Combinatorics of cluster structures in Schubert varieties

Size: px
Start display at page:

Download "Combinatorics of cluster structures in Schubert varieties"

Transcription

1 Combinatorics of cluster structures in Schubert varieties arxiv: Slides available at M. Sherman-Bennett (UC Berkeley) joint work with K. Serhiyenko and L. Williams AMS Spring Eastern Sectional Meeting 2019 M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

2 The set-up Fix integers 0 < k < n. Gr k,n := {V C n : dim(v ) = k} M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

3 The set-up Fix integers 0 < k < n. Gr k,n := {V C n : dim(v ) = k} V Gr k,n full rank k n matrix A whose rows span V M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

4 The set-up Fix integers 0 < k < n. Gr k,n := {V C n : dim(v ) = k} V Gr k,n full rank k n matrix A whose rows span V I {1,..., n} with I = k. The Plücker coordinate P I (V ) is the maximal minor of A located in column set I. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

5 The set-up Fix integers 0 < k < n. Gr k,n := {V C n : dim(v ) = k} V Gr k,n full rank k n matrix A whose rows span V I {1,..., n} with I = k. The Plücker coordinate P I (V ) is the maximal minor of A located in column set I. The Schubert cell Ω I := {V Gr k,n : P I (V ) 0, P J (V ) = 0 for J < I } The open Schubert variety X I := Ω I \ {V Ω I : P I P I2 P In = 0} M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

6 The set-up Fix integers 0 < k < n. Gr k,n := {V C n : dim(v ) = k} V Gr k,n full rank k n matrix A whose rows span V I {1,..., n} with I = k. The Plücker coordinate P I (V ) is the maximal minor of A located in column set I. The Schubert cell Ω I := {V Gr k,n : P I (V ) 0, P J (V ) = 0 for J < I } The open Schubert variety XI := Ω I \ {V Ω I : P I P I2 P In = 0} Cluster algebra convention: Given a seed (x, Q) with x r+1,..., x N frozen, A(x, Q) is the C[x r+1 ±1,..., x ±1 N ]-algebra generated by the cluster variables. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

7 Motivation Theorem (Scott 06) C[Ĝr k,n ] is a cluster algebra with seeds (consisting entirely of Plücker coordinates) given by Postnikov s plabic graphs for Gr k,n. (Ĝr k,n is the affine cone over Gr k,n wrt Plücker embedding.) M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

8 Motivation Theorem (Scott 06) C[Ĝr k,n ] is a cluster algebra with seeds (consisting entirely of Plücker coordinates) given by Postnikov s plabic graphs for Gr k,n. (Ĝr k,n is the affine cone over Gr k,n wrt Plücker embedding.) Conjecture (Muller Speyer 16) Scott s result holds if you replace Gr k,n with an open positroid variety π k (R v,w ). M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

9 Main result Theorem (SSW 19) C[ X I ] is a cluster algebra, with seeds (consisting entirely of Plücker coordinates) given by plabic graphs for X I. ( X I is the affine cone over X I wrt Plücker embedding.) M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

10 Main result Theorem (SSW 19) C[ X I ] is a cluster algebra, with seeds (consisting entirely of Plücker coordinates) given by plabic graphs for X ( X I is the affine cone over X I I. wrt Plücker embedding.) More general result for open skew Schubert varieties π k (R v,xv ), where seeds for the cluster structure are given by generalized plabic graphs. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

11 Main result Theorem (SSW 19) C[ X I ] is a cluster algebra, with seeds (consisting entirely of Plücker coordinates) given by plabic graphs for X ( X I is the affine cone over X I I. wrt Plücker embedding.) More general result for open skew Schubert varieties π k (R v,xv ), where seeds for the cluster structure are given by generalized plabic graphs. We use a result of (Leclerc 16), who shows that coordinate rings of certain open Richardson varieties in the complete flag variety are cluster algebras. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

12 Postnikov s plabic graphs Friday, April 5, :19 AM A plabic graph of type (k, n) is a planar graph embedded in a disk with n boundary vertices labeled 1,..., n clockwise. Internal vertices colored white and black. Boundary vertices are adjacent to a unique internal vertex. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

13 Postnikov s plabic graphs Friday, April 5, :19 AM A plabic graph of type (k, n) is a planar graph embedded in a disk with n boundary vertices labeled 1,..., n clockwise. Internal vertices colored white and black. Boundary vertices are adjacent to a unique internal vertex. For generalized plabic graphs, we drop the condition that boundary vertices are labeled 1,..., n clockwise. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

