliant Algorithms for Fast Multiplication of Double Precision Floating Point Numbers International Journal of Research in Computer Science ISSN 2249-8257 Volume 1 Issue 1 (2011) pp. 1-7 White Globe Publications www.ijorcs.org IEEE-754 compliant Algorithms for Fast Multiplication of Double

More information

EFFICIENT RECURSIVE IMPLEMENTATION OF A QUADRATIC PERMUTATION POLYNOMIAL INTERLEAVER FOR LONG TERM EVOLUTION SYSTEMS

EFFICIENT RECURSIVE IMPLEMENTATION OF A QUADRATIC PERMUTATION POLYNOMIAL INTERLEAVER FOR LONG TERM EVOLUTION SYSTEMS Rev. Roum. Sci. Techn. Électrotechn. et Énerg. Vol. 61, 1, pp. 53 57, Bucarest, 016 Électronique et transmission de l information EFFICIENT RECURSIVE IMPLEMENTATION OF A QUADRATIC PERMUTATION POLYNOMIAL

More information

Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider

Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider Tamkang Journal of Science and Engineering, Vol. 3, No., pp. 29-255 (2000) 29 Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider Jen-Shiun Chiang, Hung-Da Chung and Min-Show

More information

FPGA Design, Implementation and Analysis of Trigonometric Generators using Radix 4 CORDIC Algorithm

FPGA Design, Implementation and Analysis of Trigonometric Generators using Radix 4 CORDIC Algorithm International Journal of Microcircuits and Electronic. ISSN 0974-2204 Volume 4, Number 1 (2013), pp. 1-9 International Research Publication House http://www.irphouse.com FPGA Design, Implementation and

More information

Implementation of Efficient Modified Booth Recoder for Fused Sum-Product Operator

Implementation of Efficient Modified Booth Recoder for Fused Sum-Product Operator Implementation of Efficient Modified Booth Recoder for Fused Sum-Product Operator A.Sindhu 1, K.PriyaMeenakshi 2 PG Student [VLSI], Dept. of ECE, Muthayammal Engineering College, Rasipuram, Tamil Nadu,

More information

An Efficient Implementation of Floating Point Multiplier

An Efficient Implementation of Floating Point Multiplier An Efficient Implementation of Floating Point Multiplier Mohamed Al-Ashrafy Mentor Graphics Mohamed_Samy@Mentor.com Ashraf Salem Mentor Graphics Ashraf_Salem@Mentor.com Wagdy Anis Communications and Electronics

More information

An FPGA Based Floating Point Arithmetic Unit Using Verilog

An FPGA Based Floating Point Arithmetic Unit Using Verilog An FPGA Based Floating Point Arithmetic Unit Using Verilog T. Ramesh 1 G. Koteshwar Rao 2 1PG Scholar, Vaagdevi College of Engineering, Telangana. 2Assistant Professor, Vaagdevi College of Engineering,

More information

Figurel. TEEE-754 double precision floating point format. Keywords- Double precision, Floating point, Multiplier,FPGA,IEEE-754.

Figurel. TEEE-754 double precision floating point format. Keywords- Double precision, Floating point, Multiplier,FPGA,IEEE-754. AN FPGA BASED HIGH SPEED DOUBLE PRECISION FLOATING POINT MULTIPLIER USING VERILOG N.GIRIPRASAD (1), K.MADHAVA RAO (2) VLSI System Design,Tudi Ramireddy Institute of Technology & Sciences (1) Asst.Prof.,

More information

Design and Implementation of 3-D DWT for Video Processing Applications

Design and Implementation of 3-D DWT for Video Processing Applications Design and Implementation of 3-D DWT for Video Processing Applications P. Mohaniah 1, P. Sathyanarayana 2, A. S. Ram Kumar Reddy 3 & A. Vijayalakshmi 4 1 E.C.E, N.B.K.R.IST, Vidyanagar, 2 E.C.E, S.V University

More information

Modified CORDIC Architecture for Fixed Angle Rotation

Modified CORDIC Architecture for Fixed Angle Rotation International Journal of Current Engineering and Technology EISSN 2277 4106, PISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Binu M

