About the Course. Reading List. Assignments and Examina5on

Size: px
Start display at page:

Download "About the Course. Reading List. Assignments and Examina5on"

Transcription

1 Uppsala University Department of Linguis5cs and Philology About the Course Introduc5on to machine learning Focus on methods used in NLP Decision trees and nearest neighbor methods Linear models for classifica5on and structured predic5on Ensemble methods Unsupervised learning (clustering) Builds on Sta5s5cal Methods in NLP Mostly discrimina5ve methods Genera5ve probability models covered in first course 2 Reading List Main textbook: Ethem Alpaydin, Introduc)on to Machine Learning (2nd ed) Addi5onal material: Hal Daumé III, A Course in Machine Learning (drap) Do not distribute chapters! Do submit bug reports! Papers on specific methods not covered in the book Assignments and Examina5on Assignments: Decision trees and nearest neighbor Perceptron learning Clustering Examina5on: WriTen report submited for each assignment All three assignments necessary to pass the course Grade determined by majority grade on assignments 3 4 1

2 Prac5cal Organiza5on Lectures in Adobe Connect: Raise hand to ask ques5ons Recordings of lectures available on course home page Lecturers: Joakim Nivre (1 4) Oscar Täckström (5) Magnus Rosell (6) Assignments: No lab sessions, supervision by Reports submited to Lecture Slides for ETHEM ALPAYDIN The MIT Press, 2010 h;p:// Revised and adapted by Joakim Nivre 5 Machine Learning Machine learning is programming computers to op5mize a performance criterion for some task using example data or past experience Why learning? No known exact method speech recogni5on Exact method too expensive sta5s5cal physics Task evolves over 5me network rou5ng Compare: No need to use machine learning for compu5ng payroll Elements of Machine Learning Generaliza5on: Generalize from specific examples Based on sta5s5cal inference Data: Training data: specific examples to learn from Test data: (new) specific examples to assess performance Models: Theore5cal assump5ons about the task/domain Parameters that can be inferred from data Algorithms: Learning algorithm: infer model (parameters) from data Inference algorithm: infer predic5ons from model 7 8 2

3 Types of Machine Learning Associa5on Supervised Learning Classifica5on Regression Unsupervised Learning Reinforcement Learning Learning Associa5ons Basket analysis: P (Y X ) probability that somebody who buys X also buys Y where X and Y are products/services Example: P ( chips beer ) = Classifica5on Example: Credit scoring Differen5a5ng between low risk and high risk customers from their income and savings Discriminant: IF income > θ 1 AND savings > θ 2 THEN low risk ELSE high risk Classifica5on in NLP Binary classifica5on: Spam filtering (spam vs. ham) Spelling error detec5on (error vs. no error) Mul5class classifica5on: Text categoriza5on (news, economy, culture, sport,...) Named en5ty classifica5on (person, loca5on, organiza5on,...) Structured predic5on: Part of speech tagging (classes = tag sequences) Syntac5c parsing (classes = parse trees)

4 Regression Example: Price of used car x : car atributes y : price y = g (x θ ) g ( ) model, θ parameters y = wx+w 0 Uses of Supervised Learning Predic5on of future cases: Use the rule to predict the output for future inputs Knowledge extrac5on: The rule is easy to understand Compression: The rule is simpler than the data it explains Outlier detec5on: Excep5ons that are not covered by the rule, e.g., fraud Unsupervised Learning Reinforcement Learning Finding regulari5es in data No mapping to outputs Learning a policy = sequence of outputs/ac5ons No supervised output but delayed reward Clustering: Grouping similar instances Example applica5ons: Game playing Example applica5ons: Robot in a maze Customer segmenta5on in CRM NLP: Dialogue systems Image compression: Color quan5za5on NLP: Unsupervised text categoriza5on