14 Quivers from plabic graphs Figures for Schub_AMS Friday, April 5, :19 AM Let G be a reduced plabic graph of type (k, n). The dual quiver Q(G) is obtained by 1 Put a frozen vertex in each boundary face of G and a mutable vertex in each internal face. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

15 Figures for Schub_AMS Friday, Quivers April 5, 2019 from 9:19 plabic AM graphs Let G be a reduced plabic graph of type (k, n). The dual quiver Q(G) is obtained by 1 Put a frozen vertex in each boundary face of G and a mutable vertex in each internal face. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

16 Figures for Schub_AMS Friday, Quivers April 5, 2019 from 9:19 plabic AM graphs Let G be a reduced plabic graph of type (k, n). The dual quiver Q(G) is obtained by 1 Put a frozen vertex in each boundary face of G and a mutable vertex in each internal face. 2 Add arrows across properly colored edges so you see white vertex on the left. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

17 Figures for Schub_AMS Friday, April 5, :19 AM Quivers from plabic graphs Let G be a reduced plabic graph of type (k, n). The dual quiver Q(G) is obtained by 1 Put a frozen vertex in each boundary face of G and a mutable vertex in each internal face. 2 Add arrows across properly colored edges so you see white vertex on the left. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

18 Variables from plabic graphs A trip in G is a walk from boundary vertex to boundary vertex that turns maximally left at white vertices turns maximally right at black vertices M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

19 Variables from plabic graphs A trip in G is a walk from boundary vertex to boundary vertex that turns maximally left at white vertices turns maximally right at black vertices M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

20 Variables from plabic graphs A trip in G is a walk from boundary vertex to boundary vertex that turns maximally left at white vertices turns maximally right at black vertices Aside: The trip permutation of this graph is M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

21 Face labels If the trip T ends at j, put a j in all faces of G to the left of T. Do this for all trips. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

22 Face labels If the trip T ends at j, put a j in all faces of G to the left of T. Do this for all trips. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

23 Face labels If the trip T ends at j, put a j in all faces of G to the left of T. Do this for all trips. Fact: (Postnikov 06) All faces of G will be labeled by subsets of the same size (which is k). To get cluster variables, we interpret each face label as a Plücker coordinate. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

24 Which positroid is it for? Each reduced plabic graph corresponds to a unique positroid variety, determined by its trip permutation. The plabic graphs for XI have trip permutation π I = j 1 j 2... j n k i 1 i 2... i k where I = {i 1 < i 2 < < i k } and {1,..., n} \ I = {j 1 < j 2 < < j n k }. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

25 So in the end... The trip permutation of G is 24513, so this is a seed for X {1,3}. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

26 Applications Theorem Let G be a reduced plabic graph corresponding to XI, and let (x, Q(G)) be the associated seed. Then A(x, Q(G)) = C[ X I ]. Corollaries: Classification of when A(x, Q(G)) is finite type M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

27 Applications Theorem Let G be a reduced plabic graph corresponding to XI, and let (x, Q(G)) be the associated seed. Then A(x, Q(G)) = C[ X I ]. Corollaries: Classification of when A(x, Q(G)) is finite type From (Muller 13) and (Muller-Speyer 16), A(x, Q(G)) is locally acyclic, so it s locally a complete intersection and equal to its upper cluster algebra M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

28 Applications Theorem Let G be a reduced plabic graph corresponding to XI, and let (x, Q(G)) be the associated seed. Then A(x, Q(G)) = C[ X I ]. Corollaries: Classification of when A(x, Q(G)) is finite type From (Muller 13) and (Muller-Speyer 16), A(x, Q(G)) is locally acyclic, so it s locally a complete intersection and equal to its upper cluster algebra From (Ford-Serhiyenko 18), A(x, Q(G)) has green-to-red sequence, so satisfies the EGM property of (GHKK 18) and has a canonical basis of θ-functions parameterized by g-vectors. M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

29 More questions What about the other positroid varieties? M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

30 More questions What about the other positroid varieties? How do seeds/cluster structure from generalized plabic graphs compare to seeds/cluster structure from normal plabic graphs? M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

