AN FFT PROCESSOR BASED ON 16-POINT MODULE

Size: px
Start display at page:

Download "AN FFT PROCESSOR BASED ON 16-POINT MODULE"

Transcription

1 AN FFT PROCESSOR BASED ON 6-POINT MODULE Weidong Li, Mark Vesterbacka and Lars Wanhammar Electronics Systems, Dept. of EE., Linköping University SE-58 8 LINKÖPING, SWEDEN {weidongl, markv, larsw}@isy.liu.se, Tel.: , Fax: ABSTRACT: The number of multiplications has been a key merit for FFT algorithms. It has important impact on the total power consumption. In this paper, we present a 6-point FFT module, which reduces the multiplicative complexity by using real constant multiplications. A pipeline FFT processor has been implemented with the 6-point module and simulation result shows that it is an attractive candidate to reduce the power consumption.. INTRODUCTION FFT processor has been widely used in digital signal processing. Recently, FFT processor is applied to Orthogonal Frequency Division Multiplex (OFDM) based communication systems liked xdsl modems and wireless mobile terminals due to its efficient implementation of the modulator and demodulator bank. Furthermore, the low power has become a main constraint for battery-operated devices. Hence, the effective design of FFT processor with low power is vital. In this paper we present the design of an FFT processor which computes a 024-point FFT including I/O within 40 µs and is part of high bit rate mobile radio modem. Since our target application has the high requirements in throughput, power, and area, the ASIC implementation is one of the most feasible implementations. Complex multiplications is an expansive operation both in the past [0] and now [] [2]. One method to reduce the complexity is to replace complex multiplications with less expansive real multiplications when possible. Several 6-point modules are summarized in the following section. Among them, we uses the most efficient one as basic building block for the whole FFT processor, which is described in section. Result is presented in section 4. The conclusions are given finally in section POINT FFT MODULE A N-point DFT can be expressed as following, N X( n) = xk ( )W nk, where W nk N = e. k = 0 In this section, we concentrate us on 6-point FFT module. There are mainly three different FFT algorithms, i.e., radix-2, radix-4 and split-radix 2/4, which are suitable for VLSI implementation. For simplicity, all algorithms in this paper are based on decimation-in-frequency (DIF), which is equivalent to decimation-in-time (DIT) based algorithms in complexity. These algorithms are derived in the rest of this section. 2. RADIX-2 2πnk The radix-2 6-point FFT maps the indices with k = 2 i k i and n = 2 i n i i = 0 i = 0

2 ( k i, n i [ 0, ]). With notation ( m, m 2, m, m 0 ) = 2 i mi, the 6-point FFT can be expressed as following i = 0 X( n, n 2, n, n 0 ) xk (, k 2, k, k 0 )W 8k + 4k 2 + 2k + k = 0 k 0 = 0 k = 0 k 2 = 0 ( k 2 + 2k + k 0 )2n k = 0 ( k + k 0 )4n 2 8k 0 n W ( )n 0 (). A 6-point FFT with radix-2 algo- which includes the simplification of rithm is illustrated in Fig.. W mn 2πjmN N = e = x(0) x() x(2) x() x(4) x(5) x(6) x(7) x(8) x(9) x(0) x() x(2) x() x(4) x(5) W W W 5 W 7 Figure 6-point FFT with radix-2 algorithm. X(0) X(8) X(4) X(2) X(2) X(0) X(6) X(4) X() X(9) X(5) X() X() X() X(7) X(5) The multiplication with = j can be done by swapping and inversion and therefore is trivial. The number of complex multiplications is 0. The complex multiplications with can be implemented with two real multiplications and other non-trivial complex multiplications can be implemented with three real multiplications. The number of real multiplications is therefore RADIX-4 The 6-point FFT with radix-4 algorithm can be driven in a similar manner.this is illustrated in Fig. 2.The number of complex multiplications is 8. With simplification for multiplications 2

3 with, the total number of real multiplications is reduced to 20. x(0) x() x(2) x() x(4) x(5) x(6) x(7) x(8) x(9) x(0) x() x(2) x() x(4) x(5) W W W W 9 Figure 2 6-point FFT with radix-4 algorithm. X(0) X(4) X(8) X(2) X() X(5) X(9) X() X(2) X(6) X(0) X(4) X() X(7) X() X(5) 2. SPLIT-RADIX FFT The split-radix FFT algorithm combines the radix-2 and radix-4 algorithms to reduce the number operations []. Odds terms of DFT are computed with radix-4 algorithm while the even terms with radix-2 algorithm. A 6-point FFT with split-radix 2/4 is shown in Fig.. x(0) x() x(2) x() x(4) x(5) x(6) x(7) x(8) x(9) x(0) x() x(2) x() x(4) x(5) W W W W 9 X(0) X(8) X(4) X(2) X(2) X(0) X(6) X(4) X() X(9) X(5) X() X() X() X(7) X(5) Figure Split-radix 6-point FFT. The number of complex multiplications is 8. With simplification, the number of real multiplications is 20, which is the same as radix-4 algorithm. To reduce the power consumption, the number of multiplications must be reduced. The radix-2 algorithm is less attractive due to the requirement of more multiplications. Since the FFT processor is implemented with fixed-point arithmetic, the multiplication with can be implemented with constant multiplication with sufficient accuracy. In our target application, this constant multiplication is realized with five shifted additions.

4 . PIPELEINE FFT PROCESSOR High performances, like high throughput and continue input/output etc., are required for communication systems. The pipeline architecture is suitable for those ends. In our target application, the input data are arrived in natural order. The data memory are required for pipeline processor since the incoming data have to be rearranged according to the FFT algorithm. The data memory consumes a large portion of power for large transform length FFT processor. Hence the data memory is also a critical factor for power consumption. In this section, we discuss the mapping of 6-point module for the pipeline processor.. MULTIPLICATIONS A large portion of total power are consumed by the computation of complex multiplications in the FFT processor. A complex multiplier consumes 72.6 mw with supply voltage of.v at 25MHz. For a 024-point FFT processor, it requires four complex multipliers and hence consumes 290mW@.V, 25MHz. Even with bypass technique for trivial complex multiplications, the power consumption for the computation of complex multiplications is still larger than 20mW. Hence the reduction of the number of complex multiplication is vital. Using high radix module can reduce the number of complex multiplications outsides the module. However, it is not common to use high radix module for implementations due to two main drawbacks: it increases the number of complex multiplications within the module if the radix is larger than 4 and it increases the routing complexity as well. To overcome those drawbacks is the key for using high radix module, which is also the key issues for our discussions. As well-known, adders consumes much less power than that of multipliers with the same wordlength. This is because the adder has less hardware and much less glitches. A 2-bit Brent-Kung adder (real) consumes.5mw@.v, 25MHz, which is much less than a 7 bit complex multiplier (72.6mW@.V, 25MHz). Therefore it is efficient to replace the complex multiplier with constant multiplier (carry-save-adders).we apply this idea to the design of 6-point module in order to reduce the number of complex multiplications. For a 6-point FFT module, there 2 are three type non-trivial complex multiplications, i.e., multiplications with,, and. The multiplications with and can share coefficients since π cos-- and. We can therefore use constant multiplication, which reduce the multiplication complexity. The implementation of multi- 8 sin π π π π = = sin----- sin cos π π π = = cos plication with is illustrated in Fig. 4. Re{input} π π cos-- + sin Im{output} C constant π π multiplication Im{input} cos-- sin π Re{output} Figure 4 Complex multiplication with. cos-- 8 For the three different algorithms, the different positions of multiplications cause different hardware implementations. Both radix-2 and split-radix algorithm require three multipliers (two 2 multipliers with and one multiplier with ) while the radix-4 algorithm requires only 2 two multipliers (one multipliers with and one multiplier with ). Hence the 6-point FFT module with radix-4 is more efficient and is selected for our implementation. The power consumption for complex multiplication within 6-point module is about 0mW@.V, 25MHz. 4

