Enumeration of Polyomino Tilings via Hypergraphs

Size: px
Start display at page:

Download "Enumeration of Polyomino Tilings via Hypergraphs"

Transcription

1 Enumeration of Polyomino Tilings via Hypergraphs (Dedicated to Professor Károly Bezdek) Muhammad Ali Khan Centre for Computational and Discrete Geometry Department of Mathematics & Statistics, University of Calgary S, February 14, 2015

2 Finite tiling Problem Given a finite region R consisting of (not necessarily connected) cells from a regular lattice, how many ways are there to tile R by a finite set of tiles, where each tile is a union of (not necessarily connected) lattice cells? For example, tiling a rectangle by polyominoes, tiling a finite portion of the hexagonal lattice by polyhexes.

3 Some solved rectangular tilings Polyomino References Domino Fisher and Temperley (1961), Kasteleyn (1961) L-tromino Chinn, Grimaldi and Heubach (2007) (for 2 n and 3 n strips) T-tetromino Korn and Pak (2004), Jacobsen (2007) (connections with Tutte polynomial) Generalized T-tetromino Kayibi and Pirzada (2012) (connections with Tutte polynomial)

4 Automatic CounTilings 1. D. Zeilberger, Automatic countilings, (2006). Description of a Maple program that takes the dimensions of a rectangular grid and a set of tiles as input and outputs the number of tilings of the grid by the given tiles. Examples are provided but not the formal proof that the program always works. 2. D. Merlini, R. Sprugnoli, M. C. Verri, Strip tiling and regular grammars, Theoretical Computer Science 242 (2000), Proves that every tiling of an m n rectangle by polyominoes is equivalent to a regular grammar. Proposes an algorithm to transform the tiling problem into a grammar and count the tilings as the number of words of length n in the corresponding language. Benedetto and Loehr (2008) extended this approach to other lattices and lattice animals.

5 The edge cover polynomial An edge covering of a graph G(V, E) is a set of edges such that every vertex of the graph is incident to at least one edge of the set. Akbari and Oboudi (2013) introduced the edge cover polynomial E(G, x) of a graph G as the generating function of the number of edge coverings of G. That is E E(G, x) = e(g, i)x i, i=1 where e(g, i) is the number of edge covers of G of size i. They studied some algebraic and combinatorial properties of the edge cover polynomial and gave a recursive procedure for determining E(G, x) for any simple graph G.

6 Edge cover polynomial of hypergraphs Let H(V, E) be a simple (not necessarily uniform) hypergraph. We define its edge coverings analogously and its edge cover polynomial as C(H, x) = m c(h, i)x i, i=1 where c(h, i) is the number of edge coverings of H of size i. In fact, if ρ(h) denotes the edge covering number of H, that is the size of a minimum edge covering of H, then C(H, x) = E i=ρ(h) c(h, i)x i.

7 A deletion-based recursion Let us denote the operation of deleting a vertex v (and the edges containing v) from a hypergraph H as H v, the operation of deleting the a set U of vertices (and the edges containing these vertices) from H as H U, and the operation of deleting an edge e from H as H e. Theorem 1 Let H(V, E) be a simple hypergraph with rank at least 2 and e be an edge of H, with V (e) denoting the set of vertices of e, then C(H, x) = (x + 1)C(H e, x) + x U V (e) C(H U, x). (1)

8 Proof Let δ(h) denote the minimum degree of a vertex in H and for any vertex v of H let N(v) = {e E : v e}. If δ(h) = 0, then there is nothing to prove. So WLOG, assume that δ(h) 1. Let S be an edge covering of H with size i. 1 If e / S, then S is an edge covering of size i for H e. 2 If e S, let We have the following cases: (a) U = : U = {v V (e) : S N(v) = 1}. S\{e} is an edge covering of size i 1 of H e. (b) U : S\{e} is an edge covering of size i 1 of H U.