5 Back to Classifica5on Learning the class C of a family car from examples Predic5on: Is car x a family car? Knowledge extrac5on: What do people expect from a family car? Output (labels): Posi5ve (+) and nega5ve ( ) examples Input representa5on (features): x 1 : price, x 2 : engine power Training set X X = {x t,r t N } t=1 1 if x is positive r = 0 if x is negative x = x 1 x Hypothesis class H ( p 1 price p 2 ) AND ( e 1 engine power e 2 ) Empirical (training) error 1 if h says x is positive h(x) = 0 if h says x is negative Empirical error of h on X E(h X ) = N 1( h( x t ) r t ) t=

6 S, G, and the Version Space most specific hypothesis, S most general hypothesis, G Margin Choose h with largest margin h H, between S and G is consistent [E( h X) = 0] and make up the version space Noise Unwanted anomaly in data Imprecision in input atributes Errors in labeling data points Hidden atributes (rela5ve to H) Consequence: No h in H may be consistent! Noise and Model Complexity Arguments for simpler model Easier to make predic5ons Easier to train (fewer parameters) Easier to understand Generalizes beter (if data is noisy)

7 Induc5ve Bias Learning is an ill posed problem Training data is never sufficient to find a unique solu5on There are always infinitely many consistent hypotheses We need an induc5ve bias: Assump5ons that entail a unique h for a training set X Hypothesis class H axis aligned rectangles Learning algorithm find consistent hypothesis with max margin Hyperparameters trade off between training error and margin Generaliza5on Generaliza5on how well a model performs on new data Overfi ng: H more complex than C Underfi ng: H less complex than C Trade off between three factors: Complexity of H, c(h) Training set size N Generaliza5on error E on new data Dependencies: As N, E As c(h), first E and then E Model Selec5on To es5mate generaliza5on error, we need data unseen during training: M ( ( ) r t ) E ˆ = E(h V) = 1 h x t V = {x t,r t } M t=1 X t=1 Given models (hypotheses) h 1,..., h k induced from the training set X, we can use E(h i V ) to select the model h i with the smallest generaliza5on error Model Assessment To es5mate the generaliza5on error of the best model h i, we need data unseen during training and model selec5on Standard setup: Training set X (50 80%) Valida5on (development) set V (10 25%) Test (publica5on) set T (10 25%) Note: Valida5on data can be added to training set before tes5ng Resampling methods can be used if data is limited

8 Cross Valida5on K fold cross valida5on: Divide X into X 1,..., X K V 1 = X 1 X 1 = X 2 X 3 X K V 2 = X 2 X 2 = X 1 X 3 X K Bootstrapping Generate new training sets of size N from X by random sampling with replacement Use original training set as valida5on set (V = X ) Probability that we do not pick an instance aper N draws V K = X K X K = X 1 X 2 X K 1 Note: Generaliza5on error es5mated by means across K folds Training sets for different folds share K 2 parts Separate test set must be maintained for model assessment that is, only 36.8% of instances are new! Measuring Error Sta5s5cal Inference Interval es5ma5on to quan5fy the precision of our measurements m ±1.96 σ N Error rate Accuracy Recall Precision = # of errors / # of instances = (FP+FN) / N = # of correct / # of instances = (TP+TN) / N = # of found posi5ves / # of posi5ves = TP / (TP+FN) = # of found posi5ves / # of found = TP / (TP+FP) Hypothesis tes5ng to assess whether differences between models are sta5s5cally significant ( e 01 e 10 1) 2 2 ~ X 1 e 01 + e

9 Supervised Learning Summary Anatomy of a Supervised Learner Training data + learner hypothesis Learner incorporates induc5ve bias Test data + hypothesis es5mated generaliza5on Test data must be unseen Next three lectures: Different learners with different induc5ve biases Model: Loss func5on: Op5miza5on procedure: g( x θ) E θ X ( ( )) ( ) = L r t,g x t θ t θ* = arg min E( θ X ) θ

ML4Bio Lecture #1: Introduc3on. February 24 th, 2016 Quaid Morris

ML4Bio Lecture #1: Introduc3on. February 24 th, 2016 Quaid Morris ML4Bio Lecture #1: Introduc3on February 24 th, 216 Quaid Morris Course goals Prac3cal introduc3on to ML Having a basic grounding in the terminology and important concepts in ML; to permit self- study,