5 By replacing the complex multiplications with constant multiplications within the 6-point module, the number of non-trivial complex multiplications can be reduced to 776 with configuration. The total number of complex multipliers is reduced to two for 024- point FFT due to the use of 6-point module. Table shows the number non-trivial complex multiplications required for 024-point FFT with different algorithms. Algorithm Radix-2 Radix-4 Split-radix Our approach No. of comp. mult Table : Number of non-trivial complex multiplications for 024-point FFT..2 DATA MEMORY The data memory consumes a significant portion of the total power. It is therefore desirable to reduce the size of data memory. For the pipeline FFT processor, the data memory for the first few stages dominates both size and power consumption of the total memory. The architecture selection for those stages is of importance. There are two main methods to reorder data for FFT algorithm for pipeline FFT processor: delay-forward and feedback. The key difference between two methods is that the delay-forward method stores only the incoming data in the data memory while the feedback method stores both the incoming data and partial results in the data memory at each stage. This is shown in Fig. 5 for a 4-point FFT. (a) D Figure 5 Delay-forward (a) and feedback (b). (b) As described in [2], the efficient way to reduce data memory size is to use feedback method. We select single-path feedback for data memory since it gives the minimum data memory with N words for N -point FFT [2].. REALIZATION OF 6-POINT MODULE Direct use of feedback method for the three algorithms listed in section 2 faces two main problems: large memory bandwidth and complex interconnection scheme. Also direct implementation of 6-point module is complicated. Figure 6 6-point FFT module. Constant multipliers The radix-4 algorithm can be decomposed into radix-2 algorithm as it does in [7]. Hence the mapping of 6-point module can be done with four pipelined radix-2 butterfly s. Each butterfly has its own feedback memory. The 6-module is illustrated in Fig. 6. With this mapping, the two main drawbacks for high radix module have been removed. 5

6 4. RESULTS For the complex multipliers, the conventional radix-4 algorithm requires 4 complex multipliers. Each complex multiplier consumes 72.6mW@.V, 25MHz at full rate (simulation result). With bypass technique, the total power consumption for complex multipliers is about 20mW. In our approach, there is only two complex multipliers and two constant multipliers (one consumes 0mW@.V, 25MHz), which consumes a total power less than 60mW. A power saving more than 20% for the computation of complex multiplications. This is less than the theoretical saving of 5% (the ratio for the number of complex multiplications) due to the computation for complex multiplications within the 6-point module. The power consumption for the data memory and butterfly s are of the same. The power consumption for the data memory is estimated 00mW (the power consumption for 28 words or higher memory is given by the vendor and the smaller memory is estimated through linear approximation downto 2 words). The butterfly s consumes about 0mW. 5. CONCLUSIONS In this paper, we introduces an FFT processor based on 6-point module. The new approach reduces the number of complex multiplications and retains the minimum size of data memory. The simulation result shows that it can reduce the power consumption. REFERENCE [] W. Li and L. Wanhammar, A Pipeline FFT Processor, IEEE Workshop on Signal Processing Systems (SiPS), Taipei, China, Oct., 999. [2] J. Melander, Design of SIC FFT Architectures, Linköping Studies in Science and Technology, Thesis No. 68, Linköping University, Sweden, 997. [] L. Wanhammar, DSP Integrated Circuits, Academic Press, 999. [4] Z. Mou and F. Jutand, Overturned-Stairs Adder Trees and Multiplier Design, IEEE Trans. on Computer, vol. C-4, No. 8, pp , Aug [5] W. Li and L. Wanhammar, A Complex Multiplier Using Overturned-Stairs Adder Tree, Int. Conf. on Electronic Circuits and Systems (ICECS), Sept., 999. [6] G. Bi and E. V. Jones, A Pipelined FFT Processor for Word-Sequential Data, IEEE Trans. on Acoustic, Speech, and Signal Process., vol. ASSP-7, No.2, pp , Dec [7] S. He and M. Torkelson, A New Approach to Pipeline FFT Processor, The 0th International Parallel Processing Symposium (IPPS), pp , 996. [8] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice- Hall, 975. [9] A. M. Despain, Fourier Transform Computer Using CORDIC Iterations, IEEE Trans. on Computers, vol. C-2, No. 0, pp , 974. [0]M. T. Heideman and S. Burrus, On the Number of Multiplications Necessary to Compute a Length-2 n DFT, IEEE trans. on Acoustic, Speech, and Signal Process., vol. ASSP-4, No., pp. 9-95, 986. []P. Duhamel and H. Hollmann, Split Radix FFT Algorithm, Electronics Letters, Vol. 20, No., pp. 4-6, Jan., 984. [2]P. Duhamel and H. Hollmann, Existence of a 2 n FFT algorithm with a number of multiplications lower than 2 n +, Electronics Letters, Vol. 20, No. 7, pp , Aug.,

Efficient Radix-4 and Radix-8 Butterfly Elements

Efficient Radix-4 and Radix-8 Butterfly Elements Efficient Radix4 and Radix8 Butterfly Elements Weidong Li and Lars Wanhammar Electronics Systems, Department of Electrical Engineering Linköping University, SE581 83 Linköping, Sweden Tel.: +46 13 28 {1721,

More information

The Serial Commutator FFT

The Serial Commutator FFT The Serial Commutator FFT Mario Garrido Gálvez, Shen-Jui Huang, Sau-Gee Chen and Oscar Gustafsson Journal Article N.B.: When citing this work, cite the original article. 2016 IEEE. Personal use of this

