Supplemental Information. On the Quantification of Cellular Velocity Fields. Dhruv K. Vig, Alex E. Hamby, and Charles W. Wolgemuth

Size: px
Start display at page:

Download "Supplemental Information. On the Quantification of Cellular Velocity Fields. Dhruv K. Vig, Alex E. Hamby, and Charles W. Wolgemuth"

Transcription

1 Biophysical Journal, Volume 110 Supplemental Information On the Quantification of Cellular Velocity Fields Dhruv K. Vig, Alex E. Hamby, and Charles W. Wolgemuth

2 Biophysical Journal Supporting Material Biophysical Perspective On the Quantification of Cellular Velocity Fields Dhruv Kumar Vig, 1 Alex E. Hamby, 1 and Charles W. Wolgemuth 1, * 1 Department of Physics, University of Arizona, Tucson, Arizona *Correspondence: wolg@ .arizona.edu

3 Supplemental Movie Captions Supplemental Movie 1 Synthetic movie of a population of fluorescent ellipsoidal-shaped particles moving at constant velocity. Supplemental Movie Synthetic movie of a dilute population of fluorescent ellipsoidal-shaped particles being transported by a prescribed single vortex. Supplemental Movie 3 Synthetic movie of a population of fluorescent ellipsoidal-shaped particles being transported by a prescribed array of four vortices. Supplemental Movie 4 Following epithelial cell movements using tracer particles. The velocities in a confluent monolayer of MDCK cells were extracted using optical flow with blurring (cyan) or without blurring (green), single-pass PIV (yellow), and four-pass PIV (magenta). We then simulated the motion of tracer particles and overlaid the positions onto the original movie. The total movie duration is 5 hr, with image acquisition every 5 minutes. Images were acquired in DIC using a 0x air obective. Total width of the domain is 69 µm. Supplemental Movie 5 Following the swimming dynamics of a dense suspension of E. coli. The velocities were extracted in a similar manner as in Supplemental Movie 4. The total movie duration is 10 s, with an acquisition rate of 3 fps. Images were acquired in DIC using a 40x water-immersion obective. Total width of the domain is 30 µm.

4 The L relative error norm was calculated using the equation below. L ( vxm, vxp, ) + ( vym, vy, p) ( vxp, ) + ( vyp, ) where v x,m (v y,m ) is the x(y)-component of the measured velocity (Optical Flow determined velocity) and v x,p (v y,p ) is the x(y)-component of the prescribed velocity (velocity defined when generating the synthetic movie). I. Instruction manual for optical flow General Information The optical flow algorithm is free to use and is distributed in a hope that it will be useful to the broad research community. Copyright 015 Arizona Board of Regents on behalf of The University of Arizona. The use of this algorithm requires MATLAB, but it is not necessary to have MATLAB s Image Processing Toolbox. To get started place the OpticalFlow.m file in the directory that contains the movies to be processed or set the directory path for the file in MATLAB. II. Description of the optical flow algorithm The main inputs to the optical flow algorithm are a time-lapse sequence of images (in our MATLAB code we allow for inputs in either AVI or TIF format), a binary mask that defines the ROI where the velocity is to be computed, and parameters that govern the blurring, box size, velocity smoothing, and output velocity vector density. The ROI mask can be input as either a single image file or a stack of images (with a different mask for each frame). The time-lapse images are handled in pairs, e.g., the first frame with the second frame, the second with the third, and so on. To account for uneven lighting in the images, we begin by

5 subtracting the background from the images. The background is determined by fitting the intensity profile in the image to a cubic function using a Least Squares Algorithm. Each image in the pair is blurred using a radially symmetric Gaussian blur with user-defined kernel size with standard deviation BlurSTD. Blurring spreads the intensity profile over a distance comparable to the characteristic displacements in the movie. In the provided algorithm we defined BlurSize as ceil (3.5*BlurSTD) + mod (ceil(3.5*blurstd,) + 1. Over finite time intervals, t, the advection equation is approximately equal to ( ) ( ) ( v ) I I t+ t I t t I. The left-hand side of this equation is computed by subtracting the first image of the image pair from the second. The gradient in the intensity on the right-hand side of the equation is computed using a central difference approximation for the spatial derivatives of the average intensity profile for the image pair: I x I y t+ t t t+ t t ( Ii+ 1, + Ii+ 1, ) ( Ii 1, + Ii 1, ) 4 x t+ t t t+ t t ( I I + 1 ) ( I 1 + I 1) 4 x where the subscript denotes the x,y pixel location of the node and x is the linear pixel size. Over small subregions of the image (of size BoxSize BoxSize), the velocity is approximately constant. The BoxSize should be set in such a way that there is at least one image feature per subregion. Within these subregions, the advection equation should be approximately correct; i.e., ( v ) I + t I R, where R is a small residual and the velocity v is a constant vector. To determine the velocity, we then minimize the squared residuals in the subregion with respect to ( ) the velocity. That is, we define an error function χ I + t( I ) 1 v subregion Minimizing this error with respect to the velocity leads to a linear system of two equations and two unknowns whose solutions are

6 v v x y I I C I B I subregion x + subregion y t AC ( B ) I I A I + B I subregion y subregion x t AC ( B ) The sums in the above equation are calculated using an image filtering operation, and, if a binary ROI has been used in the input, the velocities are only calculated within the masked ROI. This algorithm is conceptually similar to a method previously developed 1 ; however, our use of blurring and a least squares minimization over a small window allows for the calculation of instantaneous velocity fields where movements occur over tens of pixels between frames. The velocity field is then output on a coarser domain with spacing defined by the user (the arrow spacing is defined as ArrowSize). Figure 1 summarizes the optical flow algorithm.