31 More questions What about the other positroid varieties? How do seeds/cluster structure from generalized plabic graphs compare to seeds/cluster structure from normal plabic graphs? Is there a combinatorial characterization of compatibility of Plückers for Schubert, skew Schubert? (In the Schubert case, there are seeds in A(x, Q(G)) that consist entirely of Plücker coordinates, but the coordinates are not weakly separated.) M. Sherman-Bennett (UC Berkeley) Schubert cluster structure AMS Spring Sectional / 12

Combinatorics of cluster structures in Schubert varieties

Combinatorics of cluster structures in Schubert varieties Séminaire Lotharingien de Combinatoire XX (2019) Article #YY, 12 pp. Proceedings of the 31 st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana) Combinatorics of cluster structures

More information

Combinatorics of X -variables in finite type cluster algebras

Combinatorics of X -variables in finite type cluster algebras Combinatorics of X -variables in finite type cluster algebras arxiv:1803.02492 Slides available at www.math.berkeley.edu/~msb Melissa Sherman-Bennett, UC Berkeley AMS Fall Central Sectional Meeting 2018

More information

INTRODUCTION TO CLUSTER ALGEBRAS

INTRODUCTION TO CLUSTER ALGEBRAS INTRODUCTION TO CLUSTER ALGEBRAS NAN LI (MIT) Cluster algebras are a class of commutative ring, introduced in 000 by Fomin and Zelevinsky, originally to study Lusztig s dual canonical basis and total positivity.

More information

Combinatorial underpinnings of Grassmannian cluster algebras SAGE Days June 2015 David E Speyer

Combinatorial underpinnings of Grassmannian cluster algebras SAGE Days June 2015 David E Speyer Combinatorial underpinnings of Grassmannian cluster algebras SAGE Days June 2015 David E Speyer 128 123 127 178 137 134 234 136 135 167 145 678 156 345 567 456 Some of the most beautiful and important

More information

A fan for every cluster algebra

A fan for every cluster algebra A fan for every cluster algebra Nathan Reading NC State University Combinatorics and beyond: the many facets of Sergey Fomin s mathematics University of Michigan November 8-11, 2018 Cluster algebras of

More information

Cluster algebras and infinite associahedra

Cluster algebras and infinite associahedra Cluster algebras and infinite associahedra Nathan Reading NC State University CombinaTexas 2008 Coxeter groups Associahedra and cluster algebras Sortable elements/cambrian fans Infinite type Much of the

More information

Mutation-linear algebra and universal geometric cluster algebras

Mutation-linear algebra and universal geometric cluster algebras Mutation-linear algebra and universal geometric cluster algebras Nathan Reading NC State University Mutation-linear ( µ-linear ) algebra Universal geometric cluster algebras The mutation fan Universal

More information

Independence for Exchange Graphs and Cluster Complexes

Independence for Exchange Graphs and Cluster Complexes Independence for Exchange Graphs and Cluster Complexes P.-G. Plamondon October 29, 2012 Joint work with G. Cerulli Irelli, B. Keller, D. Labardini-Fragoso. 1 Exchange Graphs and Cluster Complexes Setting:

More information

Noncrossing sets and a Graßmann associahedron

Noncrossing sets and a Graßmann associahedron Noncrossing sets and a Graßmann associahedron Francisco Santos, Christian Stump, Volkmar Welker (in partial rediscovering work of T. K. Petersen, P. Pylyavskyy, and D. E. Speyer, 2008) (in partial rediscovering

More information

Lecture 4A: Combinatorial frameworks for cluster algebras

Lecture 4A: Combinatorial frameworks for cluster algebras Lecture 4A: Combinatorial frameworks for cluster algebras Nathan Reading NC State University Cluster Algebras and Cluster Combinatorics MSRI Summer Graduate Workshop, August 2011 Introduction Frameworks

More information

Newton Polytopes of Cluster Variables. Adam Michael Kalman. A dissertation submitted in partial satisfaction of the. requirements for the degree of

Newton Polytopes of Cluster Variables. Adam Michael Kalman. A dissertation submitted in partial satisfaction of the. requirements for the degree of Newton Polytopes of Cluster Variables by Adam Michael Kalman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division

More information

Graph Theoretical Cluster Expansion Formulas

Graph Theoretical Cluster Expansion Formulas Graph Theoretical Cluster Expansion Formulas Gregg Musiker MIT December 9, 008 http//math.mit.edu/ musiker/graphtalk.pdf Gregg Musiker (MIT) Graph Theoretical Cluster Expansions December 9, 008 / 9 Outline.