More information

Twiddle Factor Transformation for Pipelined FFT Processing

Twiddle Factor Transformation for Pipelined FFT Processing Twiddle Factor Transformation for Pipelined FFT Processing In-Cheol Park, WonHee Son, and Ji-Hoon Kim School of EECS, Korea Advanced Institute of Science and Technology, Daejeon, Korea icpark@ee.kaist.ac.kr,

More information

MULTIPLIERLESS HIGH PERFORMANCE FFT COMPUTATION

MULTIPLIERLESS HIGH PERFORMANCE FFT COMPUTATION MULTIPLIERLESS HIGH PERFORMANCE FFT COMPUTATION Maheshwari.U 1, Josephine Sugan Priya. 2, 1 PG Student, Dept Of Communication Systems Engg, Idhaya Engg. College For Women, 2 Asst Prof, Dept Of Communication

More information

Linköping University Post Print. Analysis of Twiddle Factor Memory Complexity of Radix-2^i Pipelined FFTs

Linköping University Post Print. Analysis of Twiddle Factor Memory Complexity of Radix-2^i Pipelined FFTs Linköping University Post Print Analysis of Twiddle Factor Complexity of Radix-2^i Pipelined FFTs Fahad Qureshi and Oscar Gustafsson N.B.: When citing this work, cite the original article. 200 IEEE. Personal

More information

Low Power and Memory Efficient FFT Architecture Using Modified CORDIC Algorithm

Low Power and Memory Efficient FFT Architecture Using Modified CORDIC Algorithm Low Power and Memory Efficient FFT Architecture Using Modified CORDIC Algorithm 1 A.Malashri, 2 C.Paramasivam 1 PG Student, Department of Electronics and Communication K S Rangasamy College Of Technology,

More information

DESIGN METHODOLOGY. 5.1 General

DESIGN METHODOLOGY. 5.1 General 87 5 FFT DESIGN METHODOLOGY 5.1 General The fast Fourier transform is used to deliver a fast approach for the processing of data in the wireless transmission. The Fast Fourier Transform is one of the methods

More information

LOW-POWER SPLIT-RADIX FFT PROCESSORS

LOW-POWER SPLIT-RADIX FFT PROCESSORS LOW-POWER SPLIT-RADIX FFT PROCESSORS Avinash 1, Manjunath Managuli 2, Suresh Babu D 3 ABSTRACT To design a split radix fast Fourier transform is an ideal person for the implementing of a low-power FFT

More information

A 4096-Point Radix-4 Memory-Based FFT Using DSP Slices

A 4096-Point Radix-4 Memory-Based FFT Using DSP Slices A 4096-Point Radix-4 Memory-Based FFT Using DSP Slices Mario Garrido Gálvez, Miguel Angel Sanchez, Maria Luisa Lopez-Vallejo and Jesus Grajal Journal Article N.B.: When citing this work, cite the original

More information

FAST FOURIER TRANSFORM (FFT) and inverse fast

FAST FOURIER TRANSFORM (FFT) and inverse fast IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 11, NOVEMBER 2004 2005 A Dynamic Scaling FFT Processor for DVB-T Applications Yu-Wei Lin, Hsuan-Yu Liu, and Chen-Yi Lee Abstract This paper presents an

More information

Abstract. Literature Survey. Introduction. A.Radix-2/8 FFT algorithm for length qx2 m DFTs

Abstract. Literature Survey. Introduction. A.Radix-2/8 FFT algorithm for length qx2 m DFTs Implementation of Split Radix algorithm for length 6 m DFT using VLSI J.Nancy, PG Scholar,PSNA College of Engineering and Technology; S.Bharath,Assistant Professor,PSNA College of Engineering and Technology;J.Wilson,Assistant

More information

Analysis of Radix- SDF Pipeline FFT Architecture in VLSI Using Chip Scope

Analysis of Radix- SDF Pipeline FFT Architecture in VLSI Using Chip Scope Analysis of Radix- SDF Pipeline FFT Architecture in VLSI Using Chip Scope G. Mohana Durga 1, D.V.R. Mohan 2 1 M.Tech Student, 2 Professor, Department of ECE, SRKR Engineering College, Bhimavaram, Andhra

More information

THE orthogonal frequency-division multiplex (OFDM)

THE orthogonal frequency-division multiplex (OFDM) 26 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 57, NO. 1, JANUARY 2010 A Generalized Mixed-Radix Algorithm for Memory-Based FFT Processors Chen-Fong Hsiao, Yuan Chen, Member, IEEE,

More information

A Normal I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for MIMO

A Normal I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for MIMO 2402 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 6, JUNE 2016 A Normal I/O Order Radix-2 FFT Architecture to Process Twin Data Streams for MIMO Antony Xavier Glittas,

More information

Novel design of multiplier-less FFT processors

Novel design of multiplier-less FFT processors Signal Processing 8 (00) 140 140 www.elsevier.com/locate/sigpro Novel design of multiplier-less FFT processors Yuan Zhou, J.M. Noras, S.J. Shepherd School of EDT, University of Bradford, Bradford, West

More information

ON CONFIGURATION OF RESIDUE SCALING PROCESS IN PIPELINED RADIX-4 MQRNS FFT PROCESSOR

ON CONFIGURATION OF RESIDUE SCALING PROCESS IN PIPELINED RADIX-4 MQRNS FFT PROCESSOR POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Robert SMYK* Maciej CZYŻAK* ON CONFIGURATION OF RESIDUE SCALING PROCESS IN PIPELINED RADIX-4 MQRNS FFT PROCESSOR Residue

More information

An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients

An efficient multiplierless approximation of the fast Fourier transform using sum-of-powers-of-two (SOPOT) coefficients Title An efficient multiplierless approximation of the fast Fourier transm using sum-of-powers-of-two (SOPOT) coefficients Author(s) Chan, SC; Yiu, PM Citation Ieee Signal Processing Letters, 2002, v.