7 Figure 1. Flow-Chart describing the optical flow algorithm. III. Using optical flow to generate flow fields. OpticalFlow.m requires the user to define the following variables: Parameters Definition MovieName Name of the image sequence file to be analyzed, can be either AVI or TIF format. BinaryMask Name of the region-of-interest image sequence files, can be either AVI or TIFF format. If an ROI mask is not necessary then the input is [ ]. scale Converts pixels to microns, scale is defined in microns per pixel. dt Time interval between frames BoxSize Sets the linear size of the subregions (in pixels) where the velocity is computed. Should be set to be large enough that each subregion contains at least one identifiable image feature. BlurSTD Sets the size of the standard deviation for the Gaussian blur. Should be set to half maximum velocity between two images in pixels. ArrowSize Used to define a coarser output grid for the velocity vectors. Defines the spacing (in pixels) between output velocity vectors. Optical To access an augmented mode of Optical Flow enter Rotation to determine the Flow local voriticity (ω ο ) or React to measure the effects of an added source term (γ). Method To run the standard default version use none or omit this input parameter. 1. Input the desired values for these parameters in MATLAB s command prompt window by replacing the name of each parameter with their desired value, an example is shown below. >>[X,Y,Vx,Vy,Mov] OpticalFlow ('Movie1.tif',[],13,0,0.3145,5, none ). The outputs of the code are vectors X and Y which are the x and y position of the velocity vectors (V x, V y ) defined on the coarse grid. The velocities are output as M N matrices where the columns correspond to time and the rows correspond with the spatial positions stored in (X, Y). A MATLAB movie matrix, Mov, is also output that contains the overlaid

8 microscope image sequence with optical flow extracted velocities. This movie can be played back using the command movie (Mov). It can also be stored to the current directory by using >> movieavi (Mov, FileName.avi, compression, none ) This AVI video file is playable in ImageJ. 3. When optical flow with Rotation is used, there are two additional outputs. First is a matrix containing the Vorticity, which has the same format as V x and V y. The second is a movie file that shows the velocity field overlaid on top of a colormap depicting the vorticity. 4. When optical flow with React is used, there is one additional output, a matrix containing the reaction rate, which has the same format as V x and V y. Analyzing several movies within a directory. The file DriveOF.m (also provided in the supplemental software) can be used to automate optical flow and analyze several time-lapse image sequences in series. The file needs to be stored in the same directory as the movie files and OpticalFlow.m (or set the directory path for the file in MATLAB.) In the MATLAB command prompt launch DriveOF.m by typing: >> open DriveOF.m 5. In this driver the user will see the same list of parameters shown in the above Table. These variables are now set within the driver and not through MATLAB s command prompt. 6. It is now necessary to define a new variable TotalMovies, which corresponds to the total number of movies that the user wishes to analyze in series. 7. Automation is performed by assuming that all the movies within the directory have the same prefix and format, for example Movie1.av Movie.av etc. or Movie1.tif, Movie.tif, etc. The ROI Mask and Image sequences to be analyzed do not have to have the same format, but should have the same prefix. 8. An example using the driver in MATLAB s command prompt window is shown below. >> DriveOF ( Movie1.avi, [])

9 9. When DriveOF is used, workspace files and overlaid movie files for each movie will be created and stored in the current directory. These files will have the same name as the input movies and will be labeled as FileNameXX.mat (workspace file) and MovieXXTracked.avi (overlay movie file). Using extensions of optical flow Using DriveOF.m, it is possible to implement extensions of optical flow. One application where this can be useful is in fluorescent speckle microscopy, where speckles appear or disappear due to polymerization or depolymerization 18. In optical flow, it is straightforward to add a net source/sink reaction rate γ to Eq. 1 i.e. di dt v I +γ. Optical flow can also be augmented to determine the local vorticity within a flow field by assuming that the velocity consists of translational and rotational components, v v + ( r) o ω, where r xxˆ+ yyˆ and ω ω z o ˆ, where ω 0 is the vorticity. This form for the velocity is then used in Eq. 1 and the squared residuals are minimized with respect to v x, v y and ω o. The resulting system of equations can be solved analytically to determine the velocity and vorticity. To use these different versions of optical flow, the user needs to type Rotation or React into the DriveOF command in the MATLAB command window, as shown below. >> DriveOF ( Movie1.avi, Movie1Binary.tif, Rotation ) or >> DriveOF ( Movie1.avi, Movie1Binary.tif, React ) To use the standard version optical flow simply omit the third entry above or input none.