More information

Bounds on graphs with high girth and high chromatic number

Bounds on graphs with high girth and high chromatic number Bounds on graphs with high girth and high chromatic number joint work with Daniel Bath and Zequn Li INTEGERS 2013: The Erdős Centennial Conference October 26, 2013 Some Definitions Graph Theory Chromatic

More information

Minimal mutation-infinite quivers. Introduction. Quivers. John Lawson. Workshop on Cluster Algebras and finite dimensional algebras

Minimal mutation-infinite quivers. Introduction. Quivers. John Lawson. Workshop on Cluster Algebras and finite dimensional algebras Durham University John Lawson Workshop on Cluster Algebras and finite dimensional algebras John Lawson Thank organisers for the conference. Durham University Workshop on Cluster Algebras and finite dimensional

More information

KP solitons, total positivity, and cluster algebras

KP solitons, total positivity, and cluster algebras KP solitons, total positivity, and cluster algebras Yuji Kodama and Lauren Williams Department of Mathematics, Ohio State University, Columbus, OH 30, and Department of Mathematics, University of California,

More information

arxiv: v4 [math.co] 25 Apr 2010

arxiv: v4 [math.co] 25 Apr 2010 QUIVERS OF FINITE MUTATION TYPE AND SKEW-SYMMETRIC MATRICES arxiv:0905.3613v4 [math.co] 25 Apr 2010 AHMET I. SEVEN Abstract. Quivers of finite mutation type are certain directed graphs that first arised

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Combinatorics of X -variables in Finite Type Cluster Algebras

Combinatorics of X -variables in Finite Type Cluster Algebras Combinatorics of X -variables in Finite Type Cluster Algebras Melissa Sherman-Bennett January 31 2018 Abstract We compute the number of X -variables (also called coefficients) of a cluster algebra of finite

More information

Trinities, hypergraphs, and contact structures

Trinities, hypergraphs, and contact structures Trinities, hypergraphs, and contact structures Daniel V. Mathews Daniel.Mathews@monash.edu Monash University Discrete Mathematics Research Group 14 March 2016 Outline 1 Introduction 2 Combinatorics of

More information

A POSITIVE GRASSMANNIAN ANALOGUE OF THE PERMUTOHEDRON

A POSITIVE GRASSMANNIAN ANALOGUE OF THE PERMUTOHEDRON A POSITIVE GRASSMANNIAN ANALOGUE OF THE PERMUTOHEDRON LAUREN K. WILLIAMS Abstract. The classicalpermutohedron Perm n isthe convex hull ofthe points (w(1),...,w(n)) R n where w ranges over all permutations

More information

The Convex Hull of a Space Curve

The Convex Hull of a Space Curve The Convex Hull of a Space Curve Bernd Sturmfels, UC Berkeley (joint work with Kristian Ranestad) The Mathematics of Klee & Grünbaum: 100 Years in Seattle Friday, July 30, 2010 Convex Hull of a Trigonometric

More information

Algebraic Geometry of Segmentation and Tracking

Algebraic Geometry of Segmentation and Tracking Ma191b Winter 2017 Geometry of Neuroscience Geometry of lines in 3-space and Segmentation and Tracking This lecture is based on the papers: Reference: Marco Pellegrini, Ray shooting and lines in space.

More information

SCORE EQUIVALENCE & POLYHEDRAL APPROACHES TO LEARNING BAYESIAN NETWORKS

SCORE EQUIVALENCE & POLYHEDRAL APPROACHES TO LEARNING BAYESIAN NETWORKS SCORE EQUIVALENCE & POLYHEDRAL APPROACHES TO LEARNING BAYESIAN NETWORKS David Haws*, James Cussens, Milan Studeny IBM Watson dchaws@gmail.com University of York, Deramore Lane, York, YO10 5GE, UK The Institute

More information

Lecture 3A: Generalized associahedra

Lecture 3A: Generalized associahedra Lecture 3A: Generalized associahedra Nathan Reading NC State University Cluster Algebras and Cluster Combinatorics MSRI Summer Graduate Workshop, August 2011 Introduction Associahedron and cyclohedron

More information

Linear Programming Duality and Algorithms

Linear Programming Duality and Algorithms COMPSCI 330: Design and Analysis of Algorithms 4/5/2016 and 4/7/2016 Linear Programming Duality and Algorithms Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we will cover