More information

Implementation of FFT Processor using Urdhva Tiryakbhyam Sutra of Vedic Mathematics

Implementation of FFT Processor using Urdhva Tiryakbhyam Sutra of Vedic Mathematics Implementation of FFT Processor using Urdhva Tiryakbhyam Sutra of Vedic Mathematics Yojana Jadhav 1, A.P. Hatkar 2 PG Student [VLSI & Embedded system], Dept. of ECE, S.V.I.T Engineering College, Chincholi,

More information

High Throughput Energy Efficient Parallel FFT Architecture on FPGAs

High Throughput Energy Efficient Parallel FFT Architecture on FPGAs High Throughput Energy Efficient Parallel FFT Architecture on FPGAs Ren Chen Ming Hsieh Department of Electrical Engineering University of Southern California Los Angeles, USA 989 Email: renchen@usc.edu

More information

Radix-4 FFT Algorithms *

Radix-4 FFT Algorithms * OpenStax-CNX module: m107 1 Radix-4 FFT Algorithms * Douglas L Jones This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 10 The radix-4 decimation-in-time

More information

TOPICS PIPELINE IMPLEMENTATIONS OF THE FAST FOURIER TRANSFORM (FFT) DISCRETE FOURIER TRANSFORM (DFT) INVERSE DFT (IDFT) Consulted work:

TOPICS PIPELINE IMPLEMENTATIONS OF THE FAST FOURIER TRANSFORM (FFT) DISCRETE FOURIER TRANSFORM (DFT) INVERSE DFT (IDFT) Consulted work: 1 PIPELINE IMPLEMENTATIONS OF THE FAST FOURIER TRANSFORM (FFT) Consulted work: Chiueh, T.D. and P.Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications, John Wiley and Sons Asia, (2007). Second

More information

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation

Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 6, Issue 2, Ver. I (Mar. -Apr. 2016), PP 58-65 e-issn: 2319 4200, p-issn No. : 2319 4197 www.iosrjournals.org Fused Floating Point Arithmetic

More information

Low Power Complex Multiplier based FFT Processor

Low Power Complex Multiplier based FFT Processor Low Power Complex Multiplier based FFT Processor V.Sarada, Dr.T.Vigneswaran 2 ECE, SRM University, Chennai,India saradasaran@gmail.com 2 ECE, VIT University, Chennai,India vigneshvlsi@gmail.com Abstract-

More information

RECENTLY, researches on gigabit wireless personal area

RECENTLY, researches on gigabit wireless personal area 146 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 55, NO. 2, FEBRUARY 2008 An Indexed-Scaling Pipelined FFT Processor for OFDM-Based WPAN Applications Yuan Chen, Student Member, IEEE,

More information

Parallel-computing approach for FFT implementation on digital signal processor (DSP)

Parallel-computing approach for FFT implementation on digital signal processor (DSP) Parallel-computing approach for FFT implementation on digital signal processor (DSP) Yi-Pin Hsu and Shin-Yu Lin Abstract An efficient parallel form in digital signal processor can improve the algorithm

More information

FAST Fourier transform (FFT) is an important signal processing

FAST Fourier transform (FFT) is an important signal processing IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 54, NO. 4, APRIL 2007 889 Balanced Binary-Tree Decomposition for Area-Efficient Pipelined FFT Processing Hyun-Yong Lee, Student Member,

More information

DESIGN OF PARALLEL PIPELINED FEED FORWARD ARCHITECTURE FOR ZERO FREQUENCY & MINIMUM COMPUTATION (ZMC) ALGORITHM OF FFT

DESIGN OF PARALLEL PIPELINED FEED FORWARD ARCHITECTURE FOR ZERO FREQUENCY & MINIMUM COMPUTATION (ZMC) ALGORITHM OF FFT IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 4, Apr 2014, 199-206 Impact Journals DESIGN OF PARALLEL PIPELINED

More information

Keywords: Fast Fourier Transforms (FFT), Multipath Delay Commutator (MDC), Pipelined Architecture, Radix-2 k, VLSI.

Keywords: Fast Fourier Transforms (FFT), Multipath Delay Commutator (MDC), Pipelined Architecture, Radix-2 k, VLSI. ww.semargroup.org www.ijvdcs.org ISSN 2322-0929 Vol.02, Issue.05, August-2014, Pages:0294-0298 Radix-2 k Feed Forward FFT Architectures K.KIRAN KUMAR 1, M.MADHU BABU 2 1 PG Scholar, Dept of VLSI & ES,

More information

FPGA Implementation of 16-Point Radix-4 Complex FFT Core Using NEDA

FPGA Implementation of 16-Point Radix-4 Complex FFT Core Using NEDA FPGA Implementation of 16-Point FFT Core Using NEDA Abhishek Mankar, Ansuman Diptisankar Das and N Prasad Abstract--NEDA is one of the techniques to implement many digital signal processing systems that

More information

VLSI IMPLEMENTATION AND PERFORMANCE ANALYSIS OF EFFICIENT MIXED-RADIX 8-2 FFT ALGORITHM WITH BIT REVERSAL FOR THE OUTPUT SEQUENCES.

VLSI IMPLEMENTATION AND PERFORMANCE ANALYSIS OF EFFICIENT MIXED-RADIX 8-2 FFT ALGORITHM WITH BIT REVERSAL FOR THE OUTPUT SEQUENCES. VLSI IMPLEMENTATION AND PERFORMANCE ANALYSIS OF EFFICIENT MIXED-RADIX 8-2 ALGORITHM WITH BIT REVERSAL FOR THE OUTPUT SEQUENCES. M. MOHAMED ISMAIL Dr. M.J.S RANGACHAR Dr.Ch. D. V. PARADESI RAO (Research

More information

Fixed Point Streaming Fft Processor For Ofdm

Fixed Point Streaming Fft Processor For Ofdm Fixed Point Streaming Fft Processor For Ofdm Sudhir Kumar Sa Rashmi Panda Aradhana Raju Abstract Fast Fourier Transform (FFT) processors are today one of the most important blocks in communication systems.

More information

Low-Power Split-Radix FFT Processors Using Radix-2 Butterfly Units

Low-Power Split-Radix FFT Processors Using Radix-2 Butterfly Units Low-Power Split-Radix FFT Processors Using Radix-2 Butterfly Units Abstract: Split-radix fast Fourier transform (SRFFT) is an ideal candidate for the implementation of a lowpower FFT processor, because

More information

A VLSI Array Architecture for Realization of DFT, DHT, DCT and DST

A VLSI Array Architecture for Realization of DFT, DHT, DCT and DST A VLSI Array Architecture for Realization of DFT, DHT, DCT and DST K. Maharatna* System Design Dept. Institute for Semiconductor Physics Technology Park 25 D-15236 Frankfurt (Oder) Germany email: maharatna@ihp-ffo.de

More information

Modified Welch Power Spectral Density Computation with Fast Fourier Transform

Modified Welch Power Spectral Density Computation with Fast Fourier Transform Modified Welch Power Spectral Density Computation with Fast Fourier Transform Sreelekha S 1, Sabi S 2 1 Department of Electronics and Communication, Sree Budha College of Engineering, Kerala, India 2 Professor,

More information

Research Article International Journal of Emerging Research in Management &Technology ISSN: (Volume-6, Issue-8) Abstract:

Research Article International Journal of Emerging Research in Management &Technology ISSN: (Volume-6, Issue-8) Abstract: International Journal of Emerging Research in Management &Technology Research Article August 27 Design and Implementation of Fast Fourier Transform (FFT) using VHDL Code Akarshika Singhal, Anjana Goen,

More information

A Pipelined Fused Processing Unit for DSP Applications

A Pipelined Fused Processing Unit for DSP Applications A Pipelined Fused Processing Unit for DSP Applications Vinay Reddy N PG student Dept of ECE, PSG College of Technology, Coimbatore, Abstract Hema Chitra S Assistant professor Dept of ECE, PSG College of

More information

A scalable, fixed-shuffling, parallel FFT butterfly processing architecture for SDR environment

A scalable, fixed-shuffling, parallel FFT butterfly processing architecture for SDR environment LETTER IEICE Electronics Express, Vol.11, No.2, 1 9 A scalable, fixed-shuffling, parallel FFT butterfly processing architecture for SDR environment Ting Chen a), Hengzhu Liu, and Botao Zhang College of

More information

Research Article Design of A Novel 8-point Modified R2MDC with Pipelined Technique for High Speed OFDM Applications

Research Article Design of A Novel 8-point Modified R2MDC with Pipelined Technique for High Speed OFDM Applications Research Journal of Applied Sciences, Engineering and Technology 7(23): 5021-5025, 2014 DOI:10.19026/rjaset.7.895 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted:

More information

REAL TIME DIGITAL SIGNAL PROCESSING

REAL TIME DIGITAL SIGNAL PROCESSING REAL TIME DIGITAL SIGAL PROCESSIG UT-FRBA www.electron.frba.utn.edu.ar/dplab UT-FRBA Frequency Analysis Fast Fourier Transform (FFT) Fast Fourier Transform DFT: complex multiplications (-) complex aditions

More information

An Area Efficient Mixed Decimation MDF Architecture for Radix. Parallel FFT

An Area Efficient Mixed Decimation MDF Architecture for Radix. Parallel FFT An Area Efficient Mixed Decimation MDF Architecture for Radix Parallel FFT Reshma K J 1, Prof. Ebin M Manuel 2 1M-Tech, Dept. of ECE Engineering, Government Engineering College, Idukki, Kerala, India 2Professor,

More information

Multiplierless Unity-Gain SDF FFTs

Multiplierless Unity-Gain SDF FFTs Multiplierless Unity-Gain SDF FFTs Mario Garrido Gálvez, Rikard Andersson, Fahad Qureshi and Oscar Gustafsson Journal Article N.B.: When citing this work, cite the original article. 216 IEEE. Personal

More information

A Genetic Algorithm for the Optimisation of a Reconfigurable Pipelined FFT Processor

A Genetic Algorithm for the Optimisation of a Reconfigurable Pipelined FFT Processor A Genetic Algorithm for the Optimisation of a Reconfigurable Pipelined FFT Processor Nasri Sulaiman and Tughrul Arslan Department of Electronics and Electrical Engineering The University of Edinburgh Scotland

More information

Feedforward FFT Hardware Architectures Based on Rotator Allocation

Feedforward FFT Hardware Architectures Based on Rotator Allocation Feedforward FFT Hardware Architectures Based on Rotator Allocation Mario Garrido Gálvez, Shen-Jui Huang and Sau-Gee Chen The self-archived postprint version of this journal article is available at Linköping

More information

IMPLEMENTATION OF OPTIMIZED 128-POINT PIPELINE FFT PROCESSOR USING MIXED RADIX 4-2 FOR OFDM APPLICATIONS

IMPLEMENTATION OF OPTIMIZED 128-POINT PIPELINE FFT PROCESSOR USING MIXED RADIX 4-2 FOR OFDM APPLICATIONS IMPLEMENTATION OF OPTIMIZED 128-POINT PIPELINE FFT PROCESSOR USING MIXED RADIX 4-2 FOR OFDM APPLICATIONS K. UMAPATHY, Research scholar, Department of ECE, Jawaharlal Nehru Technological University, Anantapur,

More information

IMPLEMENTATION OF FAST FOURIER TRANSFORM USING VERILOG HDL

IMPLEMENTATION OF FAST FOURIER TRANSFORM USING VERILOG HDL IMPLEMENTATION OF FAST FOURIER TRANSFORM USING VERILOG HDL 1 ANUP TIWARI, 2 SAMIR KUMAR PANDEY 1 Department of ECE, Jharkhand Rai University,Ranchi, Jharkhand, India 2 Department of Mathematical Sciences,

More information

International Journal of Innovative and Emerging Research in Engineering. e-issn: p-issn:

International Journal of Innovative and Emerging Research in Engineering. e-issn: p-issn: Available online at www.ijiere.com International Journal of Innovative and Emerging Research in Engineering e-issn: 2394-3343 p-issn: 2394-5494 Design and Implementation of FFT Processor using CORDIC Algorithm

More information

STUDY OF A CORDIC BASED RADIX-4 FFT PROCESSOR

STUDY OF A CORDIC BASED RADIX-4 FFT PROCESSOR STUDY OF A CORDIC BASED RADIX-4 FFT PROCESSOR 1 AJAY S. PADEKAR, 2 S. S. BELSARE 1 BVDU, College of Engineering, Pune, India 2 Department of E & TC, BVDU, College of Engineering, Pune, India E-mail: ajay.padekar@gmail.com,

More information

High-Speed and Low-Power Split-Radix FFT

High-Speed and Low-Power Split-Radix FFT 864 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 3, MARCH 2003 High-Speed and Low-Power Split-Radix FFT Wen-Chang Yeh and Chein-Wei Jen Abstract This paper presents a novel split-radix fast Fourier

More information

ENERGY EFFICIENT PARAMETERIZED FFT ARCHITECTURE. Ren Chen, Hoang Le, and Viktor K. Prasanna

ENERGY EFFICIENT PARAMETERIZED FFT ARCHITECTURE. Ren Chen, Hoang Le, and Viktor K. Prasanna ENERGY EFFICIENT PARAMETERIZED FFT ARCHITECTURE Ren Chen, Hoang Le, and Viktor K. Prasanna Ming Hsieh Department of Electrical Engineering University of Southern California, Los Angeles, USA 989 Email:

More information

Reconfigurable FFT Processor A Broader Perspective Survey

Reconfigurable FFT Processor A Broader Perspective Survey Reconfigurable FFT Processor A Broader Perspective Survey V.Sarada 1, T.Vigneswaran 2 1 ECE, SRM University, Chennai, India. saradasaran@gmail.com 2 ECE, VIT University, Chennai, India. vigneshvlsi@gmail.com

More information

Digital Signal Processing. Soma Biswas

Digital Signal Processing. Soma Biswas Digital Signal Processing Soma Biswas 2017 Partial credit for slides: Dr. Manojit Pramanik Outline What is FFT? Types of FFT covered in this lecture Decimation in Time (DIT) Decimation in Frequency (DIF)

More information

Efficient Methods for FFT calculations Using Memory Reduction Techniques.