Particle Velocimetry Data from COMSOL Model of Micro-channels

Particle Velocimetry Data from COMSOL Model of Micro-channels Particle Velocimetry Data from COMSOL Model of Micro-channels P.Mahanti *,1, M.Keebaugh 1, N.Weiss 1, P.Jones 1, M.Hayes 1, T.Taylor 1 Arizona State University, Tempe, Arizona *Corresponding author: GWC

More information

Colin Paul Updated 14 November Preparation of publication-quality videos using ImageJ

Colin Paul Updated 14 November Preparation of publication-quality videos using ImageJ Preparation of publication-quality videos using ImageJ Statements made in scientific papers are often much easier to understand if they are supplemented by representative videos. In the best case, these

More information

Supplementary Information for. HybTrack: A hybrid single particle tracking software using manual and automatic detection of dim signals

Supplementary Information for. HybTrack: A hybrid single particle tracking software using manual and automatic detection of dim signals Supplementary Information for HybTrack: A hybrid single particle tracking software using manual and automatic detection of dim signals Byung Hun Lee 1 and Hye Yoon Park 1,2 * Affiliations: 1 Department

More information

3-D. Here red spheres show the location of gold nanoparticles inside/around a cell nucleus.

3-D. Here red spheres show the location of gold nanoparticles inside/around a cell nucleus. 3-D The CytoViva 3-D System allows the user can locate objects of interest in a 3-D space. It does this by acquiring multiple Z planes and performing our custom software routines to locate and observe

More information

Fast and accurate automated cell boundary determination for fluorescence microscopy

Fast and accurate automated cell boundary determination for fluorescence microscopy Fast and accurate automated cell boundary determination for fluorescence microscopy Stephen Hugo Arce, Pei-Hsun Wu &, and Yiider Tseng Department of Chemical Engineering, University of Florida and National

More information

Presentation and analysis of multidimensional data sets

Presentation and analysis of multidimensional data sets Presentation and analysis of multidimensional data sets Overview 1. 3D data visualisation Multidimensional images Data pre-processing Visualisation methods Multidimensional images wavelength time 3D image

More information

Automatic Partiicle Tracking Software USE ER MANUAL Update: May 2015

Automatic Partiicle Tracking Software USE ER MANUAL Update: May 2015 Automatic Particle Tracking Software USER MANUAL Update: May 2015 File Menu The micrograph below shows the panel displayed when a movie is opened, including a playback menu where most of the parameters

More information

Post Processing, Visualization, and Sample Output

Post Processing, Visualization, and Sample Output Chapter 7 Post Processing, Visualization, and Sample Output Upon successful execution of an ADCIRC run, a number of output files will be created. Specifically which files are created depends upon how the

More information

Vector Visualization

Vector Visualization Vector Visualization Vector Visulization Divergence and Vorticity Vector Glyphs Vector Color Coding Displacement Plots Stream Objects Texture-Based Vector Visualization Simplified Representation of Vector

More information

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB

Contents. Implementing the QR factorization The algebraic eigenvalue problem. Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional Plots Programming in

More information

Marcel Worring Intelligent Sensory Information Systems

Marcel Worring Intelligent Sensory Information Systems Marcel Worring worring@science.uva.nl Intelligent Sensory Information Systems University of Amsterdam Information and Communication Technology archives of documentaries, film, or training material, video

More information

Find the Correspondences

Find the Correspondences Advanced Topics in BioImage Analysis - 3. Find the Correspondences from Registration to Motion Estimation CellNetworks Math-Clinic Qi Gao 03.02.2017 Math-Clinic core facility Provide services on bioinformatics

More information

The MetroloJ plugin. Fabrice P. Cordelières, Cédric Matthews

The MetroloJ plugin. Fabrice P. Cordelières, Cédric Matthews The MetroloJ plugin Fabrice P. Cordelières, Cédric Matthews Beta version, April 20, 2009 Contents 1 How to install the plugin? 3 2 Generate PSF report 4 2.1 How to generate the images?.........................

More information

CS4495 Fall 2014 Computer Vision Problem Set 5: Optic Flow

CS4495 Fall 2014 Computer Vision Problem Set 5: Optic Flow CS4495 Fall 2014 Computer Vision Problem Set 5: Optic Flow DUE: Wednesday November 12-11:55pm In class we discussed optic flow as the problem of computing a dense flow field where a flow field is a vector

More information

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden

Skåne University Hospital Lund, Lund, Sweden 2 Deparment of Numerical Analysis, Centre for Mathematical Sciences, Lund University, Lund, Sweden Volume Tracking: A New Method for Visualization of Intracardiac Blood Flow from Three-Dimensional, Time-Resolved, Three-Component Magnetic Resonance Velocity Mapping Appendix: Theory and Numerical Implementation

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Virtual Frap User Guide

Virtual Frap User Guide Virtual Frap User Guide http://wiki.vcell.uchc.edu/twiki/bin/view/vcell/vfrap Center for Cell Analysis and Modeling University of Connecticut Health Center 2010-1 - 1 Introduction Flourescence Photobleaching

More information

2, the coefficient of variation R 2, and properties of the photon counts traces

2, the coefficient of variation R 2, and properties of the photon counts traces Supplementary Figure 1 Quality control of FCS traces. (a) Typical trace that passes the quality control (QC) according to the parameters shown in f. The QC is based on thresholds applied to fitting parameters