More information

Cross- Valida+on & ROC curve. Anna Helena Reali Costa PCS 5024

Cross- Valida+on & ROC curve. Anna Helena Reali Costa PCS 5024 Cross- Valida+on & ROC curve Anna Helena Reali Costa PCS 5024 Resampling Methods Involve repeatedly drawing samples from a training set and refibng a model on each sample. Used in model assessment (evalua+ng

More information

Machine Learning Crash Course: Part I

Machine Learning Crash Course: Part I Machine Learning Crash Course: Part I Ariel Kleiner August 21, 2012 Machine learning exists at the intersec

More information

Supervised Learning. CS 586 Machine Learning. Prepared by Jugal Kalita. With help from Alpaydin s Introduction to Machine Learning, Chapter 2.

Supervised Learning. CS 586 Machine Learning. Prepared by Jugal Kalita. With help from Alpaydin s Introduction to Machine Learning, Chapter 2. Supervised Learning CS 586 Machine Learning Prepared by Jugal Kalita With help from Alpaydin s Introduction to Machine Learning, Chapter 2. Topics What is classification? Hypothesis classes and learning

More information

Stages of (Batch) Machine Learning

Stages of (Batch) Machine Learning Evalua&on Stages of (Batch) Machine Learning Given: labeled training data X, Y = {hx i,y i i} n i=1 Assumes each x i D(X ) with y i = f target (x i ) Train the model: model ß classifier.train(x, Y ) x

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 3 Parametric Distribu>ons We want model the probability

More information

Minimum Redundancy and Maximum Relevance Feature Selec4on. Hang Xiao

Minimum Redundancy and Maximum Relevance Feature Selec4on. Hang Xiao Minimum Redundancy and Maximum Relevance Feature Selec4on Hang Xiao Background Feature a feature is an individual measurable heuris4c property of a phenomenon being observed In character recogni4on: horizontal

More information

Decision Trees: Representa:on

Decision Trees: Representa:on Decision Trees: Representa:on Machine Learning Fall 2017 Some slides from Tom Mitchell, Dan Roth and others 1 Key issues in machine learning Modeling How to formulate your problem as a machine learning

More information

Pa#ern Recogni-on for Neuroimaging Toolbox

Pa#ern Recogni-on for Neuroimaging Toolbox Pa#ern Recogni-on for Neuroimaging Toolbox Pa#ern Recogni-on Methods: Basics João M. Monteiro Based on slides from Jessica Schrouff and Janaina Mourão-Miranda PRoNTo course UCL, London, UK 2017 Outline

More information

Search Engines. Informa1on Retrieval in Prac1ce. Annota1ons by Michael L. Nelson

Search Engines. Informa1on Retrieval in Prac1ce. Annota1ons by Michael L. Nelson Search Engines Informa1on Retrieval in Prac1ce Annota1ons by Michael L. Nelson All slides Addison Wesley, 2008 Evalua1on Evalua1on is key to building effec$ve and efficient search engines measurement usually

More information

CS 6140: Machine Learning Spring Final Exams. What we learned Final Exams 2/26/16

CS 6140: Machine Learning Spring Final Exams. What we learned Final Exams 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

CAP5415-Computer Vision Lecture 13-Support Vector Machines for Computer Vision Applica=ons

CAP5415-Computer Vision Lecture 13-Support Vector Machines for Computer Vision Applica=ons CAP5415-Computer Vision Lecture 13-Support Vector Machines for Computer Vision Applica=ons Guest Lecturer: Dr. Boqing Gong Dr. Ulas Bagci bagci@ucf.edu 1 October 14 Reminders Choose your mini-projects

More information

CSE 473: Ar+ficial Intelligence Machine Learning: Naïve Bayes and Perceptron

CSE 473: Ar+ficial Intelligence Machine Learning: Naïve Bayes and Perceptron CSE 473: Ar+ficial Intelligence Machine Learning: Naïve Bayes and Perceptron Luke ZeFlemoyer --- University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI

More information

Deformable Part Models

Deformable Part Models Deformable Part Models References: Felzenszwalb, Girshick, McAllester and Ramanan, Object Detec@on with Discrimina@vely Trained Part Based Models, PAMI 2010 Code available at hkp://www.cs.berkeley.edu/~rbg/latent/

More information

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University CS6200 Informa.on Retrieval David Smith College of Computer and Informa.on Science Northeastern University Course Goals To help you to understand search engines, evaluate and compare them, and

More information

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar CS395T Visual Recogni5on and Search Gautam S. Muralidhar Today s Theme Unsupervised discovery of images Main mo5va5on behind unsupervised discovery is that supervision is expensive Common tasks include

More information

Logis&c Regression. Aar$ Singh & Barnabas Poczos. Machine Learning / Jan 28, 2014

Logis&c Regression. Aar$ Singh & Barnabas Poczos. Machine Learning / Jan 28, 2014 Logis&c Regression Aar$ Singh & Barnabas Poczos Machine Learning 10-701/15-781 Jan 28, 2014 Linear Regression & Linear Classifica&on Weight Height Linear fit Linear decision boundary 2 Naïve Bayes Recap

More information

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University CS6200 Informa.on Retrieval David Smith College of Computer and Informa.on Science Northeastern University Course Goals To help you to understand search engines, evaluate and compare them, and

More information

Search Engines. Informa1on Retrieval in Prac1ce. Annotations by Michael L. Nelson

Search Engines. Informa1on Retrieval in Prac1ce. Annotations by Michael L. Nelson Search Engines Informa1on Retrieval in Prac1ce Annotations by Michael L. Nelson All slides Addison Wesley, 2008 Classifica1on and Clustering Classifica1on and clustering are classical padern recogni1on

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Machine Learning Basics - 1 U Kang Seoul National University U Kang 1 In This Lecture Overview of Machine Learning Capacity, overfitting, and underfitting

More information

Quick review: Data Mining Tasks... Classifica(on [Predic(ve] Regression [Predic(ve] Clustering [Descrip(ve] Associa(on Rule Discovery [Descrip(ve]

Quick review: Data Mining Tasks... Classifica(on [Predic(ve] Regression [Predic(ve] Clustering [Descrip(ve] Associa(on Rule Discovery [Descrip(ve] Evaluation Quick review: Data Mining Tasks... Classifica(on [Predic(ve] Regression [Predic(ve] Clustering [Descrip(ve] Associa(on Rule Discovery [Descrip(ve] Classification: Definition Given a collec(on

More information

Outline. Introduce yourself!! What is Machine Learning? What is CAP-5610 about? Class information and logistics

Outline. Introduce yourself!! What is Machine Learning? What is CAP-5610 about? Class information and logistics Outine Introduce yoursef!! What is Machine Learning? What is CAP-5610 about? Cass information and ogistics Lecture Notes for E Apaydın 2010 Introduction to Machine Learning 2e The MIT Press (V1.0) About

More information

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #19: Machine Learning 1

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #19: Machine Learning 1 CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #19: Machine Learning 1 Supervised Learning Would like to do predicbon: esbmate a func3on f(x) so that y = f(x) Where y can be: Real number:

More information

Predic'ng ALS Progression with Bayesian Addi've Regression Trees

Predic'ng ALS Progression with Bayesian Addi've Regression Trees Predic'ng ALS Progression with Bayesian Addi've Regression Trees Lilly Fang and Lester Mackey November 13, 2012 RECOMB Conference on Regulatory and Systems Genomics The ALS Predic'on Prize Challenge: Predict

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

A Smartphone Based Real Time Ac5vity Monitoring System

A Smartphone Based Real Time Ac5vity Monitoring System A Smartphone Based Real Time Ac5vity Monitoring System By: Shumei Zhang, Paul McCullagh, Jing Zhang, Tiezhong Yu Presented by: Jane Henderson A Smartphone Based-Real Time Daily Ac5vity Monitoring System