9 Proof Therefore, c(h, i) = c(h e, i) + c(h e, i 1) + c(h U, i 1), U V (e) and C(H, x) = (x + 1)C(H e, x) + x C(H U, x). U V (e)

10 Edge decomposition polynomial of hypergraphs Given a hypergraph H(V, E), we call a set S E an edge decomposition of H if every vertex of H belongs to exactly one edge in S. Let d(h, i) denote the number of edge decompositions consisting of i edges of a hypergraph H. Let S H denote the set of all edge decompositions of H. Not every hypergraph has an edge decomposition. Let min S, if S H S S µ(h) = H, otherwise. Then we define the edge decomposition polynomial of H as D(H, x) = E i=µ(h) d(h, i)x i, if S H. 0, otherwise.

11 The recursion restricted to decompositions Theorem 2 Let H(V, E) be a simple hypergraph with rank at least 2 and e be an edge of H, with V (e) denoting the set of vertices of e, then Corollary 3 D(H, x) = D(H e, x) + xd(h V (e), x). (2) If µ(h) =, then µ(h e) = and µ(h V (e)) =, for every edge e of H.

12 Geometric tiling and covering Can think of hypergraph edge covering and decomposition as abstract covering and abstract tiling, respectively. Let R be any collection of finitely many cells from an arbitrary lattice L. We call R a region. Let T be a finite set with each element T consisting of finitely many cells of L. We call each T T a tile. Let T T consist of k cells. Define an admissible position of T as a placement of a congruent copy of T on R such that it fits exactly k cells of R. Problem Given a pair (R, T), count the number of T-tilings and T-coverings of R.

13 Geometric tiling and covering Form a hypergraph H R (V, E) whose vertex set is the set of square cells in R and that has an edge corresponding to every admissible position of T on R, for all T T. Figure 1 : Four admissible positions of a T-tetromino on a 4 4 square grid and the corresponding edges of the hypergraph. Not all admissible positions (edges) are shown.

14 Geometric tiling and covering Theorem 4 The polynomial D(H R, x) is the generating function for the number of T-tilings of R, that is, counts all such tilings. D(H R, 1) = E i=µ(h R ) d(h R, i) Likewise, C(H R, x) is the generating function for the number of T-coverings of R. Corollary 5 Suppose that T = {T }, T consists of k cells and R consists of m cells. Then either k divides m, in which case D(H R, x) = d(h R, m/k)x m/k, or otherwise, D(H R, x) = 0.

15 Ongoing work Existence results Investigate the algebraic and combinatorial properties of D(H, x). Can these properties be used to answer questions about the existence of tilings? Admissibility rules Our present definition of admissible position of a tile is very general for the purpose of tiling. In some cases, it includes positions that cannot be occupied in an actual tiling. More refined admissibility rules should be incorporated. Implementation Implement our combinatorial tiling algorithm and compare its run time with that of the regular grammar algorithm.

Enumeration Algorithm for Lattice Model

Enumeration Algorithm for Lattice Model Enumeration Algorithm for Lattice Model Seungsang Oh Korea University International Workshop on Spatial Graphs 2016 Waseda University, August 5, 2016 Contents 1 State Matrix Recursion Algorithm 2 Monomer-Dimer

More information

Tiling Rectangles with Gaps by Ribbon Right Trominoes

Tiling Rectangles with Gaps by Ribbon Right Trominoes Open Journal of Discrete Mathematics, 2017, 7, 87-102 http://www.scirp.org/journal/ojdm ISSN Online: 2161-7643 ISSN Print: 2161-7635 Tiling Rectangles with Gaps by Ribbon Right Trominoes Premalatha Junius,

More information

Enumerating Tilings of Rectangles by Squares with Recurrence Relations

Enumerating Tilings of Rectangles by Squares with Recurrence Relations Journal of Combinatorics Volume 0, Number 0, 1, 2014 Enumerating Tilings of Rectangles by Squares with Recurrence Relations Daryl DeFord Counting the number of ways to tile an m n rectangle with squares

More information

Tiling with Polyominoes, Polycubes, and Rectangles

Tiling with Polyominoes, Polycubes, and Rectangles University of Central Florida Electronic Theses and Dissertations Masters Thesis (Open Access) Tiling with Polyominoes, Polycubes, and Rectangles 2015 Michael Saxton University of Central Florida Find

More information

Some Open Problems in Polyomino Tilings

Some Open Problems in Polyomino Tilings Some Open Problems in Polyomino Tilings Andrew Winslow 1 University of Texas Rio Grande Valley, Edinburg, TX, USA andrew.winslow@utrgv.edu Abstract. The author surveys 15 open problems regarding the algorithmic,

More information

Plane Tilings. Richard P. Stanley M.I.T. Plane Tilings p.