More information

Icy Training - Level 1 - Introduction

Icy Training - Level 1 - Introduction Icy Training - Level 1 - Introduction Plan What is Icy? Installing Icy Graphical User Interface (GUI) Histograms & Colormap / Look up table Basic operations Overlays / Layers 3D view Icy Preferences Investigate

More information

Epithelial rosette detection in microscopic images

Epithelial rosette detection in microscopic images Epithelial rosette detection in microscopic images Kun Liu,3, Sandra Ernst 2,3, Virginie Lecaudey 2,3 and Olaf Ronneberger,3 Department of Computer Science 2 Department of Developmental Biology 3 BIOSS

More information

Particle Image Velocimetry for Fluid Dynamics Measurements

Particle Image Velocimetry for Fluid Dynamics Measurements Particle Image Velocimetry for Fluid Dynamics Measurements Lyes KADEM, Ph.D; Eng kadem@encs.concordia.ca Laboratory for Cardiovascular Fluid Dynamics MIE Concordia University Presentation - A bit of history

More information

Tracking Trajectories of Migrating Birds Around a Skyscraper

Tracking Trajectories of Migrating Birds Around a Skyscraper Tracking Trajectories of Migrating Birds Around a Skyscraper Brian Crombie Matt Zivney Project Advisors Dr. Huggins Dr. Stewart Abstract In this project, the trajectories of birds are tracked around tall

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/4/1601782/dc1 Supplementary Materials for Adaptive foveated single-pixel imaging with dynamic supersampling David B. Phillips, Ming-Jie Sun, Jonathan M. Taylor,

More information

Time-resolved PIV measurements with CAVILUX HF diode laser

Time-resolved PIV measurements with CAVILUX HF diode laser Time-resolved PIV measurements with CAVILUX HF diode laser Author: Hannu Eloranta, Pixact Ltd 1 Introduction Particle Image Velocimetry (PIV) is a non-intrusive optical technique to measure instantaneous

More information

CSE 252A Computer Vision Homework 3 Instructor: Ben Ochoa Due : Monday, November 21, 2016, 11:59 PM

CSE 252A Computer Vision Homework 3 Instructor: Ben Ochoa Due : Monday, November 21, 2016, 11:59 PM CSE 252A Computer Vision Homework 3 Instructor: Ben Ochoa Due : Monday, November 21, 2016, 11:59 PM Instructions: Homework 3 has to be submitted in groups of 3. Review the academic integrity and collaboration

More information

CCD Acquisition Function

CCD Acquisition Function File Edit View Props Region Open Flatfield Corr. Optics Image Stats Setup Open Background Corr. Reset Camera Image Profile Temperature Close Autoexpose Autofocus Correction Output Dual Shutter From the

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 4 Jan. 24 th, 2019 Slides from Dr. Shishir K Shah and Frank (Qingzhong) Liu Digital Image Processing COSC 6380/4393 TA - Office: PGH 231 (Update) Shikha

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

Flow Structures Extracted from Visualization Images: Vector Fields and Topology

Flow Structures Extracted from Visualization Images: Vector Fields and Topology Flow Structures Extracted from Visualization Images: Vector Fields and Topology Tianshu Liu Department of Mechanical & Aerospace Engineering Western Michigan University, Kalamazoo, MI 49008, USA We live

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

Features included in isolution Lite, i-solution, isolution DT

Features included in isolution Lite, i-solution, isolution DT Features included in isolution Lite, i-solution, isolution DT Include: Live Measurement and Overlay Settings Users can perform measurements on the live preview image, using the crosshair or grid masks

More information

MAT 17C - DISCUSSION #4, Counting Proteins

MAT 17C - DISCUSSION #4, Counting Proteins MAT 17C - DISCUSSION #4, Counting Proteins Visualization of molecules inside a living cell is one of the most important tools of molecular biology in the 21 st century. In fact, it was the subject of the

More information

Histogram of Oriented Gradients for Human Detection

Histogram of Oriented Gradients for Human Detection Histogram of Oriented Gradients for Human Detection Article by Navneet Dalal and Bill Triggs All images in presentation is taken from article Presentation by Inge Edward Halsaunet Introduction What: Detect

More information

RASNIK Image Processing with a Steepest Ascent Algorithm

RASNIK Image Processing with a Steepest Ascent Algorithm ATLAS Internal Note MUON-No-092 RASNIK Image Processing with a Steepest Ascent Algorithm Kevan S. Hashemi and James R. Bensinger Brandeis University August 1995 Introduction The RASNIK alignment instrument

More information

In this lecture. Background. Background. Background. PAM3012 Digital Image Processing for Radiographers

In this lecture. Background. Background. Background. PAM3012 Digital Image Processing for Radiographers PAM3012 Digital Image Processing for Radiographers Image Enhancement in the Spatial Domain (Part I) In this lecture Image Enhancement Introduction to spatial domain Information Greyscale transformations

More information

Chapter 3. Automated Segmentation of the First Mitotic Spindle in Differential Interference Contrast Microcopy Images of C.