Efficient Methods for FFT calculations Using Memory Reduction Techniques. Efficient Methods for FFT calculations Using Memory Reduction Techniques. N. Kalaiarasi Assistant professor SRM University Kattankulathur, chennai A.Rathinam Assistant professor SRM University Kattankulathur,chennai

More information

ISSN Vol.02, Issue.11, December-2014, Pages:

ISSN Vol.02, Issue.11, December-2014, Pages: ISSN 2322-0929 Vol.02, Issue.11, December-2014, Pages:1119-1123 www.ijvdcs.org High Speed and Area Efficient Radix-2 2 Feed Forward FFT Architecture ARRA ASHOK 1, S.N.CHANDRASHEKHAR 2 1 PG Scholar, Dept

More information

Design And Simulation Of Pipelined Radix-2 k Feed-Forward FFT Architectures

Design And Simulation Of Pipelined Radix-2 k Feed-Forward FFT Architectures Design And Simulation Of Pipelined Radix-2 k Feed-Forward FFT Architectures T.S. Ghouse basha 1, Peerla Sabeena sulthana 2 Associate Professor and Head of Department, KORM Engineering College, Kadapa,

More information

Design of Delay Efficient Distributed Arithmetic Based Split Radix FFT

Design of Delay Efficient Distributed Arithmetic Based Split Radix FFT Design of Delay Efficient Arithmetic Based Split Radix FFT Nisha Laguri #1, K. Anusudha *2 #1 M.Tech Student, Electronics, Department of Electronics Engineering, Pondicherry University, Puducherry, India

More information

ENERGY EFFICIENT PARAMETERIZED FFT ARCHITECTURE. Ren Chen, Hoang Le, and Viktor K. Prasanna

ENERGY EFFICIENT PARAMETERIZED FFT ARCHITECTURE. Ren Chen, Hoang Le, and Viktor K. Prasanna ENERGY EFFICIENT PARAMETERIZED FFT ARCHITECTURE Ren Chen, Hoang Le, and Viktor K. Prasanna Ming Hsieh Department of Electrical Engineering University of Southern California, Los Angeles, USA 989 Email:

More information

Area And Power Efficient LMS Adaptive Filter With Low Adaptation Delay

Area And Power Efficient LMS Adaptive Filter With Low Adaptation Delay e-issn: 2349-9745 p-issn: 2393-8161 Scientific Journal Impact Factor (SJIF): 1.711 International Journal of Modern Trends in Engineering and Research www.ijmter.com Area And Power Efficient LMS Adaptive

More information

An Efficient High Speed VLSI Architecture Based 16-Point Adaptive Split Radix-2 FFT Architecture

An Efficient High Speed VLSI Architecture Based 16-Point Adaptive Split Radix-2 FFT Architecture IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 10 April 2016 ISSN (online): 2349-784X An Efficient High Speed VLSI Architecture Based 16-Point Adaptive Split Radix-2 FFT

More information

FFT. There are many ways to decompose an FFT [Rabiner and Gold] The simplest ones are radix-2 Computation made up of radix-2 butterflies X = A + BW

FFT. There are many ways to decompose an FFT [Rabiner and Gold] The simplest ones are radix-2 Computation made up of radix-2 butterflies X = A + BW FFT There are many ways to decompose an FFT [Rabiner and Gold] The simplest ones are radix-2 Computation made up of radix-2 butterflies A X = A + BW B Y = A BW B. Baas 442 FFT Dataflow Diagram Dataflow

More information

IMPLEMENTATION OF DOUBLE PRECISION FLOATING POINT RADIX-2 FFT USING VHDL

IMPLEMENTATION OF DOUBLE PRECISION FLOATING POINT RADIX-2 FFT USING VHDL IMPLEMENTATION OF DOUBLE PRECISION FLOATING POINT RADIX-2 FFT USING VHDL Tharanidevi.B 1, Jayaprakash.R 2 Assistant Professor, Dept. of ECE, Bharathiyar Institute of Engineering for Woman, Salem, TamilNadu,

More information

DESIGN OF AN FFT PROCESSOR

DESIGN OF AN FFT PROCESSOR 1 DESIGN OF AN FFT PROCESSOR Erik Nordhamn, Björn Sikström and Lars Wanhammar Department of Electrical Engineering Linköping University S-581 83 Linköping, Sweden Abstract In this paper we present a structured

More information

HIGH SPEED REALISATION OF DIGITAL FILTERS

HIGH SPEED REALISATION OF DIGITAL FILTERS HIGH SPEED REALISATION OF DIGITAL FILTERS A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF PHILOSOPHY IN ELECTRICAL AND ELECTRONIC ENGINEERING AT THE UNIVERSITY OF HONG KONG BY TSIM TS1M MAN-TAT, JIMMY DEPARTMENT

More information

FPGA Based Design and Simulation of 32- Point FFT Through Radix-2 DIT Algorith

FPGA Based Design and Simulation of 32- Point FFT Through Radix-2 DIT Algorith FPGA Based Design and Simulation of 32- Point FFT Through Radix-2 DIT Algorith Sudhanshu Mohan Khare M.Tech (perusing), Dept. of ECE Laxmi Naraian College of Technology, Bhopal, India M. Zahid Alam Associate

More information

Implementation of Low-Memory Reference FFT on Digital Signal Processor

Implementation of Low-Memory Reference FFT on Digital Signal Processor Journal of Computer Science 4 (7): 547-551, 2008 ISSN 1549-3636 2008 Science Publications Implementation of Low-Memory Reference FFT on Digital Signal Processor Yi-Pin Hsu and Shin-Yu Lin Department of

More information

Research Article Radix-2 α /4 β Building Blocks for Efficient VLSI s Higher Radices Butterflies Implementation

Research Article Radix-2 α /4 β Building Blocks for Efficient VLSI s Higher Radices Butterflies Implementation VLSI Design Volume 24, Article ID 69594, 3 pages http://dxdoiorg/55/24/69594 Research Article Radix-2 α /4 β Building Blocks for Efficient VLSI s Higher Radices Butterflies Implementation Marwan A Jaber

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

Reconfigurable Fast Fourier Transform Architecture for Orthogonal Frequency Division Multiplexing Systems