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018 MIT 801 [Presented by Anna Bosman] 16 February 2018 Machine Learning What is machine learning? Artificial Intelligence? Yes as we know it. What is intelligence? The ability to acquire and apply knowledge

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Alignment and Image Comparison. Erik Learned- Miller University of Massachuse>s, Amherst

Alignment and Image Comparison. Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison

More information

Structure and Support Vector Machines. SPFLODD October 31, 2013

Structure and Support Vector Machines. SPFLODD October 31, 2013 Structure and Support Vector Machines SPFLODD October 31, 2013 Outline SVMs for structured outputs Declara?ve view Procedural view Warning: Math Ahead Nota?on for Linear Models Training data: {(x 1, y

More information

Introduc)on to Probabilis)c Latent Seman)c Analysis. NYP Predic)ve Analy)cs Meetup June 10, 2010

Introduc)on to Probabilis)c Latent Seman)c Analysis. NYP Predic)ve Analy)cs Meetup June 10, 2010 Introduc)on to Probabilis)c Latent Seman)c Analysis NYP Predic)ve Analy)cs Meetup June 10, 2010 PLSA A type of latent variable model with observed count data and nominal latent variable(s). Despite the

More information

Alignment and Image Comparison

Alignment and Image Comparison Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison

More information

Machine Learning. CS 232: Ar)ficial Intelligence Naïve Bayes Oct 26, 2015

Machine Learning. CS 232: Ar)ficial Intelligence Naïve Bayes Oct 26, 2015 1 CS 232: Ar)ficial Intelligence Naïve Bayes Oct 26, 2015 Machine Learning Part 1 of course: how use a model to make op)mal decisions (state space, MDPs) Machine learning: how to acquire a model from data

More information

ML pipelines at OK. Dmitry Bugaychenko

ML pipelines at OK. Dmitry Bugaychenko ML pipelines at OK Dmitry Bugaychenko OK is 70 000 000+ monthly unique users OK is 800 000 000+ family links in the social graph OK is A place where people share their posi9ve feelings OK is 10000+ servers

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

Informa(on Extrac(on and Named En(ty Recogni(on. Introducing the tasks: Ge3ng simple structured informa8on out of text

Informa(on Extrac(on and Named En(ty Recogni(on. Introducing the tasks: Ge3ng simple structured informa8on out of text Informa(on Extrac(on and Named En(ty Recogni(on Introducing the tasks: Ge3ng simple structured informa8on out of text Informa(on Extrac(on Informa8on extrac8on (IE) systems Find and understand limited

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Learning 4 Supervised Learning 4 Unsupervised Learning 4

More information

Lecture 7: Spectral Clustering; Linear Dimensionality Reduc:on via Principal Component Analysis

Lecture 7: Spectral Clustering; Linear Dimensionality Reduc:on via Principal Component Analysis Lecture 7: Spectral Clustering; Linear Dimensionality Reduc:on via Principal Component Analysis Lester Mackey April, Stats 6B: Unsupervised Learning Blackboard discussion See lecture notes Spectral clustering

More information

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 6316/4501 Fall 2016 Machine Learning Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 11/9/16 1 Rough Plan HW5

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley TerraSwarm A Machine Learning and Op0miza0on Toolkit for the Swarm Ilge Akkaya, Shuhei Emoto, Edward A. Lee University of California, Berkeley TerraSwarm Tools Telecon 17 November 2014 Sponsored by the

More information

Introduc)on to Informa)on Visualiza)on

Introduc)on to Informa)on Visualiza)on Introduc)on to Informa)on Visualiza)on Seeing the Science with Visualiza)on Raw Data 01001101011001 11001010010101 00101010100110 11101101011011 00110010111010 Visualiza(on Applica(on Visualiza)on on

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

COMP 9517 Computer Vision

COMP 9517 Computer Vision COMP 9517 Computer Vision Pa6ern Recogni:on (1) 1 Introduc:on Pa#ern recogni,on is the scien:fic discipline whose goal is the classifica:on of objects into a number of categories or classes Pa6ern recogni:on

More information

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday.