More information

Endomorphisms and synchronization, 2: Graphs and transformation monoids. Peter J. Cameron

Endomorphisms and synchronization, 2: Graphs and transformation monoids. Peter J. Cameron Endomorphisms and synchronization, 2: Graphs and transformation monoids Peter J. Cameron BIRS, November 2014 Relations and algebras From algebras to relations Given a relational structure R, there are

More information

Max flow min cut in higher dimensions

Max flow min cut in higher dimensions Art Duval 1 Caroline Klivans 2 Jeremy Martin 3 1 University of Texas at El Paso 2 Brown University 3 University of Kansas Joint Mathematics Meeting AMS Special Session on Topological Combinatorics San

More information

Endomorphisms and synchronization, 2: Graphs and transformation monoids

Endomorphisms and synchronization, 2: Graphs and transformation monoids Endomorphisms and synchronization, 2: Graphs and transformation monoids Peter J. Cameron BIRS, November 2014 Relations and algebras Given a relational structure R, there are several similar ways to produce

More information

Key Graph Theory Theorems

Key Graph Theory Theorems Key Graph Theory Theorems Rajesh Kumar MATH 239 Intro to Combinatorics August 19, 2008 3.3 Binary Trees 3.3.1 Problem (p.82) Determine the number, t n, of binary trees with n edges. The number of binary

More information

Polyhedral Combinatorics of Coxeter Groups 2

Polyhedral Combinatorics of Coxeter Groups 2 3 s 2 s 6 s 4 s 5 s 1 s 3 s 2 s 6 s 4 s 5 s 1 s 3 s Polyhedral Combinatorics of Coxeter Groups 2 s 6 s 5 s 1 s Dissertation s Defense 3 s 2 s 6 Jean-Philippe Labbé s 1 s s 2 s 1 α u ut(α s ) u(α t ) ut(α

More information

STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M. MASUDA

STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M. MASUDA Communications in Algebra, 34: 1049 1053, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0092-7872 print/1532-4125 online DOI: 10.1080/00927870500442005 STANLEY S SIMPLICIAL POSET CONJECTURE, AFTER M.

More information

Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1

Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1 Edge-disjoint Spanning Trees in Triangulated Graphs on Surfaces and application to node labeling 1 Arnaud Labourel a a LaBRI - Universite Bordeaux 1, France Abstract In 1974, Kundu [4] has shown that triangulated

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

Vertex Cover is Fixed-Parameter Tractable

Vertex Cover is Fixed-Parameter Tractable Vertex Cover is Fixed-Parameter Tractable CS 511 Iowa State University November 28, 2010 CS 511 (Iowa State University) Vertex Cover is Fixed-Parameter Tractable November 28, 2010 1 / 18 The Vertex Cover

More information

Computational Discrete Mathematics

Computational Discrete Mathematics Computational Discrete Mathematics Combinatorics and Graph Theory with Mathematica SRIRAM PEMMARAJU The University of Iowa STEVEN SKIENA SUNY at Stony Brook CAMBRIDGE UNIVERSITY PRESS Table of Contents

More information

Local rules for canonical cut and project tilings

Local rules for canonical cut and project tilings Local rules for canonical cut and project tilings Thomas Fernique CNRS & Univ. Paris 13 M2 Pavages ENS Lyon October 15, 2015 Outline 1 Planar tilings 2 Multigrid dualization 3 Grassmann coordinates 4 Patterns

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Tree Decompositions Why Matroids are Useful

Tree Decompositions Why Matroids are Useful Petr Hliněný, W. Graph Decompositions, Vienna, 2004 Tree Decompositions Why Matroids are Useful Petr Hliněný Tree Decompositions Why Matroids are Useful Department of Computer Science FEI, VŠB Technical

More information

Structural Mechanics: Graph and Matrix Methods

Structural Mechanics: Graph and Matrix Methods Structural Mechanics: Graph and Matrix Methods A. Kaveh Department of Civil Engineering Technical University of Vienna Austria RESEARCH STUDIES PRESS LTD. Taunton, Somerset, England 0 JOHN WILEY & SONS

More information

Lecture 6: Faces, Facets

Lecture 6: Faces, Facets IE 511: Integer Programming, Spring 2019 31 Jan, 2019 Lecturer: Karthik Chandrasekaran Lecture 6: Faces, Facets Scribe: Setareh Taki Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Federico Ardila. San Francisco State University