More information

ARITHMETIC operations based on residue number systems

ARITHMETIC operations based on residue number systems IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 53, NO. 2, FEBRUARY 2006 133 Improved Memoryless RNS Forward Converter Based on the Periodicity of Residues A. B. Premkumar, Senior Member,

More information

VLSI Design Of a Novel Pre Encoding Multiplier Using DADDA Multiplier. Guntur(Dt),Pin:522017

VLSI Design Of a Novel Pre Encoding Multiplier Using DADDA Multiplier. Guntur(Dt),Pin:522017 VLSI Design Of a Novel Pre Encoding Multiplier Using DADDA Multiplier 1 Katakam Hemalatha,(M.Tech),Email Id: hema.spark2011@gmail.com 2 Kundurthi Ravi Kumar, M.Tech,Email Id: kundurthi.ravikumar@gmail.com

More information

Implementation Of Quadratic Rotation Decomposition Based Recursive Least Squares Algorithm

Implementation Of Quadratic Rotation Decomposition Based Recursive Least Squares Algorithm 157 Implementation Of Quadratic Rotation Decomposition Based Recursive Least Squares Algorithm Manpreet Singh 1, Sandeep Singh Gill 2 1 University College of Engineering, Punjabi University, Patiala-India

More information

A Modified CORDIC Processor for Specific Angle Rotation based Applications

A Modified CORDIC Processor for Specific Angle Rotation based Applications IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 2, Ver. II (Mar-Apr. 2014), PP 29-37 e-issn: 2319 4200, p-issn No. : 2319 4197 A Modified CORDIC Processor for Specific Angle Rotation

More information

Available online at ScienceDirect. Procedia Technology 24 (2016 )

Available online at   ScienceDirect. Procedia Technology 24 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 24 (2016 ) 1120 1126 International Conference on Emerging Trends in Engineering, Science and Technology (ICETEST - 2015) FPGA

More information

Low Power Floating-Point Multiplier Based On Vedic Mathematics

Low Power Floating-Point Multiplier Based On Vedic Mathematics Low Power Floating-Point Multiplier Based On Vedic Mathematics K.Prashant Gokul, M.E(VLSI Design), Sri Ramanujar Engineering College, Chennai Prof.S.Murugeswari., Supervisor,Prof.&Head,ECE.,SREC.,Chennai-600

More information

High Performance Architecture for Reciprocal Function Evaluation on Virtex II FPGA

High Performance Architecture for Reciprocal Function Evaluation on Virtex II FPGA EurAsia-ICT 00, Shiraz-Iran, 9-31 Oct. High Performance Architecture for Reciprocal Function Evaluation on Virtex II FPGA M. Anane, H. Bessalah and N. Anane Centre de Développement des Technologies Avancées

More information

A High-Speed FPGA Implementation of an RSD-Based ECC Processor

A High-Speed FPGA Implementation of an RSD-Based ECC Processor RESEARCH ARTICLE International Journal of Engineering and Techniques - Volume 4 Issue 1, Jan Feb 2018 A High-Speed FPGA Implementation of an RSD-Based ECC Processor 1 K Durga Prasad, 2 M.Suresh kumar 1

More information

ISSN Vol.02, Issue.11, December-2014, Pages:

ISSN Vol.02, Issue.11, December-2014, Pages: ISSN 2322-0929 Vol.02, Issue.11, December-2014, Pages:1208-1212 www.ijvdcs.org Implementation of Area Optimized Floating Point Unit using Verilog G.RAJA SEKHAR 1, M.SRIHARI 2 1 PG Scholar, Dept of ECE,

More information

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 6, Issue 2, Ver. I (Mar. -Apr. 2016), PP 58-65 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Fused Floating Point Arithmetic

More information

13. Power Optimization

13. Power Optimization 13. Power Optimization May 2013 QII52016-13.0.0 QII52016-13.0.0 The Quartus II sotware oers power-driven compilation to ully optimize device power consumption. Power-driven compilation ocuses on reducing

More information

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Key terms Floating point arithmetic IEE Standard Mantissa Exponent Roundoff error Pitfalls of floating point arithmetic Structuring computations

More information

OPTIMIZATION OF AREA COMPLEXITY AND DELAY USING PRE-ENCODED NR4SD MULTIPLIER.