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday. CS 188: Artificial Intelligence Spring 2011 Lecture 21: Perceptrons 4/13/2010 Announcements Project 4: due Friday. Final Contest: up and running! Project 5 out! Pieter Abbeel UC Berkeley Many slides adapted

More information

Semi- Supervised Learning

Semi- Supervised Learning Semi- Supervised Learning Aarti Singh Machine Learning 10-601 Dec 1, 2011 Slides Courtesy: Jerry Zhu 1 Supervised Learning Feature Space Label Space Goal: Optimal predictor (Bayes Rule) depends on unknown

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 1 Where are we? è Five major secfons

More information

BotGraph: Large Scale Spamming Botnet Detec5on

BotGraph: Large Scale Spamming Botnet Detec5on BotGraph: Large Scale Spamming Botnet Detec5on Yao Zhao Yinglian Xie *, Fang Yu *, Qifa Ke *, Yuan Yu *, Yan Chen and Eliot Gillum EECS Department, Northwestern University MicrosoK Research Silicon Valley

More information

Data Preprocessing. Supervised Learning

Data Preprocessing. Supervised Learning Supervised Learning Regression Given the value of an input X, the output Y belongs to the set of real values R. The goal is to predict output accurately for a new input. The predictions or outputs y are

More information

Starchart*: GPU Program Power/Performance Op7miza7on Using Regression Trees

Starchart*: GPU Program Power/Performance Op7miza7on Using Regression Trees Starchart*: GPU Program Power/Performance Op7miza7on Using Regression Trees Wenhao Jia, Princeton University Kelly A. Shaw, University of Richmond Margaret Martonosi, Princeton University *Sta7s7cal Tuning

More information

Lecture 24 EM Wrapup and VARIATIONAL INFERENCE

Lecture 24 EM Wrapup and VARIATIONAL INFERENCE Lecture 24 EM Wrapup and VARIATIONAL INFERENCE Latent variables instead of bayesian vs frequen2st, think hidden vs not hidden key concept: full data likelihood vs par2al data likelihood probabilis2c model

More information

Learning from Data. COMP61011 : Machine Learning and Data Mining. Dr Gavin Brown Machine Learning and Op<miza<on Research Group

Learning from Data. COMP61011 : Machine Learning and Data Mining. Dr Gavin Brown Machine Learning and Op<miza<on Research Group Learning from Data COMP61011 : Machine Learning and Data Mining Dr Gavin Brown Machine Learning and Op

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Machine Learning Potsdam, 26 April 2012 Saeedeh Momtazi Information Systems Group Introduction 2 Machine Learning Field of study that gives computers the ability to learn without

More information

Search Engines. Informa1on Retrieval in Prac1ce. Annotations by Michael L. Nelson

Search Engines. Informa1on Retrieval in Prac1ce. Annotations by Michael L. Nelson Search Engines Informa1on Retrieval in Prac1ce Annotations by Michael L. Nelson All slides Addison Wesley, 2008 Retrieval Models Provide a mathema1cal framework for defining the search process includes

More information

10703 Deep Reinforcement Learning and Control

10703 Deep Reinforcement Learning and Control 10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Policy Gradient II Used Materials Disclaimer: Much of the material and slides for this lecture

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Flash Reliability in Produc4on: The Importance of Measurement and Analysis in Improving System Reliability

Flash Reliability in Produc4on: The Importance of Measurement and Analysis in Improving System Reliability Flash Reliability in Produc4on: The Importance of Measurement and Analysis in Improving System Reliability Bianca Schroeder University of Toronto (Currently on sabbatical at Microsoft Research Redmond)

More information

Jarek Szlichta

Jarek Szlichta Jarek Szlichta http://data.science.uoit.ca/ Approximate terminology, though there is some overlap: Data(base) operations Executing specific operations or queries over data Data mining Looking for patterns

More information

Supervised Learning for Image Segmentation

Supervised Learning for Image Segmentation Supervised Learning for Image Segmentation Raphael Meier 06.10.2016 Raphael Meier MIA 2016 06.10.2016 1 / 52 References A. Ng, Machine Learning lecture, Stanford University. A. Criminisi, J. Shotton, E.