Federico Ardila. San Francisco State University Severi degrees of toric surfaces are eventually polynomial Federico Ardila San Francisco State University MIT November 24, 2010 joint work with Florian Block (U. Michigan) Federico Ardila (SF State) Severi

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

GRAPHS: THEORY AND ALGORITHMS

GRAPHS: THEORY AND ALGORITHMS GRAPHS: THEORY AND ALGORITHMS K. THULASIRAMAN M. N. S. SWAMY Concordia University Montreal, Canada A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Brisbane / Toronto /

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

Matroidal Subdivisions, Dressians and Tropical Grassmannians

Matroidal Subdivisions, Dressians and Tropical Grassmannians Matroidal Subdivisions, Dressians and Tropical Grassmannians Benjamin Schröter Technische Universität Berlin Berlin, November 17, 2017 Overview 1. Introduction to tropical linear spaces 2. Matroids from

More information

Random Tilings with the GPU

Random Tilings with the GPU Random Tilings with the GPU David Keating Joint work with A. Sridhar University of California, Berkeley June 8, 2018 1 / 33 Outline 1 2 3 4 Lozenge Tilings Six Vertex Bibone Tilings Rectangle-triangle

More information

DANIEL HESS, BENJAMIN HIRSCH

DANIEL HESS, BENJAMIN HIRSCH ON THE TOPOLOGY OF WEAKLY AND STRONGLY SEPARATED SET COMPLEXES DANIEL HESS, BENJAMIN HIRSCH Abstract. We examine the topology of the clique complexes of the graphs of weakly and strongly separated subsets

More information

Dimers on Cylinders over Dynkin Diagrams and Cluster Algebras

Dimers on Cylinders over Dynkin Diagrams and Cluster Algebras Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 6-25-2018 Dimers on Cylinders over Dynkin Diagrams and Cluster Algebras Maitreyee Chandramohan Kulkarni Louisiana

More information

BOUNDARY MEASUREMENT MATRICES FOR DIRECTED NETWORKS ON SURFACES

BOUNDARY MEASUREMENT MATRICES FOR DIRECTED NETWORKS ON SURFACES BOUNDARY MEASUREMENT MATRICES FOR DIRECTED NETWORKS ON SURFACES JOHN MACHACEK Abstract. Franco, Galloni, Penante, and Wen have proposed a boundary measurement map for a graph on any closed orientable surface

More information

MINIMAL FREE RESOLUTIONS OF COMPLETE BIPARTITE GRAPH IDEALS

MINIMAL FREE RESOLUTIONS OF COMPLETE BIPARTITE GRAPH IDEALS MINIMAL FREE RESOLUTIONS OF COMPLETE BIPARTITE GRAPH IDEALS DANIEL VISSCHER Department of Mathematics, St. Olaf College, Northfield, MN 55057, USA visscher@stolaf.edu Abstract. This paper gives an explicit

More information

The Geodesic Integral on Medial Graphs

The Geodesic Integral on Medial Graphs The Geodesic Integral on Medial Graphs Kolya Malkin August 013 We define the geodesic integral defined on paths in the duals of medial graphs on surfaces and use it to study lens elimination and connection

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Toric Varieties and Lattice Polytopes

Toric Varieties and Lattice Polytopes Toric Varieties and Lattice Polytopes Ursula Whitcher April 1, 006 1 Introduction We will show how to construct spaces called toric varieties from lattice polytopes. Toric fibrations correspond to slices

More information

arxiv: v1 [math.co] 27 May 2013

arxiv: v1 [math.co] 27 May 2013 STIEFEL TROPICAL LINEAR SPACES ALEX FINK AND FELIPE RINCÓN arxiv:1305.6329v1 [math.co] 27 May 2013 Dedicated to the memory of Andrei Zelevinsky. Abstract. The tropical Stiefel map associates to a tropical

More information

RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES. Contents 1. Introduction 1 2. The proof of Theorem References 9

RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES. Contents 1. Introduction 1 2. The proof of Theorem References 9 RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES IZZET COSKUN AND JASON STARR Abstract. We prove that the space of rational curves of a fixed degree on any smooth cubic hypersurface of dimension at least

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 1 An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 2 Linear independence A collection of row vectors {v T i } are independent

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1. Define Graph. A graph G = (V, E) consists

More information

Lifts of convex sets and cone factorizations

Lifts of convex sets and cone factorizations Lifts of convex sets and cone factorizations João Gouveia Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington) Lifts of