OPTIMIZATION OF AREA COMPLEXITY AND DELAY USING PRE-ENCODED NR4SD MULTIPLIER. OPTIMIZATION OF AREA COMPLEXITY AND DELAY USING PRE-ENCODED NR4SD MULTIPLIER. A.Anusha 1 R.Basavaraju 2 anusha201093@gmail.com 1 basava430@gmail.com 2 1 PG Scholar, VLSI, Bharath Institute of Engineering

More information

INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS.

INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS. INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS Arulalan Rajan 1, H S Jamadagni 1, Ashok Rao 2 1 Centre for Electronics Design and Technology, Indian Institute of Science, India (mrarul,hsjam)@cedt.iisc.ernet.in

More information

PERFORMANCE ANALYSIS OF HIGH EFFICIENCY LOW DENSITY PARITY-CHECK CODE DECODER FOR LOW POWER APPLICATIONS

PERFORMANCE ANALYSIS OF HIGH EFFICIENCY LOW DENSITY PARITY-CHECK CODE DECODER FOR LOW POWER APPLICATIONS American Journal of Applied Sciences 11 (4): 558-563, 2014 ISSN: 1546-9239 2014 Science Publication doi:10.3844/ajassp.2014.558.563 Published Online 11 (4) 2014 (http://www.thescipub.com/ajas.toc) PERFORMANCE

More information

A High Speed Binary Floating Point Multiplier Using Dadda Algorithm

A High Speed Binary Floating Point Multiplier Using Dadda Algorithm 455 A High Speed Binary Floating Point Multiplier Using Dadda Algorithm B. Jeevan, Asst. Professor, Dept. of E&IE, KITS, Warangal. jeevanbs776@gmail.com S. Narender, M.Tech (VLSI&ES), KITS, Warangal. narender.s446@gmail.com

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers Implementation

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Implementation Today Review representations (252/352 recap) Floating point Addition: Ripple

More information

Speed Optimised CORDIC Based Fast Algorithm for DCT

Speed Optimised CORDIC Based Fast Algorithm for DCT GRD Journals Global Research and Development Journal for Engineering International Conference on Innovations in Engineering and Technology (ICIET) - 2016 July 2016 e-issn: 2455-5703 Speed Optimised CORDIC

More information

VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila Khan 1 Uma Sharma 2

VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila Khan 1 Uma Sharma 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 05, 2015 ISSN (online): 2321-0613 VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila

More information

Linköping University Post Print. Analysis of Twiddle Factor Memory Complexity of Radix-2^i Pipelined FFTs

Linköping University Post Print. Analysis of Twiddle Factor Memory Complexity of Radix-2^i Pipelined FFTs Linköping University Post Print Analysis of Twiddle Factor Complexity of Radix-2^i Pipelined FFTs Fahad Qureshi and Oscar Gustafsson N.B.: When citing this work, cite the original article. 200 IEEE. Personal

More information

Digital Image Processing. Image Enhancement in the Spatial Domain (Chapter 4)

Digital Image Processing. Image Enhancement in the Spatial Domain (Chapter 4) Digital Image Processing Image Enhancement in the Spatial Domain (Chapter 4) Objective The principal objective o enhancement is to process an images so that the result is more suitable than the original

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering An Efficient Implementation of Double Precision Floating Point Multiplier Using Booth Algorithm Pallavi Ramteke 1, Dr. N. N. Mhala 2, Prof. P. R. Lakhe M.Tech [IV Sem], Dept. of Comm. Engg., S.D.C.E, [Selukate],

More information

FPGA based High Speed Double Precision Floating Point Divider

FPGA based High Speed Double Precision Floating Point Divider FPGA based High Speed Double Precision Floating Point Divider Addanki Purna Ramesh Department of ECE, Sri Vasavi Engineering College, Pedatadepalli, Tadepalligudem, India. Dhanalakshmi Balusu Department

More information

Design and Implementation of IEEE-754 Decimal Floating Point Adder, Subtractor and Multiplier

Design and Implementation of IEEE-754 Decimal Floating Point Adder, Subtractor and Multiplier International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-4 Issue 1, October 2014 Design and Implementation of IEEE-754 Decimal Floating Point Adder, Subtractor and Multiplier