Plane Tilings. Richard P. Stanley M.I.T. Plane Tilings p. Plane Tilings p. Plane Tilings Richard P. Stanley M.I.T. Plane Tilings p. region: tiles: 1 2 3 4 5 6 7 Plane Tilings p. tiling: 4 3 7 5 6 2 1 Plane Tilings p. Is there a tiling? How many? About how many?

More information

Unlabeled equivalence for matroids representable over finite fields

Unlabeled equivalence for matroids representable over finite fields Unlabeled equivalence for matroids representable over finite fields November 16, 2012 S. R. Kingan Department of Mathematics Brooklyn College, City University of New York 2900 Bedford Avenue Brooklyn,

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

Aztec diamond. An Aztec diamond of order n is the union of the unit squares with lattice point coordinates in the region given by...

Aztec diamond. An Aztec diamond of order n is the union of the unit squares with lattice point coordinates in the region given by... Aztec diamond An Aztec diamond of order n is the union of the unit squares with lattice point coordinates in the region given by x + y n + 1 Aztec diamond An Aztec diamond of order n is the union of the

More information

TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY

TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY BERKELEY MATH CIRCLE 1. Looking for a number Consider an 8 8 checkerboard (like the one used to play chess) and consider 32

More information

Lecture 3: Tilings and undecidability

Lecture 3: Tilings and undecidability Lecture : Tilings and undecidability Wang tiles and the tiling problem A (relatively) small aperiodic tile set Undecidability of the tiling problem Wang tiles and decidability questions Suppose we are

More information

Product constructions for transitive decompositions of graphs

Product constructions for transitive decompositions of graphs 116 Product constructions for transitive decompositions of graphs Geoffrey Pearce Abstract A decomposition of a graph is a partition of the edge set, giving a set of subgraphs. A transitive decomposition

More information

Pentagons vs. triangles

Pentagons vs. triangles Discrete Mathematics 308 (2008) 4332 4336 www.elsevier.com/locate/disc Pentagons vs. triangles Béla Bollobás a,b, Ervin Győri c,1 a Trinity College, Cambridge CB2 1TQ, UK b Department of Mathematical Sciences,

More information

Topics in Combinatorial Optimization February 5, Lecture 2

Topics in Combinatorial Optimization February 5, Lecture 2 8.997 Topics in Combinatorial Optimization February 5, 2004 Lecture 2 Lecturer: Michel X. Goemans Scribe: Robert Kleinberg In this lecture, we will: Present Edmonds algorithm for computing a maximum matching

More information

On ɛ-unit distance graphs

On ɛ-unit distance graphs On ɛ-unit distance graphs Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809 g-exoo@indstate.edu April 9, 003 Abstract We consider a variation on

More information

Geometric and algebraic properties of polyomino tilings

Geometric and algebraic properties of polyomino tilings Geometric and algebraic properties of polyomino tilings by Michael Robert Korn B.A., Princeton University, 2 Submitted to the Department of Mathematics in partial fulfillment of the requirements for the

More information

Vesa Halava Tero Harju. Walks on Borders of Polygons

Vesa Halava Tero Harju. Walks on Borders of Polygons Vesa Halava Tero Harju Walks on Borders of Polygons TUCS Technical Report No 698, June 2005 Walks on Borders of Polygons Vesa Halava Tero Harju Department of Mathematics and TUCS - Turku Centre for Computer

More information

On the undecidability of the tiling problem. Jarkko Kari. Mathematics Department, University of Turku, Finland