More information

CS388C: Combinatorics and Graph Theory

CS388C: Combinatorics and Graph Theory CS388C: Combinatorics and Graph Theory David Zuckerman Review Sheet 2003 TA: Ned Dimitrov updated: September 19, 2007 These are some of the concepts we assume in the class. If you have never learned them

More information

Miquel dynamics for circle patterns

Miquel dynamics for circle patterns Miquel dynamics for circle patterns Sanjay Ramassamy ENS Lyon Partly joint work with Alexey Glutsyuk (ENS Lyon & HSE) Seminar of the Center for Advanced Studies Skoltech March 12 2018 Circle patterns form

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Cohomological properties of certain quiver ag varieties

Cohomological properties of certain quiver ag varieties Algebra Extravaganza Temple University Philadelphia, PA Cohomological properties of certain quiver ag varieties Mee Seong m United States Military Academy July 7, 2017 Joint work. 1 This is a joint work

More information

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl Graph Theory ICT Theory Excerpt from various sources by Robert Pergl What can graphs model? Cost of wiring electronic components together. Shortest route between two cities. Finding the shortest distance

More information

Alex Schaefer. April 9, 2017

Alex Schaefer. April 9, 2017 Department of Mathematics Binghamton University April 9, 2017 Outline 1 Introduction 2 Cycle Vector Space 3 Permutability 4 A Characterization Introduction Outline 1 Introduction 2 Cycle Vector Space 3

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Planarity. 1 Introduction. 2 Topological Results

Planarity. 1 Introduction. 2 Topological Results Planarity 1 Introduction A notion of drawing a graph in the plane has led to some of the most deep results in graph theory. Vaguely speaking by a drawing or embedding of a graph G in the plane we mean

More information

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK 1. Define Graph. 2. Define Simple graph. 3. Write few problems

More information

A master bijection for planar maps and its applications. Olivier Bernardi (MIT) Joint work with Éric Fusy (CNRS/LIX)

A master bijection for planar maps and its applications. Olivier Bernardi (MIT) Joint work with Éric Fusy (CNRS/LIX) A master bijection for planar maps and its applications Olivier Bernardi (MIT) Joint work with Éric Fusy (CNRS/LIX) UCLA, March 0 Planar maps. Definition A planar map is a connected planar graph embedded

More information

Toric Cohomological Rigidity of Simple Convex Polytopes

Toric Cohomological Rigidity of Simple Convex Polytopes Toric Cohomological Rigidity of Simple Convex Polytopes Dong Youp Suh (KAIST) The Second East Asian Conference on Algebraic Topology National University of Singapore December 15-19, 2008 1/ 28 This talk

More information

Shannon capacity and related problems in Information Theory and Ramsey Theory

Shannon capacity and related problems in Information Theory and Ramsey Theory Shannon capacity and related problems in Information Theory and Ramsey Theory Eyal Lubetzky Based on Joint work with Noga Alon and Uri Stav May 2007 1 Outline of talk Shannon Capacity of of a graph: graph:

More information

The geometry and combinatorics of closed geodesics on hyperbolic surfaces

The geometry and combinatorics of closed geodesics on hyperbolic surfaces The geometry and combinatorics of closed geodesics on hyperbolic surfaces CUNY Graduate Center September 8th, 2015 Motivating Question: How are the algebraic/combinatoric properties of closed geodesics

More information

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

MATH 350 GRAPH THEORY & COMBINATORICS. Contents MATH 350 GRAPH THEORY & COMBINATORICS PROF. SERGEY NORIN, FALL 2013 Contents 1. Basic definitions 1 2. Connectivity 2 3. Trees 3 4. Spanning Trees 3 5. Shortest paths 4 6. Eulerian & Hamiltonian cycles

More information

MAT 145: PROBLEM SET 6

MAT 145: PROBLEM SET 6 MAT 145: PROBLEM SET 6 DUE TO FRIDAY MAR 8 Abstract. This problem set corresponds to the eighth week of the Combinatorics Course in the Winter Quarter 2019. It was posted online on Friday Mar 1 and is

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

An Eternal Domination Problem in Grids

An Eternal Domination Problem in Grids Theory and Applications of Graphs Volume Issue 1 Article 2 2017 An Eternal Domination Problem in Grids William Klostermeyer University of North Florida, klostermeyer@hotmail.com Margaret-Ellen Messinger