More information

Optimized architectures of CABAC codec for IA-32-, DSP- and FPGAbased

Optimized architectures of CABAC codec for IA-32-, DSP- and FPGAbased Optimized architectures of CABAC codec for IA-32-, DSP- and FPGAbased platforms Damian Karwowski, Marek Domański Poznan University of Technology, Chair of Multimedia Telecommunications and Microelectronics

More information

Introduction to Field Programmable Gate Arrays

Introduction to Field Programmable Gate Arrays Introduction to Field Programmable Gate Arrays Lecture 2/3 CERN Accelerator School on Digital Signal Processing Sigtuna, Sweden, 31 May 9 June 2007 Javier Serrano, CERN AB-CO-HT Outline Digital Signal

More information

DESIGN OF DCT ARCHITECTURE USING ARAI ALGORITHMS

DESIGN OF DCT ARCHITECTURE USING ARAI ALGORITHMS DESIGN OF DCT ARCHITECTURE USING ARAI ALGORITHMS Prerana Ajmire 1, A.B Thatere 2, Shubhangi Rathkanthivar 3 1,2,3 Y C College of Engineering, Nagpur, (India) ABSTRACT Nowadays the demand for applications

More information

LOW-POWER SPLIT-RADIX FFT PROCESSORS

LOW-POWER SPLIT-RADIX FFT PROCESSORS LOW-POWER SPLIT-RADIX FFT PROCESSORS Avinash 1, Manjunath Managuli 2, Suresh Babu D 3 ABSTRACT To design a split radix fast Fourier transform is an ideal person for the implementing of a low-power FFT

More information

FPGA-based System for Real-time Video Texture Analysis

FPGA-based System for Real-time Video Texture Analysis FPGA-based System for Real-time Video Texture Analysis Dimitris Maroulis, Dimitris K. Iakovidis, Dimitris Bariamis Real Time Systems and Image Analysis Laboratory, Department of Informatics and Telecommunications,

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport

CPS 303 High Performance Computing. Wensheng Shen Department of Computational Science SUNY Brockport CPS 303 High Perormance Computing Wensheng Shen Department o Computational Science SUNY Brockport Chapter 4 An application: numerical integration Use MPI to solve a problem o numerical integration with

More information

Implementation and Impact of LNS MAC Units in Digital Filter Application

Implementation and Impact of LNS MAC Units in Digital Filter Application Implementation and Impact of LNS MAC Units in Digital Filter Application Hari Krishna Raja.V.S *, Christina Jesintha.R * and Harish.I * * Department of Electronics and Communication Engineering, Sri Shakthi

More information

Implementation of Area Efficient Multiplexer Based Cordic

Implementation of Area Efficient Multiplexer Based Cordic Implementation of Area Efficient Multiplexer Based Cordic M. Madhava Rao 1, G. Suresh 2 1 M.Tech student M.L.E College, S. Konda, Prakasam (DIST), India 2 Assoc.prof in ECE Department, M.L.E College, S.

More information

Implementation of Floating Point Multiplier Using Dadda Algorithm

Implementation of Floating Point Multiplier Using Dadda Algorithm Implementation of Floating Point Multiplier Using Dadda Algorithm Abstract: Floating point multiplication is the most usefull in all the computation application like in Arithematic operation, DSP application.

More information

Implementation of Double Precision Floating Point Multiplier in VHDL

Implementation of Double Precision Floating Point Multiplier in VHDL ISSN (O): 2349-7084 International Journal of Computer Engineering In Research Trends Available online at: www.ijcert.org Implementation of Double Precision Floating Point Multiplier in VHDL 1 SUNKARA YAMUNA

More information

Realization of Fixed Angle Rotation for Co-Ordinate Rotation Digital Computer

Realization of Fixed Angle Rotation for Co-Ordinate Rotation Digital Computer International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 2, Issue 1, January 2015, PP 1-7 ISSN 2349-4042 (Print) & ISSN 2349-4050 (Online) www.arcjournals.org Realization

More information

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Design and Implementation of Optimized Floating Point Matrix Multiplier Based on FPGA Maruti L. Doddamani IV Semester, M.Tech (Digital Electronics), Department