On the undecidability of the tiling problem. Jarkko Kari. Mathematics Department, University of Turku, Finland On the undecidability of the tiling problem Jarkko Kari Mathematics Department, University of Turku, Finland Consider the following decision problem, the tiling problem: Given a finite set of tiles (say,

More information

Zero-Sum Flow Numbers of Triangular Grids

Zero-Sum Flow Numbers of Triangular Grids Zero-Sum Flow Numbers of Triangular Grids Tao-Ming Wang 1,, Shih-Wei Hu 2, and Guang-Hui Zhang 3 1 Department of Applied Mathematics Tunghai University, Taichung, Taiwan, ROC 2 Institute of Information

More information

Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry

Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry Hiroshi Fukuda 1, Nobuaki Mutoh 2, Gisaku Nakamura 3, and Doris Schattschneider 4 1 College of Liberal

More information

Negative Numbers in Combinatorics: Geometrical and Algebraic Perspectives

Negative Numbers in Combinatorics: Geometrical and Algebraic Perspectives Negative Numbers in Combinatorics: Geometrical and Algebraic Perspectives James Propp (UMass Lowell) June 29, 2012 Slides for this talk are on-line at http://jamespropp.org/msri-up12.pdf 1 / 99 I. Equal

More information

The Tutte Polynomial

The Tutte Polynomial The Tutte Polynomial Madeline Brandt October 19, 2015 Introduction The Tutte polynomial is a polynomial T (x, y) in two variables which can be defined for graphs or matroids. Many problems about graphs

More information

ON SWELL COLORED COMPLETE GRAPHS

ON SWELL COLORED COMPLETE GRAPHS Acta Math. Univ. Comenianae Vol. LXIII, (1994), pp. 303 308 303 ON SWELL COLORED COMPLETE GRAPHS C. WARD and S. SZABÓ Abstract. An edge-colored graph is said to be swell-colored if each triangle contains

More information

Points covered an odd number of times by translates

Points covered an odd number of times by translates Points covered an odd number of times by translates Rom Pinchasi August 5, 0 Abstract Let T be a fixed triangle and consider an odd number of translated copies of T in the plane. We show that the set of

More information

Planar Graphs with Many Perfect Matchings and Forests

Planar Graphs with Many Perfect Matchings and Forests Planar Graphs with Many Perfect Matchings and Forests Michael Biro Abstract We determine the number of perfect matchings and forests in a family T r,3 of triangulated prism graphs. These results show that

More information

Edge Guards for Polyhedra in Three-Space

Edge Guards for Polyhedra in Three-Space Edge Guards for Polyhedra in Three-Space Javier Cano Csaba D. Tóth Jorge Urrutia Abstract It is shown that every polyhedron in R with m edges can be guarded with at most 27 2m The bound improves to 5 6

More information

Tiling with Polyominoes*

Tiling with Polyominoes* JOURNAL OF COMBINATORIAL THEORY 1, 280-296 (1966) Tiling with Polyominoes* SOLOMON W. GOLOMB Electrical Engineering Department, University of Southern California, Los Angeles, California Communicated by

More information

WINDING AND UNWINDING AND ESSENTIAL INTERSECTIONS IN H 3

WINDING AND UNWINDING AND ESSENTIAL INTERSECTIONS IN H 3 WINDING AND UNWINDING AND ESSENTIAL INTERSECTIONS IN H 3 JANE GILMAN AND LINDA KEEN Abstract. Let G = A, B be a non-elementary two generator subgroup of Isom(H 2 ). If G is discrete and free and geometrically

More information

Rigidity, connectivity and graph decompositions

Rigidity, connectivity and graph decompositions First Prev Next Last Rigidity, connectivity and graph decompositions Brigitte Servatius Herman Servatius Worcester Polytechnic Institute Page 1 of 100 First Prev Next Last Page 2 of 100 We say that a framework

More information

Enumeration of Tilings and Related Problems

Enumeration of Tilings and Related Problems Enumeration of Tilings and Related Problems Tri Lai Institute for Mathematics and its Applications Minneapolis, MN 55455 Discrete Mathematics Seminar University of British Columbia Vancouver February 2016