More information

Recent Advances in FPT and Exact Algorithms for NP-Complete Problems

Recent Advances in FPT and Exact Algorithms for NP-Complete Problems 1 Fine-Grained Complexity and Algorithm Design Boot Camp Recent Advances in FPT and Exact Algorithms for NP-Complete Problems Dániel Marx Institute for Computer Science and Control, Hungarian Academy of

More information

Product constructions for transitive decompositions of graphs

Product constructions for transitive decompositions of graphs 116 Product constructions for transitive decompositions of graphs Geoffrey Pearce Abstract A decomposition of a graph is a partition of the edge set, giving a set of subgraphs. A transitive decomposition

More information

Minimal Classes of Bipartite Graphs of Unbounded Clique-width

Minimal Classes of Bipartite Graphs of Unbounded Clique-width Minimal Classes of Bipartite Graphs of Unbounded Clique-width A. Atminas, R. Brignall, N. Korpelainen, V. Lozin, J. Stacho Abstract The celebrated result of Robertson and Seymour states that in the family

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

QGM Master Class Cluster algebras June Lectures Sergey Fomin (University of Michigan)

QGM Master Class Cluster algebras June Lectures Sergey Fomin (University of Michigan) QGM Master Class Cluster algebras June 2010 Lectures 11-15 Sergey Fomin (University of Michigan) Example 1: Clusters and exchange relations in C[Gr 2,6 ] faces cluster variables vertices clusters edges

More information

The combinatorics of CAT(0) cube complexes

The combinatorics of CAT(0) cube complexes The combinatorics of CAT() cube complexes (and moving discrete robots efficiently) Federico Ardila M. San Francisco State University, San Francisco, California. Universidad de Los Andes, Bogotá, Colombia.

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Faithful tropicalization of hypertoric varieties

Faithful tropicalization of hypertoric varieties University of Oregon STAGS June 3, 2016 Setup Fix an algebraically closed field K, complete with respect to a non-archimedean valuation ν : K T := R { } (possibly trivial). Let X be a K-variety. An embedding

More information

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12. AMS 550.47/67: Graph Theory Homework Problems - Week V Problems to be handed in on Wednesday, March : 6, 8, 9,,.. Assignment Problem. Suppose we have a set {J, J,..., J r } of r jobs to be filled by a

More information

Discovering 5-Valent Semi-Symmetric Graphs

Discovering 5-Valent Semi-Symmetric Graphs Discovering 5-Valent Semi-Symmetric Graphs Berkeley Churchill NSF REU in Mathematics Northern Arizona University Flagstaff, AZ 86011 July 27, 2011 Groups and Graphs Graphs are taken to be simple (no loops,

More information

Genus Ranges of 4-Regular Rigid Vertex Graphs

Genus Ranges of 4-Regular Rigid Vertex Graphs Genus Ranges of 4-Regular Rigid Vertex Graphs Dorothy Buck Department of Mathematics Imperial College London London, England, UK d.buck@imperial.ac.uk Nataša Jonoska Egor Dolzhenko Molecular and Computational

More information

Unlabeled equivalence for matroids representable over finite fields

Unlabeled equivalence for matroids representable over finite fields Unlabeled equivalence for matroids representable over finite fields November 16, 2012 S. R. Kingan Department of Mathematics Brooklyn College, City University of New York 2900 Bedford Avenue Brooklyn,

More information

Triangulations of hyperbolic 3-manifolds admitting strict angle structures

Triangulations of hyperbolic 3-manifolds admitting strict angle structures Triangulations of hyperbolic 3-manifolds admitting strict angle structures Craig D. Hodgson, J. Hyam Rubinstein and Henry Segerman segerman@unimelb.edu.au University of Melbourne January 4 th 2012 Ideal

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Exact Volume of Hyperbolic 2-bridge Links

Exact Volume of Hyperbolic 2-bridge Links Exact Volume of Hyperbolic 2-bridge Links Anastasiia Tsvietkova Louisiana State University Parts of this work are joint with M. Thislethwaite, O. Dasbach Anastasiia Tsvietkova (Louisiana State University

More information

Incidence Posets and Cover Graphs

Incidence Posets and Cover Graphs AMS Southeastern Sectional Meeting, Louisville, Kentucky Incidence Posets and Cover Graphs William T. Trotter, Ruidong Wang Georgia Institute of Technology October 5, 2013 William T. Trotter, Ruidong Wang,

More information