More information

Design and Optimized Implementation of Six-Operand Single- Precision Floating-Point Addition

Design and Optimized Implementation of Six-Operand Single- Precision Floating-Point Addition 2011 International Conference on Advancements in Information Technology With workshop of ICBMG 2011 IPCSIT vol.20 (2011) (2011) IACSIT Press, Singapore Design and Optimized Implementation of Six-Operand

More information

IMPLEMENTATION OF DOUBLE PRECISION FLOATING POINT RADIX-2 FFT USING VHDL

IMPLEMENTATION OF DOUBLE PRECISION FLOATING POINT RADIX-2 FFT USING VHDL IMPLEMENTATION OF DOUBLE PRECISION FLOATING POINT RADIX-2 FFT USING VHDL Tharanidevi.B 1, Jayaprakash.R 2 Assistant Professor, Dept. of ECE, Bharathiyar Institute of Engineering for Woman, Salem, TamilNadu,

More information

II. MOTIVATION AND IMPLEMENTATION

II. MOTIVATION AND IMPLEMENTATION An Efficient Design of Modified Booth Recoder for Fused Add-Multiply operator Dhanalakshmi.G Applied Electronics PSN College of Engineering and Technology Tirunelveli dhanamgovind20@gmail.com Prof.V.Gopi

More information

FPGA Implementation of 16-Point Radix-4 Complex FFT Core Using NEDA

FPGA Implementation of 16-Point Radix-4 Complex FFT Core Using NEDA FPGA Implementation of 16-Point FFT Core Using NEDA Abhishek Mankar, Ansuman Diptisankar Das and N Prasad Abstract--NEDA is one of the techniques to implement many digital signal processing systems that

More information

International Journal of Research in Computer and Communication Technology, Vol 4, Issue 11, November- 2015

International Journal of Research in Computer and Communication Technology, Vol 4, Issue 11, November- 2015 Design of Dadda Algorithm based Floating Point Multiplier A. Bhanu Swetha. PG.Scholar: M.Tech(VLSISD), Department of ECE, BVCITS, Batlapalem. E.mail:swetha.appari@gmail.com V.Ramoji, Asst.Professor, Department

More information

A Pipelined Fused Processing Unit for DSP Applications

A Pipelined Fused Processing Unit for DSP Applications A Pipelined Fused Processing Unit for DSP Applications Vinay Reddy N PG student Dept of ECE, PSG College of Technology, Coimbatore, Abstract Hema Chitra S Assistant professor Dept of ECE, PSG College of

More information

Design and Implementation of Floating Point Multiplier for Better Timing Performance

Design and Implementation of Floating Point Multiplier for Better Timing Performance Design and Implementation of Floating Point Multiplier for Better Timing Performance B.Sreenivasa Ganesh 1,J.E.N.Abhilash 2, G. Rajesh Kumar 3 SwarnandhraCollege of Engineering& Technology 1,2, Vishnu

More information

A unified architecture of MD5 and RIPEMD-160 hash algorithms

A unified architecture of MD5 and RIPEMD-160 hash algorithms Title A unified architecture of MD5 and RIPMD-160 hash algorithms Author(s) Ng, CW; Ng, TS; Yip, KW Citation The 2004 I International Symposium on Cirquits and Systems, Vancouver, BC., 23-26 May 2004.

More information

Double Precision Floating-Point Arithmetic on FPGAs

Double Precision Floating-Point Arithmetic on FPGAs MITSUBISHI ELECTRIC ITE VI-Lab Title: Double Precision Floating-Point Arithmetic on FPGAs Internal Reference: Publication Date: VIL04-D098 Author: S. Paschalakis, P. Lee Rev. A Dec. 2003 Reference: Paschalakis,

More information

A Normal I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for MIMO

A Normal I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for MIMO 2402 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016 A Normal I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for MIMO Antony Xavier Glittas,

More information

An FPGA based Implementation of Floating-point Multiplier

An FPGA based Implementation of Floating-point Multiplier An FPGA based Implementation of Floating-point Multiplier L. Rajesh, Prashant.V. Joshi and Dr.S.S. Manvi Abstract In this paper we describe the parameterization, implementation and evaluation of floating-point

More information

Iterative Synthesis Techniques for Multiple-Valued Logic Functions A Review and Comparison