Chapter 3. Automated Segmentation of the First Mitotic Spindle in Differential Interference Contrast Microcopy Images of C. Chapter 3 Automated Segmentation of the First Mitotic Spindle in Differential Interference Contrast Microcopy Images of C. elegans Embryos Abstract Differential interference contrast (DIC) microscopy is

More information

EN1610 Image Understanding Lab # 4: Corners, Interest Points, Hough Transform

EN1610 Image Understanding Lab # 4: Corners, Interest Points, Hough Transform EN1610 Image Understanding Lab # 4: Corners, Interest Points, Hough Transform The goal of this fourth lab is to ˆ Learn how to detect corners, and use them in a tracking application ˆ Learn how to describe

More information

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar.

Matching. Compare region of image to region of image. Today, simplest kind of matching. Intensities similar. Matching Compare region of image to region of image. We talked about this for stereo. Important for motion. Epipolar constraint unknown. But motion small. Recognition Find object in image. Recognize object.

More information

Implemented by Valsamis Douskos Laboratoty of Photogrammetry, Dept. of Surveying, National Tehnical University of Athens

Implemented by Valsamis Douskos Laboratoty of Photogrammetry, Dept. of Surveying, National Tehnical University of Athens An open-source toolbox in Matlab for fully automatic calibration of close-range digital cameras based on images of chess-boards FAUCCAL (Fully Automatic Camera Calibration) Implemented by Valsamis Douskos

More information

Particle Velocimetry Data from COMSOL Model of Micro-channels

Particle Velocimetry Data from COMSOL Model of Micro-channels Presented at the 2010 Boston Particle Velocimetry Data from COMSOL Model of Micro-channels P.Mahanti *,1, M.Keebaugh 1, N.Weiss 1, P.Jones 1, M.Hayes 1, T.Taylor 1 Arizona State University, Tempe, Arizona

More information

Image Shift Correction in Microscopic Time Lapse Sequences

Image Shift Correction in Microscopic Time Lapse Sequences Image Shift Correction in Microscopic Time Lapse Sequences 1. General Information It is of importance to ensure mechanical stability of your live cell imaging set-up during a time lapse experiment. Vibration

More information

Hand-Eye Calibration from Image Derivatives

Hand-Eye Calibration from Image Derivatives Hand-Eye Calibration from Image Derivatives Abstract In this paper it is shown how to perform hand-eye calibration using only the normal flow field and knowledge about the motion of the hand. The proposed

More information

Vector Visualization Chap. 6 March 7, 2013 March 26, Jie Zhang Copyright

Vector Visualization Chap. 6 March 7, 2013 March 26, Jie Zhang Copyright ector isualization Chap. 6 March 7, 2013 March 26, 2013 Jie Zhang Copyright CDS 301 Spring, 2013 Outline 6.1. Divergence and orticity 6.2. ector Glyphs 6.3. ector Color Coding 6.4. Displacement Plots (skip)

More information

Data from: Inferring single cell behavior from large-scale epithelial sheet migration patterns. Journal of the Royal Society Interface

Data from: Inferring single cell behavior from large-scale epithelial sheet migration patterns. Journal of the Royal Society Interface Data from: Inferring single cell behavior from large-scale epithelial sheet migration patterns Journal of the Royal Society Interface Rachel M. Lee, Haicen Yue, Wouter-Jan Rappel, and Wolfgang Losert Contact

More information

BCC Comet Generator Source XY Source Z Destination XY Destination Z Completion Time

BCC Comet Generator Source XY Source Z Destination XY Destination Z Completion Time BCC Comet Generator Comet creates an auto-animated comet that streaks across the screen. The comet is compromised of particles whose sizes, shapes, and colors can be adjusted. You can also set the length

More information

Global Flow Estimation. Lecture 9

Global Flow Estimation. Lecture 9 Motion Models Image Transformations to relate two images 3D Rigid motion Perspective & Orthographic Transformation Planar Scene Assumption Transformations Translation Rotation Rigid Affine Homography Pseudo

More information

TABLE OF CONTENTS PRODUCT DESCRIPTION VISUALIZATION OPTIONS MEASUREMENT OPTIONS SINGLE MEASUREMENT / TIME SERIES BEAM STABILITY POINTING STABILITY

TABLE OF CONTENTS PRODUCT DESCRIPTION VISUALIZATION OPTIONS MEASUREMENT OPTIONS SINGLE MEASUREMENT / TIME SERIES BEAM STABILITY POINTING STABILITY TABLE OF CONTENTS PRODUCT DESCRIPTION VISUALIZATION OPTIONS MEASUREMENT OPTIONS SINGLE MEASUREMENT / TIME SERIES BEAM STABILITY POINTING STABILITY BEAM QUALITY M 2 BEAM WIDTH METHODS SHORT VERSION OVERVIEW

More information

LOCAL-GLOBAL OPTICAL FLOW FOR IMAGE REGISTRATION

LOCAL-GLOBAL OPTICAL FLOW FOR IMAGE REGISTRATION LOCAL-GLOBAL OPTICAL FLOW FOR IMAGE REGISTRATION Ammar Zayouna Richard Comley Daming Shi Middlesex University School of Engineering and Information Sciences Middlesex University, London NW4 4BT, UK A.Zayouna@mdx.ac.uk