More information

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2 Symmetry 2011, 3, 325-364; doi:10.3390/sym3020325 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal

More information

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2

Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal Class D 2 Symmetry 2011, 3, 325-364; doi:10.3390/sym3020325 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Polyominoes and Polyiamonds as Fundamental Domains for Isohedral Tilings of Crystal

More information

Tree Decompositions Why Matroids are Useful

Tree Decompositions Why Matroids are Useful Petr Hliněný, W. Graph Decompositions, Vienna, 2004 Tree Decompositions Why Matroids are Useful Petr Hliněný Tree Decompositions Why Matroids are Useful Department of Computer Science FEI, VŠB Technical

More information

On Covering a Graph Optimally with Induced Subgraphs

On Covering a Graph Optimally with Induced Subgraphs On Covering a Graph Optimally with Induced Subgraphs Shripad Thite April 1, 006 Abstract We consider the problem of covering a graph with a given number of induced subgraphs so that the maximum number

More information

Rigid Tilings of Quadrants by L-Shaped n-ominoes and Notched Rectangles

Rigid Tilings of Quadrants by L-Shaped n-ominoes and Notched Rectangles Rigid Tilings of Quadrants by L-Shaped n-ominoes and Notched Rectangles Aaron Calderon a, Samantha Fairchild b, Michael Muir c, Viorel Nitica c, Samuel Simon d a Department of Mathematics, The University

More information

Acute Triangulations of Polygons

Acute Triangulations of Polygons Europ. J. Combinatorics (2002) 23, 45 55 doi:10.1006/eujc.2001.0531 Available online at http://www.idealibrary.com on Acute Triangulations of Polygons H. MAEHARA We prove that every n-gon can be triangulated

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Technical Report UU-CS-2008-042 December 2008 Department of Information and Computing Sciences Utrecht

More information

The Full Survey on The Euclidean Steiner Tree Problem

The Full Survey on The Euclidean Steiner Tree Problem The Full Survey on The Euclidean Steiner Tree Problem Shikun Liu Abstract The Steiner Tree Problem is a famous and long-studied problem in combinatorial optimization. However, the best heuristics algorithm

More information

Fighting Fires on Semi-Regular Tesselations

Fighting Fires on Semi-Regular Tesselations Fighting Fires on Semi-Regular Tesselations A Senior Project submitted to The Division of Science, Mathematics, and Computing of Bard College by Lara-Greta Merling Annandale-on-Hudson, New York May, 2014

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

2. Lecture notes on non-bipartite matching

2. Lecture notes on non-bipartite matching Massachusetts Institute of Technology 18.433: Combinatorial Optimization Michel X. Goemans February 15th, 013. Lecture notes on non-bipartite matching Given a graph G = (V, E), we are interested in finding

More information

arxiv: v1 [cs.cc] 29 May 2013

arxiv: v1 [cs.cc] 29 May 2013 Domino atami Covering is NP-complete Alejandro Erickson and rank Ruskey Department of Computer Science, University of Victoria, V8W 3P6, Canada arxiv:1305.6669v1 [cs.cc] 29 May 2013 Abstract. A covering

More information

Random strongly regular graphs?

Random strongly regular graphs? Graphs with 3 vertices Random strongly regular graphs? Peter J Cameron School of Mathematical Sciences Queen Mary, University of London London E1 NS, U.K. p.j.cameron@qmul.ac.uk COMB01, Barcelona, 1 September

More information

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs.