Iterative Synthesis Techniques for Multiple-Valued Logic Functions A Review and Comparison Iterative Synthesis Techniques for Multiple-Valued Logic Functions A Review and Comparison Mostafa Abd-El-Barr Department of Information Science, Kuwait University, Kuwait. Abstract - A number of heuristics

More information

ISSN Vol.05,Issue.09, September-2017, Pages:

ISSN Vol.05,Issue.09, September-2017, Pages: WWW.IJITECH.ORG ISSN 2321-8665 Vol.05,Issue.09, September-2017, Pages:1693-1697 AJJAM PUSHPA 1, C. H. RAMA MOHAN 2 1 PG Scholar, Dept of ECE(DECS), Shirdi Sai Institute of Science and Technology, Anantapuramu,

More information

Performance Evaluation of a Novel Direct Table Lookup Method and Architecture With Application to 16-bit Integer Functions

Performance Evaluation of a Novel Direct Table Lookup Method and Architecture With Application to 16-bit Integer Functions Performance Evaluation of a Novel Direct Table Lookup Method and Architecture With Application to 16-bit nteger Functions L. Li, Alex Fit-Florea, M. A. Thornton, D. W. Matula Southern Methodist University,

More information

DESIGN OF PARAMETER EXTRACTOR IN LOW POWER PRECOMPUTATION BASED CONTENT ADDRESSABLE MEMORY

DESIGN OF PARAMETER EXTRACTOR IN LOW POWER PRECOMPUTATION BASED CONTENT ADDRESSABLE MEMORY DESIGN OF PARAMETER EXTRACTOR IN LOW POWER PRECOMPUTATION BASED CONTENT ADDRESSABLE MEMORY Saroja pasumarti, Asst.professor, Department Of Electronics and Communication Engineering, Chaitanya Engineering

More information

A Novel Carry-look ahead approach to an Unified BCD and Binary Adder/Subtractor

A Novel Carry-look ahead approach to an Unified BCD and Binary Adder/Subtractor A Novel Carry-look ahead approach to an Unified BCD and Binary Adder/Subtractor Abstract Increasing prominence of commercial, financial and internet-based applications, which process decimal data, there

More information

International Journal of Engineering and Techniques - Volume 4 Issue 2, April-2018

International Journal of Engineering and Techniques - Volume 4 Issue 2, April-2018 RESEARCH ARTICLE DESIGN AND ANALYSIS OF RADIX-16 BOOTH PARTIAL PRODUCT GENERATOR FOR 64-BIT BINARY MULTIPLIERS K.Deepthi 1, Dr.T.Lalith Kumar 2 OPEN ACCESS 1 PG Scholar,Dept. Of ECE,Annamacharya Institute

More information

A FLOATING POINT DIVISION UNIT BASED ON TAYLOR-SERIES EXPANSION ALGORITHM AND ITERATIVE LOGARITHMIC MULTIPLIER

A FLOATING POINT DIVISION UNIT BASED ON TAYLOR-SERIES EXPANSION ALGORITHM AND ITERATIVE LOGARITHMIC MULTIPLIER A FLOATING POINT DIVISION UNIT BASED ON TAYLOR-SERIES EXPANSION ALGORITHM AND ITERATIVE LOGARITHMIC MULTIPLIER Riyansh K. Karani, Akash K. Rana, Dhruv H. Reshamwala, Kishore Saldanha Electronics Department,

More information

Efficient VLSI Huffman encoder implementation and its application in high rate serial data encoding

Efficient VLSI Huffman encoder implementation and its application in high rate serial data encoding LETTER IEICE Electronics Express, Vol.14, No.21, 1 11 Efficient VLSI Huffman encoder implementation and its application in high rate serial data encoding Rongshan Wei a) and Xingang Zhang College of Physics

More information

Chapter 3 Image Enhancement in the Spatial Domain

Chapter 3 Image Enhancement in the Spatial Domain Chapter 3 Image Enhancement in the Spatial Domain Yinghua He School o Computer Science and Technology Tianjin University Image enhancement approaches Spatial domain image plane itsel Spatial domain methods