Reconfigurable Fast Fourier Transform Architecture for Orthogonal Frequency Division Multiplexing Systems Reconfigurable Fast Fourier Transform Architecture for Orthogonal Frequency Division Multiplexing Systems Konstantinos E. MAOLOPOULOS, Konstantinos G. AKOS, Dionysios I. REISIS and iolaos G. VLASSOPOULOS

More information

A Ripple Carry Adder based Low Power Architecture of LMS Adaptive Filter

A Ripple Carry Adder based Low Power Architecture of LMS Adaptive Filter A Ripple Carry Adder based Low Power Architecture of LMS Adaptive Filter A.S. Sneka Priyaa PG Scholar Government College of Technology Coimbatore ABSTRACT The Least Mean Square Adaptive Filter is frequently

More information

Computing the Discrete Fourier Transform on FPGA Based Systolic Arrays

Computing the Discrete Fourier Transform on FPGA Based Systolic Arrays Computing the Discrete Fourier Transform on FPGA Based Systolic Arrays Chris Dick School of Electronic Engineering La Trobe University Melbourne 3083, Australia Abstract Reconfigurable logic arrays allow

More information

VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila Khan 1 Uma Sharma 2

VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila Khan 1 Uma Sharma 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 05, 2015 ISSN (online): 2321-0613 VLSI Implementation of Low Power Area Efficient FIR Digital Filter Structures Shaila

More information

Decimation-in-Frequency (DIF) Radix-2 FFT *

Decimation-in-Frequency (DIF) Radix-2 FFT * OpenStax-CX module: m1018 1 Decimation-in-Frequency (DIF) Radix- FFT * Douglas L. Jones This work is produced by OpenStax-CX and licensed under the Creative Commons Attribution License 1.0 The radix- decimation-in-frequency

More information

Design and Implementation of 3-D DWT for Video Processing Applications

Design and Implementation of 3-D DWT for Video Processing Applications Design and Implementation of 3-D DWT for Video Processing Applications P. Mohaniah 1, P. Sathyanarayana 2, A. S. Ram Kumar Reddy 3 & A. Vijayalakshmi 4 1 E.C.E, N.B.K.R.IST, Vidyanagar, 2 E.C.E, S.V University

More information

CORDIC Based DFT on FPGA for DSP Applications

CORDIC Based DFT on FPGA for DSP Applications CORDIC Based DFT on FPGA for DSP Applications Padma. V PG Scholar, Department of E.C.E SKIT College Srikalahasti, India Sudhakara Reddy. P Member IEEE Associate Professor, Department of E.C.E SKIT college

More information

AREA-DELAY EFFICIENT FFT ARCHITECTURE USING PARALLEL PROCESSING AND NEW MEMORY SHARING TECHNIQUE

AREA-DELAY EFFICIENT FFT ARCHITECTURE USING PARALLEL PROCESSING AND NEW MEMORY SHARING TECHNIQUE AREA-DELAY EFFICIENT FFT ARCHITECTURE USING PARALLEL PROCESSING AND NEW MEMORY SHARING TECHNIQUE Yousri Ouerhani, Maher Jridi, Ayman Alfalou To cite this version: Yousri Ouerhani, Maher Jridi, Ayman Alfalou.

More information

Decimation-in-time (DIT) Radix-2 FFT *

Decimation-in-time (DIT) Radix-2 FFT * OpenStax-CNX module: m1016 1 Decimation-in-time (DIT) Radix- FFT * Douglas L. Jones This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0 The radix- decimation-in-time

More information

Latest Innovation For FFT implementation using RCBNS

Latest Innovation For FFT implementation using RCBNS Latest Innovation For FFT implementation using SADAF SAEED, USMAN ALI, SHAHID A. KHAN Department of Electrical Engineering COMSATS Institute of Information Technology, Abbottabad (Pakistan) Abstract: -

More information

DESIGN & SIMULATION PARALLEL PIPELINED RADIX -2^2 FFT ARCHITECTURE FOR REAL VALUED SIGNALS

DESIGN & SIMULATION PARALLEL PIPELINED RADIX -2^2 FFT ARCHITECTURE FOR REAL VALUED SIGNALS DESIGN & SIMULATION PARALLEL PIPELINED RADIX -2^2 FFT ARCHITECTURE FOR REAL VALUED SIGNALS Madhavi S.Kapale #1, Prof.Nilesh P. Bodne #2 1 Student Mtech Electronics Engineering (Communication) 2 Assistant

More information

A Novel Distributed Arithmetic Multiplierless Approach for Computing Complex Inner Products

A Novel Distributed Arithmetic Multiplierless Approach for Computing Complex Inner Products 606 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. PDPTA'5 A ovel Distributed Arithmetic Multiplierless Approach for Computing Complex Inner Products evin. Bowlyn, and azeih M. Botros. Ph.D. Candidate,

More information

Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider

Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider Tamkang Journal of Science and Engineering, Vol. 3, No., pp. 29-255 (2000) 29 Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider Jen-Shiun Chiang, Hung-Da Chung and Min-Show

More information

FPGA Implementation of Discrete Fourier Transform Using CORDIC Algorithm

FPGA Implementation of Discrete Fourier Transform Using CORDIC Algorithm AMSE JOURNALS-AMSE IIETA publication-2017-series: Advances B; Vol. 60; N 2; pp 332-337 Submitted Apr. 04, 2017; Revised Sept. 25, 2017; Accepted Sept. 30, 2017 FPGA Implementation of Discrete Fourier Transform

More information

DUE to the high computational complexity and real-time

DUE to the high computational complexity and real-time IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 3, MARCH 2005 445 A Memory-Efficient Realization of Cyclic Convolution and Its Application to Discrete Cosine Transform Hun-Chen

More information

FFT/IFFTProcessor IP Core Datasheet

FFT/IFFTProcessor IP Core Datasheet System-on-Chip engineering FFT/IFFTProcessor IP Core Datasheet - Released - Core:120801 Doc: 130107 This page has been intentionally left blank ii Copyright reminder Copyright c 2012 by System-on-Chip

More information

High-Performance 16-Point Complex FFT Features 1 Functional Description 2 Theory of Operation

High-Performance 16-Point Complex FFT Features 1 Functional Description 2 Theory of Operation High-Performance 16-Point Complex FFT April 8, 1999 Application Note This document is (c) Xilinx, Inc. 1999. No part of this file may be modified, transmitted to any third party (other than as intended

More information

Implementation of a Low Power Decimation Filter Using 1/3-Band IIR Filter

Implementation of a Low Power Decimation Filter Using 1/3-Band IIR Filter Implementation of a Low Power Decimation Filter Using /3-Band IIR Filter Khalid H. Abed Department of Electrical Engineering Wright State University Dayton Ohio, 45435 Abstract-This paper presents a unique