More information

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Motion Tracking CS4243 Motion Tracking 1 Changes are everywhere! CS4243 Motion Tracking 2 Illumination change CS4243 Motion Tracking 3 Shape

More information

9.9 Coherent Structure Detection in a Backward-Facing Step Flow

9.9 Coherent Structure Detection in a Backward-Facing Step Flow 9.9 Coherent Structure Detection in a Backward-Facing Step Flow Contributed by: C. Schram, P. Rambaud, M. L. Riethmuller 9.9.1 Introduction An algorithm has been developed to automatically detect and characterize

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 Note: These instructions are based on an older version of FLUENT, and some of the instructions

More information

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation Alexander Andreopoulos, Hirak J. Kashyap, Tapan K. Nayak, Arnon Amir, Myron D. Flickner IBM Research March 25,

More information

Continuum-Microscopic Models

Continuum-Microscopic Models Scientific Computing and Numerical Analysis Seminar October 1, 2010 Outline Heterogeneous Multiscale Method Adaptive Mesh ad Algorithm Refinement Equation-Free Method Incorporates two scales (length, time

More information

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection Coherent Gradient Sensing Microscopy: Microinterferometric Technique for Quantitative Cell Detection Proceedings of the SEM Annual Conference June 7-10, 010 Indianapolis, Indiana USA 010 Society for Experimental

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.1: 2D Motion Estimation in Images Jürgen Sturm Technische Universität München 3D to 2D Perspective Projections

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Review of Motion Modelling and Estimation Introduction to Motion Modelling & Estimation Forward Motion Backward Motion Block Motion Estimation Motion

More information

Improvement of optic flow estimation from an event-based sensor with recurrently connected processing layers

Improvement of optic flow estimation from an event-based sensor with recurrently connected processing layers Improvement of optic flow estimation from an event-based sensor with recurrently connected processing layers Vilim Štih 31st March 2014 1 Introduction The Dynamic Vision Sensor (DVS) is a visual sensor

More information

Horn-Schunck and Lucas Kanade 1

Horn-Schunck and Lucas Kanade 1 Horn-Schunck and Lucas Kanade 1 Lecture 8 See Sections 4.2 and 4.3 in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014 1 See last slide for copyright information. 1 / 40 Where We

More information

Laser speckle based background oriented schlieren measurements in a fire backlayering front

Laser speckle based background oriented schlieren measurements in a fire backlayering front Laser speckle based background oriented schlieren measurements in a fire backlayering front Philipp Bühlmann 1*, Alexander H. Meier 1, Martin Ehrensperger 1, Thomas Rösgen 1 1: ETH Zürich, Institute of

More information

LAGRANGIAN PARTICLE TRACKING IN ISOTROPIC TURBULENT FLOW VIA HOLOGRAPHIC AND INTENSITY BASED STEREOSCOPY. By Kamran Arjomand

LAGRANGIAN PARTICLE TRACKING IN ISOTROPIC TURBULENT FLOW VIA HOLOGRAPHIC AND INTENSITY BASED STEREOSCOPY. By Kamran Arjomand LAGRANGIAN PARTICLE TRACKING IN ISOTROPIC TURBULENT FLOW VIA HOLOGRAPHIC AND INTENSITY BASED STEREOSCOPY By Kamran Arjomand I. Background A. Holographic Imaging 1. Acquire Hologram 3. Numerical Reconstruction

More information

OpenOpticalFlow: An Open Source Program for Extraction of. Velocity Fields from Flow Visualization Images. Tianshu Liu

OpenOpticalFlow: An Open Source Program for Extraction of. Velocity Fields from Flow Visualization Images. Tianshu Liu OpenOpticalFlow: An Open Source Program for Extraction of Velocity Fields from Flow Visualization Images Tianshu Liu Department of Mechanical and Aerospace Engineering Western Michigan University, Kalamazoo,

More information

TN425: A study of fluorescence standards confirms that OptiGrid confocal images are suitable for quantitative microscopy

TN425: A study of fluorescence standards confirms that OptiGrid confocal images are suitable for quantitative microscopy TN425: A study of fluorescence standards confirms that OptiGrid confocal images are suitable for quantitative microscopy Introduction The OptiGrid converts the illumination system of a conventional wide

More information

Medical Image Processing using MATLAB

Medical Image Processing using MATLAB Medical Image Processing using MATLAB Emilia Dana SELEŢCHI University of Bucharest, Romania ABSTRACT 2. 3. 2. IMAGE PROCESSING TOOLBOX MATLAB and the Image Processing Toolbox provide a wide range of advanced

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

CS4495 Fall 2014 Computer Vision Problem Set 6: Particle Tracking

CS4495 Fall 2014 Computer Vision Problem Set 6: Particle Tracking CS4495 Fall 2014 Computer Vision Problem Set 6: Particle Tracking DUE Tues, November 25-11:55pm Here you are going to experiment with a particle filter tracker such as was described in class. Recall that