More information

DUE to the high computational complexity and real-time

DUE to the high computational complexity and real-time IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 3, MARCH 2005 445 A Memory-Efficient Realization of Cyclic Convolution and Its Application to Discrete Cosine Transform Hun-Chen

More information

Batchu Jeevanarani and Thota Sreenivas Department of ECE, Sri Vasavi Engg College, Tadepalligudem, West Godavari (DT), Andhra Pradesh, India

Batchu Jeevanarani and Thota Sreenivas Department of ECE, Sri Vasavi Engg College, Tadepalligudem, West Godavari (DT), Andhra Pradesh, India Memory-Based Realization of FIR Digital Filter by Look-Up- Table Optimization Batchu Jeevanarani and Thota Sreenivas Department of ECE, Sri Vasavi Engg College, Tadepalligudem, West Godavari (DT), Andhra

More information

Fixed Point LMS Adaptive Filter with Low Adaptation Delay

Fixed Point LMS Adaptive Filter with Low Adaptation Delay Fixed Point LMS Adaptive Filter with Low Adaptation Delay INGUDAM CHITRASEN MEITEI Electronics and Communication Engineering Vel Tech Multitech Dr RR Dr SR Engg. College Chennai, India MR. P. BALAVENKATESHWARLU

More information

The Serial Commutator FFT

The Serial Commutator FFT The Serial Commutator FFT Mario Garrido Gálvez, Shen-Jui Huang, Sau-Gee Chen and Oscar Gustafsson Journal Article N.B.: When citing this work, cite the original article. 2016 IEEE. Personal use of this

More information

AN FFT PROCESSOR BASED ON 16-POINT MODULE

AN FFT PROCESSOR BASED ON 16-POINT MODULE AN FFT PROCESSOR BASED ON 6-POINT MODULE Weidong Li, Mark Vesterbacka and Lars Wanhammar Electronics Systems, Dept. of EE., Linköping University SE-58 8 LINKÖPING, SWEDEN E-mail: {weidongl, markv, larsw}@isy.liu.se,

More information

Second Order Function Approximation Using a Single Multiplication on FPGAs

Second Order Function Approximation Using a Single Multiplication on FPGAs Second Order Function Approximation Using a Single Multiplication on FPGAs Jérémie Detrey and Florent de Dinechin Laboratoire de l Informatique du Parallélisme École Normale Supérieure de Lyon 46, allée

More information

Implementation of a Unified DSP Coprocessor

Implementation of a Unified DSP Coprocessor Vol. (), Jan,, pp 3-43, ISS: 35-543 Implementation of a Unified DSP Coprocessor Mojdeh Mahdavi Department of Electronics, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran *Corresponding author's

More information

A Survey on Floating Point Adders

A Survey on Floating Point Adders A Survey on Floating Point Adders Geetanjali Sharma 1, Neetesh Dodkey 2 1 Dept. of Electronics and Communication Engineering Surbhi group of Institue, India 21geetanjali@gmail.com 2 Dept. of Electronics

More information

FPGA IMPLEMENTATION OF CORDIC ALGORITHM ARCHITECTURE

FPGA IMPLEMENTATION OF CORDIC ALGORITHM ARCHITECTURE FPGA IMPLEMENTATION OF CORDIC ALGORITHM ARCHITECTURE Ramanpreet Kaur 1, Parminder Singh Jassal 2 Department of Electronics And Communication Engineering, Punjabi University Yadavindra College of Engineering,

More information

A Single/Double Precision Floating-Point Reciprocal Unit Design for Multimedia Applications

A Single/Double Precision Floating-Point Reciprocal Unit Design for Multimedia Applications A Single/Double Precision Floating-Point Reciprocal Unit Design for Multimedia Applications Metin Mete Özbilen 1 and Mustafa Gök 2 1 Mersin University, Engineering Faculty, Department of Computer Science,

More information

Multifunction Residue Architectures for Cryptography 1

Multifunction Residue Architectures for Cryptography 1 Multifunction Residue Architectures for Cryptography 1 LAXMI TRIVENI.D, M.TECH., EMBEDDED SYSTEMS & VLSI 2 P.V.VARAPRASAD,RAO ASSOCIATE PROFESSOR., SLC S INSTITUTE OF ENGINEERING AND TECHNOLOGY Abstract

More information