More information

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 K-Nearest Neighbors Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Check out review materials Probability Linear algebra Python and NumPy Start your HW 0 On your Local machine:

More information

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples.

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples. Supervised Learning with Neural Networks We now look at how an agent might learn to solve a general problem by seeing examples. Aims: to present an outline of supervised learning as part of AI; to introduce

More information

5 Learning hypothesis classes (16 points)

5 Learning hypothesis classes (16 points) 5 Learning hypothesis classes (16 points) Consider a classification problem with two real valued inputs. For each of the following algorithms, specify all of the separators below that it could have generated

More information

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/20/2010 Announcements W7 due Thursday [that s your last written for the semester!] Project 5 out Thursday Contest running

More information

MLCC 2018 Local Methods and Bias Variance Trade-Off. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Local Methods and Bias Variance Trade-Off. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Local Methods and Bias Variance Trade-Off Lorenzo Rosasco UNIGE-MIT-IIT About this class 1. Introduce a basic class of learning methods, namely local methods. 2. Discuss the fundamental concept

More information

Decision Trees, Random Forests and Random Ferns. Peter Kovesi

Decision Trees, Random Forests and Random Ferns. Peter Kovesi Decision Trees, Random Forests and Random Ferns Peter Kovesi What do I want to do? Take an image. Iden9fy the dis9nct regions of stuff in the image. Mark the boundaries of these regions. Recognize and

More information

Artificial Intelligence. Programming Styles

Artificial Intelligence. Programming Styles Artificial Intelligence Intro to Machine Learning Programming Styles Standard CS: Explicitly program computer to do something Early AI: Derive a problem description (state) and use general algorithms to

More information

Using Sequen+al Run+me Distribu+ons for the Parallel Speedup Predic+on of SAT Local Search

Using Sequen+al Run+me Distribu+ons for the Parallel Speedup Predic+on of SAT Local Search Using Sequen+al Run+me Distribu+ons for the Parallel Speedup Predic+on of SAT Local Search Alejandro Arbelaez - CharloBe Truchet - Philippe Codognet JFLI University of Tokyo LINA, UMR 6241 University of

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Vulnerability Analysis (III): Sta8c Analysis

Vulnerability Analysis (III): Sta8c Analysis Computer Security Course. Vulnerability Analysis (III): Sta8c Analysis Slide credit: Vijay D Silva 1 Efficiency of Symbolic Execu8on 2 A Sta8c Analysis Analogy 3 Syntac8c Analysis 4 Seman8cs- Based Analysis

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees IST557 Data Mining: Techniques and Applications Jessie Li, Penn State University 1 Decision Tree Example Will a pa)ent have high-risk based on the ini)al 24-hour observa)on?

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Applied Statistics for Neuroscientists Part IIa: Machine Learning

Applied Statistics for Neuroscientists Part IIa: Machine Learning Applied Statistics for Neuroscientists Part IIa: Machine Learning Dr. Seyed-Ahmad Ahmadi 04.04.2017 16.11.2017 Outline Machine Learning Difference between statistics and machine learning Modeling the problem

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Erik Velldal & Stephan Oepen Language Technology Group (LTG) September 23, 2015 Agenda Last week Supervised vs unsupervised learning.

More information

Resampling Methods. Levi Waldron, CUNY School of Public Health. July 13, 2016

Resampling Methods. Levi Waldron, CUNY School of Public Health. July 13, 2016 Resampling Methods Levi Waldron, CUNY School of Public Health July 13, 2016 Outline and introduction Objectives: prediction or inference? Cross-validation Bootstrap Permutation Test Monte Carlo Simulation

More information

Regularization and model selection

Regularization and model selection CS229 Lecture notes Andrew Ng Part VI Regularization and model selection Suppose we are trying select among several different models for a learning problem. For instance, we might be using a polynomial