More information

An Enhanced Mixed-Scaling-Rotation CORDIC algorithm with Weighted Amplifying Factor

An Enhanced Mixed-Scaling-Rotation CORDIC algorithm with Weighted Amplifying Factor SEAS-WP-2016-10-001 An Enhanced Mixed-Scaling-Rotation CORDIC algorithm with Weighted Amplifying Factor Jaina Mehta jaina.mehta@ahduni.edu.in Pratik Trivedi pratik.trivedi@ahduni.edu.in Serial: SEAS-WP-2016-10-001

More information

Design of FPGA Based Radix 4 FFT Processor using CORDIC

Design of FPGA Based Radix 4 FFT Processor using CORDIC Design of FPGA Based Radix 4 FFT Processor using CORDIC Chetan Korde 1, Dr. P. Malathi 2, Sudhir N. Shelke 3, Dr. Manish Sharma 4 1,2,4 Department of Electronics and Telecommunication Engineering, DYPCOE,

More information

Speed Optimised CORDIC Based Fast Algorithm for DCT

Speed Optimised CORDIC Based Fast Algorithm for DCT GRD Journals Global Research and Development Journal for Engineering International Conference on Innovations in Engineering and Technology (ICIET) - 2016 July 2016 e-issn: 2455-5703 Speed Optimised CORDIC

More information

Low-Power Adaptive Viterbi Decoder for TCM Using T-Algorithm

Low-Power Adaptive Viterbi Decoder for TCM Using T-Algorithm International Journal of Scientific and Research Publications, Volume 3, Issue 8, August 2013 1 Low-Power Adaptive Viterbi Decoder for TCM Using T-Algorithm MUCHHUMARRI SANTHI LATHA*, Smt. D.LALITHA KUMARI**

More information

Low Power Floating-Point Multiplier Based On Vedic Mathematics

Low Power Floating-Point Multiplier Based On Vedic Mathematics Low Power Floating-Point Multiplier Based On Vedic Mathematics K.Prashant Gokul, M.E(VLSI Design), Sri Ramanujar Engineering College, Chennai Prof.S.Murugeswari., Supervisor,Prof.&Head,ECE.,SREC.,Chennai-600

More information

INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS.

INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS. INTEGER SEQUENCE WINDOW BASED RECONFIGURABLE FIR FILTERS Arulalan Rajan 1, H S Jamadagni 1, Ashok Rao 2 1 Centre for Electronics Design and Technology, Indian Institute of Science, India (mrarul,hsjam)@cedt.iisc.ernet.in

More information

SFF The Single-Stream FPGA-Optimized Feedforward FFT Hardware Architecture

SFF The Single-Stream FPGA-Optimized Feedforward FFT Hardware Architecture Journal of Signal Processing Systems (2018) 90:1583 1592 https://doi.org/10.1007/s11265-018-1370-y SFF The Single-Stream FPGA-Optimized Feedforward FFT Hardware Architecture Carl Ingemarsson 1 Oscar Gustafsson

More information

CORDIC Based FFT for Signal Processing System

CORDIC Based FFT for Signal Processing System CORDIC Based FFT for Signal Processing System Karthick S1, Priya P2, Valarmathy S3 1 2 Assistant Professor, Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India PG Scholar ME-

More information

Fast Block LMS Adaptive Filter Using DA Technique for High Performance in FGPA

Fast Block LMS Adaptive Filter Using DA Technique for High Performance in FGPA Fast Block LMS Adaptive Filter Using DA Technique for High Performance in FGPA Nagaraj Gowd H 1, K.Santha 2, I.V.Rameswar Reddy 3 1, 2, 3 Dept. Of ECE, AVR & SVR Engineering College, Kurnool, A.P, India

More information

An Ultra Low-Power WOLA Filterbank Implementation in Deep Submicron Technology

An Ultra Low-Power WOLA Filterbank Implementation in Deep Submicron Technology An Ultra ow-power WOA Filterbank Implementation in Deep Submicron Technology R. Brennan, T. Schneider Dspfactory td 611 Kumpf Drive, Unit 2 Waterloo, Ontario, Canada N2V 1K8 Abstract The availability of

More information

Architectures for Dynamic Data Scaling in 2/4/8K Pipeline FFT Cores

Architectures for Dynamic Data Scaling in 2/4/8K Pipeline FFT Cores Architectures for Dynamic Data Scaling in 2/4/8K Pipeline FFT Cores Lenart, Thomas; Öwall, Viktor Published in: IEEE Transactions on Very Large Scale Integration (VLSI) Systems DOI: 10.1109/TVLSI.2006.886407

More information

Fast Orthogonal Neural Networks

Fast Orthogonal Neural Networks Fast Orthogonal Neural Networks Bart lomiej Stasiak and Mykhaylo Yatsymirskyy Institute of Computer Science, Technical University of Lódź ul. Wólczańska 5, 93-005 Lódź, Poland basta@ics.p.lodz.pl, jacym@ics.p.lodz.pl

More information

Gated-Demultiplexer Tree Buffer for Low Power Using Clock Tree Based Gated Driver

Gated-Demultiplexer Tree Buffer for Low Power Using Clock Tree Based Gated Driver Gated-Demultiplexer Tree Buffer for Low Power Using Clock Tree Based Gated Driver E.Kanniga 1, N. Imocha Singh 2,K.Selva Rama Rathnam 3 Professor Department of Electronics and Telecommunication, Bharath

More information

Fast Fourier Transform Architectures: A Survey and State of the Art

Fast Fourier Transform Architectures: A Survey and State of the Art Fast Fourier Transform Architectures: A Survey and State of the Art 1 Anwar Bhasha Pattan, 2 Dr. M. Madhavi Latha 1 Research Scholar, Dept. of ECE, JNTUH, Hyderabad, India 2 Professor, Dept. of ECE, JNTUH,

More information

Efficient Double-Precision Cosine Generation

Efficient Double-Precision Cosine Generation Efficient Double-Precision Cosine Generation Derek Nowrouzezahrai Brian Decker William Bishop dnowrouz@uwaterloo.ca bjdecker@uwaterloo.ca wdbishop@uwaterloo.ca Department of Electrical and Computer Engineering

More information

An Algorithm for Computing the Radix-2 n Fast Fourier Transform

An Algorithm for Computing the Radix-2 n Fast Fourier Transform Sensors & Transducers, Vol. 15, Issue 7, July 013, pp. 60-65 Sensors & Transducers 013 by IFSA http://www.sensorsportal.com An Algorithm for Computing the Radix- n Fast Fourier Transform * Junyuan ZHAG,

More information