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs. 18.438 Advanced Combinatorial Optimization September 17, 2009 Lecturer: Michel X. Goemans Lecture 3 Scribe: Aleksander Madry ( Based on notes by Robert Kleinberg and Dan Stratila.) In this lecture, we

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

Conflict-free Covering

Conflict-free Covering CCCG 05, Kingston, Ontario, August 0, 05 Conflict-free Covering Esther M. Arkin Aritra Banik Paz Carmi Gui Citovsky Matthew J. Katz Joseph S. B. Mitchell Marina Simakov Abstract Let P = {C, C,..., C n

More information

Lesson 1 Introduction to Algebraic Geometry

Lesson 1 Introduction to Algebraic Geometry Lesson 1 Introduction to Algebraic Geometry I. What is Algebraic Geometry? Algebraic Geometry can be thought of as a (vast) generalization of linear algebra and algebra. Recall that, in linear algebra,

More information

Minimum congestion spanning trees of grids and discrete toruses

Minimum congestion spanning trees of grids and discrete toruses Minimum congestion spanning trees of grids and discrete toruses A. Castejón Department of Applied Mathematics I Higher Technical School of Telecommunications Engineering (ETSIT) Universidad de Vigo Lagoas-Marcosende

More information

A Reduction of Conway s Thrackle Conjecture

A Reduction of Conway s Thrackle Conjecture A Reduction of Conway s Thrackle Conjecture Wei Li, Karen Daniels, and Konstantin Rybnikov Department of Computer Science and Department of Mathematical Sciences University of Massachusetts, Lowell 01854

More information

Andrea Frosini Università di Firenze, Dipartimento di Sistemi e Informatica, Viale Morgagni, 65, 50134, Firenze, Italy,

Andrea Frosini Università di Firenze, Dipartimento di Sistemi e Informatica, Viale Morgagni, 65, 50134, Firenze, Italy, PUM Vol 17 (2006), No 1 2, pp 97 110 n object grammar for the class of L-convex polyominoes ndrea Frosini Università di Firenze, Dipartimento di Sistemi e Informatica, Viale Morgagni, 65, 50134, Firenze,

More information

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard.

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard. Tessellations The figure at the left shows a tiled floor. Because the floor is entirely covered by the tiles we call this arrangement a tessellation of the plane. A regular tessellation occurs when: The

More information

Combinatorial Interpretations of Spanning Tree Identities

Combinatorial Interpretations of Spanning Tree Identities Combinatorial Interpretations of Spanning Tree Identities Arthur T. Benjamin and Carl R. Yerger November 14, 2004 Abstract We present a combinatorial proof that the wheel graph W n has L 2n 2 spanning

More information

Rigidity of ball-polyhedra via truncated Voronoi and Delaunay complexes

Rigidity of ball-polyhedra via truncated Voronoi and Delaunay complexes !000111! NNNiiinnnttthhh IIInnnttteeerrrnnnaaatttiiiooonnnaaalll SSSyyymmmpppooosssiiiuuummm ooonnn VVVooorrrooonnnoooiii DDDiiiaaagggrrraaammmsss iiinnn SSSccciiieeennnccceee aaannnddd EEEnnngggiiinnneeeeeerrriiinnnggg

More information

Lecture 1. 1 Notation

Lecture 1. 1 Notation Lecture 1 (The material on mathematical logic is covered in the textbook starting with Chapter 5; however, for the first few lectures, I will be providing some required background topics and will not be

More information

2010 SMT Power Round

2010 SMT Power Round Definitions 2010 SMT Power Round A graph is a collection of points (vertices) connected by line segments (edges). In this test, all graphs will be simple any two vertices will be connected by at most one

More information

Vertical decomposition of a lattice using clique separators

Vertical decomposition of a lattice using clique separators Vertical decomposition of a lattice using clique separators Anne Berry, Romain Pogorelcnik, Alain Sigayret LIMOS UMR CNRS 6158 Ensemble Scientifique des Cézeaux Université Blaise Pascal, F-63 173 Aubière,

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Tiling approach to obtain identities for generalized Fibonacci and Lucas numbers

Tiling approach to obtain identities for generalized Fibonacci and Lucas numbers Annales Mathematicae et Informaticae 41 (2013 pp. 13 17 Proceedings of the 15 th International Conference on Fibonacci Numbers and Their Applications Institute of Mathematics and Informatics, Eszterházy

More information

Tetrises and Graph Coloring (joke included)