More information

Leveraging User Session Data to Support Web Applica8on Tes8ng

Leveraging User Session Data to Support Web Applica8on Tes8ng Leveraging User Session Data to Support Web Applica8on Tes8ng Authors: Sebas8an Elbaum, Gregg Rotheermal, Srikanth Karre, and Marc Fisher II Presented By: Rajiv Jain Outline Introduc8on Related Work Tes8ng

More information

Ensemble Learning. Another approach is to leverage the algorithms we have via ensemble methods

Ensemble Learning. Another approach is to leverage the algorithms we have via ensemble methods Ensemble Learning Ensemble Learning So far we have seen learning algorithms that take a training set and output a classifier What if we want more accuracy than current algorithms afford? Develop new learning

More information

Informa(on Retrieval

Informa(on Retrieval Introduc*on to Informa(on Retrieval Clustering Chris Manning, Pandu Nayak, and Prabhakar Raghavan Today s Topic: Clustering Document clustering Mo*va*ons Document representa*ons Success criteria Clustering

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

1) Give decision trees to represent the following Boolean functions:

1) Give decision trees to represent the following Boolean functions: 1) Give decision trees to represent the following Boolean functions: 1) A B 2) A [B C] 3) A XOR B 4) [A B] [C Dl Answer: 1) A B 2) A [B C] 1 3) A XOR B = (A B) ( A B) 4) [A B] [C D] 2 2) Consider the following

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017

Machine Learning in the Wild. Dealing with Messy Data. Rajmonda S. Caceres. SDS 293 Smith College October 30, 2017 Machine Learning in the Wild Dealing with Messy Data Rajmonda S. Caceres SDS 293 Smith College October 30, 2017 Analytical Chain: From Data to Actions Data Collection Data Cleaning/ Preparation Analysis

More information

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1 Big Data Methods Chapter 5: Machine learning Big Data Methods, Chapter 5, Slide 1 5.1 Introduction to machine learning What is machine learning? Concerned with the study and development of algorithms that

More information

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University

CS6200 Informa.on Retrieval. David Smith College of Computer and Informa.on Science Northeastern University CS6200 Informa.on Retrieval David Smith College of Computer and Informa.on Science Northeastern University Indexing Process Indexes Indexes are data structures designed to make search faster Text search

More information

CS 6140: Machine Learning Spring 2017

CS 6140: Machine Learning Spring 2017 CS 6140: Machine Learning Spring 2017 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis@cs Grades

More information

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017 Lecture 27: Review Reading: All chapters in ISLR. STATS 202: Data mining and analysis December 6, 2017 1 / 16 Final exam: Announcements Tuesday, December 12, 8:30-11:30 am, in the following rooms: Last

More information

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information

More Course Overview: Models, Tests, Bugs, and Symbols

More Course Overview: Models, Tests, Bugs, and Symbols Some logis@cs More Course Overview: Models, Tests, Bugs, and Symbols Everyone who wants to be registered is, right? Homework 1 will be posted tonight or tomorrow Due September 29, by 9 AM on moodle Requires

More information

A (Very) Brief Introduc3on to Machine Learning and its Applica3on to Mobile Networks. David Meyer SP CTO and Chief Scien3st Brocade

A (Very) Brief Introduc3on to Machine Learning and its Applica3on to Mobile Networks. David Meyer SP CTO and Chief Scien3st Brocade A (Very) Brief Introduc3on to Machine Learning and its Applica3on to Mobile Networks David Meyer SP CTO and Chief Scien3st Brocade dmm@brocade.com Agenda Goals for this Talk Automa3on Con3nuum SoKware

More information

BoW model. Textual data: Bag of Words model

BoW model. Textual data: Bag of Words model BoW model Textual data: Bag of Words model With text, categoriza9on is the task of assigning a document to one or more categories based on its content. It is appropriate for: Detec9ng and indexing similar

More information

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Data preprocessing Feature normalization Missing

More information

Hierarchical sampling for active learning

Hierarchical sampling for active learning Hierarchical sampling for active learning Sanjoy Dasgupta and Daniel Hsu University of California, San Diego Active learning Unlabeled data (raw signal): cheap, plentiful e.g. text (web), speech (microphone),

More information