More information

Wide Guy: Inverted Widefield Microscope

Wide Guy: Inverted Widefield Microscope Wide Guy: Inverted Widefield Microscope Kyle Marchuk Adam Fries Jordan Briscoe August 2017 Contents 1 Introduction 2 2 Initial Setup 3 2.1 Hardware Startup........................................... 3

More information

Extract, Analyze, and Report Motion from Video

Extract, Analyze, and Report Motion from Video Extract, Analyze, and Report Motion from Video Extract ProAnalyst provides motion analysis tools that can be applied to any video or image sequence, regardless of content or acquisition method. With ProAnalyst,

More information

Swammerdam Institute for Life Sciences (Universiteit van Amsterdam), 1098 XH Amsterdam, The Netherland

Swammerdam Institute for Life Sciences (Universiteit van Amsterdam), 1098 XH Amsterdam, The Netherland Sparse deconvolution of high-density super-resolution images (SPIDER) Siewert Hugelier 1, Johan J. de Rooi 2,4, Romain Bernex 1, Sam Duwé 3, Olivier Devos 1, Michel Sliwa 1, Peter Dedecker 3, Paul H. C.

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Fast Optical Flow Using Cross Correlation and Shortest-Path Techniques

Fast Optical Flow Using Cross Correlation and Shortest-Path Techniques Digital Image Computing: Techniques and Applications. Perth, Australia, December 7-8, 1999, pp.143-148. Fast Optical Flow Using Cross Correlation and Shortest-Path Techniques Changming Sun CSIRO Mathematical

More information

Rendering Smoke & Clouds

Rendering Smoke & Clouds Rendering Smoke & Clouds Game Design Seminar 2007 Jürgen Treml Talk Overview 1. Introduction to Clouds 2. Virtual Clouds based on physical Models 1. Generating Clouds 2. Rendering Clouds using Volume Rendering

More information

EE640 FINAL PROJECT HEADS OR TAILS

EE640 FINAL PROJECT HEADS OR TAILS EE640 FINAL PROJECT HEADS OR TAILS By Laurence Hassebrook Initiated: April 2015, updated April 27 Contents 1. SUMMARY... 1 2. EXPECTATIONS... 2 3. INPUT DATA BASE... 2 4. PREPROCESSING... 4 4.1 Surface

More information

What will we learn? Neighborhood processing. Convolution and correlation. Neighborhood processing. Chapter 10 Neighborhood Processing

What will we learn? Neighborhood processing. Convolution and correlation. Neighborhood processing. Chapter 10 Neighborhood Processing What will we learn? Lecture Slides ME 4060 Machine Vision and Vision-based Control Chapter 10 Neighborhood Processing By Dr. Debao Zhou 1 What is neighborhood processing and how does it differ from point

More information

Comparison between Optical Flow and Cross-Correlation Methods for Extraction of Velocity Fields from Particle Images

Comparison between Optical Flow and Cross-Correlation Methods for Extraction of Velocity Fields from Particle Images Comparison between Optical Flow and Cross-Correlation Methods for Extraction of Velocity Fields from Particle Images (Optical Flow vs Cross-Correlation) Tianshu Liu, Ali Merat, M. H. M. Makhmalbaf Claudia

More information

Assignment: Backgrounding and Optical Flow.

Assignment: Backgrounding and Optical Flow. Assignment: Backgrounding and Optical Flow. April 6, 00 Backgrounding In this part of the assignment, you will develop a simple background subtraction program.. In this assignment, you are given two videos.

More information

Global Flow Estimation. Lecture 9

Global Flow Estimation. Lecture 9 Global Flow Estimation Lecture 9 Global Motion Estimate motion using all pixels in the image. Parametric flow gives an equation, which describes optical flow for each pixel. Affine Projective Global motion

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Motion Analysis. Motion analysis. Now we will talk about. Differential Motion Analysis. Motion analysis. Difference Pictures

Motion Analysis. Motion analysis. Now we will talk about. Differential Motion Analysis. Motion analysis. Difference Pictures Now we will talk about Motion Analysis Motion analysis Motion analysis is dealing with three main groups of motionrelated problems: Motion detection Moving object detection and location. Derivation of

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

CDS Computing for Scientists. Final Exam Review. Final Exam on December 17, 2013

CDS Computing for Scientists. Final Exam Review. Final Exam on December 17, 2013 CDS 130-001 Computing for Scientists Final Exam Review Final Exam on December 17, 2013 1. Review Sheet 2. Sample Final Exam CDS 130-001 Computing for Scientists Final Exam - Review Sheet The following

More information

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation Motion Sohaib A Khan 1 Introduction So far, we have dealing with single images of a static scene taken by a fixed camera. Here we will deal with sequence of images taken at different time intervals. Motion

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are in the L12 subdirectory.

More information

Module 3: Velocity Measurement Lecture 14: Analysis of PIV data. The Lecture Contains: Flow Visualization. Test Cell Flow Quality

Module 3: Velocity Measurement Lecture 14: Analysis of PIV data. The Lecture Contains: Flow Visualization. Test Cell Flow Quality The Lecture Contains: Flow Visualization Test Cell Flow Quality Influence of End-Plates Introduction To Data Analysis Principle of Operation of PIV Various Aspects of PIV Measurements Recording of the

More information

HCImage. Image Acquisition and Analysis Software. Light... Camera... Acquisition...