Tetrises and Graph Coloring (joke included) Tetrises and Graph Coloring (joke included) Aneta Štastná, Ondřej Šplíchal Erdős Faber Lovász conjecture - clique version If n complete graphs, each having exactly n vertices, have the property that every

More information

Non-extendible finite polycycles

Non-extendible finite polycycles Izvestiya: Mathematics 70:3 1 18 Izvestiya RAN : Ser. Mat. 70:3 3 22 c 2006 RAS(DoM) and LMS DOI 10.1070/IM2006v170n01ABEH002301 Non-extendible finite polycycles M. Deza, S. V. Shpectorov, M. I. Shtogrin

More information

An Eternal Domination Problem in Grids

An Eternal Domination Problem in Grids Theory and Applications of Graphs Volume Issue 1 Article 2 2017 An Eternal Domination Problem in Grids William Klostermeyer University of North Florida, klostermeyer@hotmail.com Margaret-Ellen Messinger

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

Spanning trees and orientations of graphs

Spanning trees and orientations of graphs Journal of Combinatorics Volume 1, Number 2, 101 111, 2010 Spanning trees and orientations of graphs Carsten Thomassen A conjecture of Merino and Welsh says that the number of spanning trees τ(g) of a

More information

Random Tilings with the GPU

Random Tilings with the GPU Random Tilings with the GPU David Keating Joint work with A. Sridhar University of California, Berkeley June 8, 2018 1 / 33 Outline 1 2 3 4 Lozenge Tilings Six Vertex Bibone Tilings Rectangle-triangle

More information

Minimum Cycle Bases of Halin Graphs

Minimum Cycle Bases of Halin Graphs Minimum Cycle Bases of Halin Graphs Peter F. Stadler INSTITUTE FOR THEORETICAL CHEMISTRY AND MOLECULAR STRUCTURAL BIOLOGY, UNIVERSITY OF VIENNA WÄHRINGERSTRASSE 17, A-1090 VIENNA, AUSTRIA, & THE SANTA

More information

Hinged Dissection of Polyominoes and Polyforms

Hinged Dissection of Polyominoes and Polyforms Hinged Dissection of Polyominoes and Polyforms Erik D. Demaine Martin L. Demaine David Eppstein Greg N. Frederickson Erich Friedman Abstract A hinged dissection of a set of polygons S is a collection of

More information

Star Forests, Dominating Sets and Ramsey-type Problems

Star Forests, Dominating Sets and Ramsey-type Problems Star Forests, Dominating Sets and Ramsey-type Problems Sheila Ferneyhough a, Ruth Haas b,denis Hanson c,1 and Gary MacGillivray a,1 a Department of Mathematics and Statistics, University of Victoria, P.O.

More information

arxiv: v2 [math.co] 13 Aug 2013

arxiv: v2 [math.co] 13 Aug 2013 Orthogonality and minimality in the homology of locally finite graphs Reinhard Diestel Julian Pott arxiv:1307.0728v2 [math.co] 13 Aug 2013 August 14, 2013 Abstract Given a finite set E, a subset D E (viewed

More information

Hypergraphs With a Unique Perfect Matching

Hypergraphs With a Unique Perfect Matching Hypergraphs With a Unique Perfect Matching Aaron Spindel Under the direction of Dr. John S. Caughman February 26, 2012 Introduction This presentation discusses the paper On the maximum number of edges

More information

Constructions of k-critical P 5 -free graphs

Constructions of k-critical P 5 -free graphs 1 2 Constructions of k-critical P 5 -free graphs Chính T. Hoàng Brian Moore Daniel Recoskie Joe Sawada Martin Vatshelle 3 January 2, 2013 4 5 6 7 8 Abstract With respect to a class C of graphs, a graph

More information

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 CME 305: Discrete Mathematics and Algorithms Instructor: Professor Aaron Sidford (sidford@stanfordedu) February 6, 2018 Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1 In the

More information

SAT-CNF Is N P-complete

SAT-CNF Is N P-complete SAT-CNF Is N P-complete Rod Howell Kansas State University November 9, 2000 The purpose of this paper is to give a detailed presentation of an N P- completeness proof using the definition of N P given