HCImage. Image Acquisition and Analysis Software. Light... Camera... Acquisition... HCImage Image Acquisition and Analysis Software Light... Camera... Acquisition... HCImage Analysis HCImage Analysis provides comprehensive control of Hamamatsu cameras, microscopes, stages and other peripheral

More information

Introduction to MatLab. Introduction to MatLab K. Craig 1

Introduction to MatLab. Introduction to MatLab K. Craig 1 Introduction to MatLab Introduction to MatLab K. Craig 1 MatLab Introduction MatLab and the MatLab Environment Numerical Calculations Basic Plotting and Graphics Matrix Computations and Solving Equations

More information

Particle Image Velocimetry Part - 3

Particle Image Velocimetry Part - 3 AerE 545X class notes #5 Particle Image Velocimetry Part - 3 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A PIV System Setup Particle tracers: Illumination system:

More information

Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion

Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion Lagrangian and Eulerian Representations of Fluid Flow: Kinematics and the Equations of Motion James F. Price Woods Hole Oceanographic Institution Woods Hole, MA, 02543 July 31, 2006 Summary: This essay

More information

Particle localization and tracking GUI: TrackingGUI_rp.m

Particle localization and tracking GUI: TrackingGUI_rp.m Particle localization and tracking GUI: TrackingGUI_rp.m Raghuveer Parthasarathy Department of Physics The University of Oregon raghu@uoregon.edu Begun April, 2012 (based on earlier work). Last modified

More information

4th International PIV Challenge cases C and D Contents

4th International PIV Challenge cases C and D Contents 4th International PIV Challenge cases C and D Contents 4th International PIV Challenge cases C and D... 2 1 General recommendation... 2 1.1 Calibration... 2 1.2 Self calibration... 3 1.3 Tomographic reconstruction...

More information

Supporting Information for Azimuthal Polarization Filtering for Accurate, Precise, and Robust Single-Molecule Localization Microscopy

Supporting Information for Azimuthal Polarization Filtering for Accurate, Precise, and Robust Single-Molecule Localization Microscopy Nano Letters Supporting Information for Azimuthal Polarization Filtering for Accurate, Precise, and Robust Single-Molecule Localization Microscopy Matthew D. Lew, and W. E. Moerner *, Departments of Chemistry

More information

Supplemental Material Deep Fluids: A Generative Network for Parameterized Fluid Simulations

Supplemental Material Deep Fluids: A Generative Network for Parameterized Fluid Simulations Supplemental Material Deep Fluids: A Generative Network for Parameterized Fluid Simulations 1. Extended Results 1.1. 2-D Smoke Plume Additional results for the 2-D smoke plume example are shown in Figures

More information

Nikon A1-B Confocal Operating Manual. Start-up. Microscope

Nikon A1-B Confocal Operating Manual. Start-up. Microscope Nikon A1-B Confocal Operating Manual Start-up 1. Turn on Excite 120 LED power supply. a. No need for cool down as for mercury bulb b. Open shutter by pushing down contol knob. c. Adjust intensity by turning

More information

Product information. Hi-Tech Electronics Pte Ltd

Product information. Hi-Tech Electronics Pte Ltd Product information Introduction TEMA Motion is the world leading software for advanced motion analysis. Starting with digital image sequences the operator uses TEMA Motion to track objects in images,

More information

Matlab OTKB GUI Manual:

Matlab OTKB GUI Manual: Matlab OTKB GUI Manual: Preface: This is the manual for the OTKB GUI. This GUI can be used to control stage position as well as perform sensitivity and stiffness calibrations on the trap. This manual will

More information

Supporting Information. High-Throughput, Algorithmic Determination of Nanoparticle Structure From Electron Microscopy Images

Supporting Information. High-Throughput, Algorithmic Determination of Nanoparticle Structure From Electron Microscopy Images Supporting Information High-Throughput, Algorithmic Determination of Nanoparticle Structure From Electron Microscopy Images Christine R. Laramy, 1, Keith A. Brown, 2, Matthew N. O Brien, 2 and Chad. A.

More information

UNWRAP User Document. Figure 1. Workflow of the UNWRAP application.

UNWRAP User Document. Figure 1. Workflow of the UNWRAP application. UNWRAP User Document This MATLAB application takes a set of confocal microscope z-stack images of fluorescently labeled cells in a 3D cylindrical geometry and creates an unwrapped 2D image from the tube

More information

Full-field optical methods for mechanical engineering: essential concepts to find one way

Full-field optical methods for mechanical engineering: essential concepts to find one way Full-field optical methods for mechanical engineering: essential concepts to find one way Yves Surrel Techlab September 2004 1 Contents 1 Introduction 3 2 White light methods 4 2.1 Random encoding............................................

More information

Coarse-to-fine image registration

Coarse-to-fine image registration Today we will look at a few important topics in scale space in computer vision, in particular, coarseto-fine approaches, and the SIFT feature descriptor. I will present only the main ideas here to give

More information

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II

Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision QUIZ II Handed out: 001 Nov. 30th Due on: 001 Dec. 10th Problem 1: (a (b Interior

More information