More information

Structured System Theory

Structured System Theory Appendix C Structured System Theory Linear systems are often studied from an algebraic perspective, based on the rank of certain matrices. While such tests are easy to derive from the mathematical model,

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

Graph Adjacency Matrix Automata Joshua Abbott, Phyllis Z. Chinn, Tyler Evans, Allen J. Stewart Humboldt State University, Arcata, California

Graph Adjacency Matrix Automata Joshua Abbott, Phyllis Z. Chinn, Tyler Evans, Allen J. Stewart Humboldt State University, Arcata, California Graph Adjacency Matrix Automata Joshua Abbott, Phyllis Z. Chinn, Tyler Evans, Allen J. Stewart Humboldt State University, Arcata, California Abstract We define a graph adjacency matrix automaton (GAMA)

More information

Preimages of Small Geometric Cycles

Preimages of Small Geometric Cycles Preimages of Small Geometric Cycles Sally Cockburn Department of Mathematics Hamilton College, Clinton, NY scockbur@hamilton.edu Abstract A graph G is a homomorphic preimage of another graph H, or equivalently

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

The complexity of Domino Tiling

The complexity of Domino Tiling The complexity of Domino Tiling Therese Biedl Abstract In this paper, we study the problem of how to tile a layout with dominoes. For non-coloured dominoes, this can be determined easily by testing whether

More information

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties.

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties. Standard 1: Number Sense and Computation Students simplify and compare expressions. They use rational exponents and simplify square roots. IM1.1.1 Compare real number expressions. IM1.1.2 Simplify square

More information

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3)

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3) COMPSCI 632: Approximation Algorithms September 18, 2017 Lecturer: Debmalya Panigrahi Lecture 7 Scribe: Xiang Wang 1 Overview In this lecture, we will use Primal-Dual method to design approximation algorithms

More information

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph. Trees 1 Introduction Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is acyclic. 1 This definition has some drawbacks: given a graph it is not trivial

More information

Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees

Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees Wei Wang joint with Zishen Yang, Xianliang Liu School of Mathematics and Statistics, Xi an Jiaotong University Dec 20, 2016

More information

Connected Components of Underlying Graphs of Halving Lines

Connected Components of Underlying Graphs of Halving Lines arxiv:1304.5658v1 [math.co] 20 Apr 2013 Connected Components of Underlying Graphs of Halving Lines Tanya Khovanova MIT November 5, 2018 Abstract Dai Yang MIT In this paper we discuss the connected components

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

On Universal Cycles of Labeled Graphs

On Universal Cycles of Labeled Graphs On Universal Cycles of Labeled Graphs Greg Brockman Harvard University Cambridge, MA 02138 United States brockman@hcs.harvard.edu Bill Kay University of South Carolina Columbia, SC 29208 United States

More information

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof.

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof. Page 1 of 14 Attendance Problems. 1. Find the midpoint between (0, x) and (y, z).. One leg of a right triangle has length 1, and the hypotenuse has length 13. What is the length of the other leg? 3. Find

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

On the Number of Tilings of a Square by Rectangles

On the Number of Tilings of a Square by Rectangles University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2012 On the Number of Tilings

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

Conjectures concerning the geometry of 2-point Centroidal Voronoi Tessellations

Conjectures concerning the geometry of 2-point Centroidal Voronoi Tessellations Conjectures concerning the geometry of 2-point Centroidal Voronoi Tessellations Emma Twersky May 2017 Abstract This paper is an exploration into centroidal Voronoi tessellations, or CVTs. A centroidal

More information

5.1 Min-Max Theorem for General Matching

5.1 Min-Max Theorem for General Matching CSC5160: Combinatorial Optimization and Approximation Algorithms Topic: General Matching Date: 4/01/008 Lecturer: Lap Chi Lau Scribe: Jennifer X.M. WU In this lecture, we discuss matchings in general graph.

More information

Green s relations on the partition monoid and several related monoids

Green s relations on the partition monoid and several related monoids Green s relations on the partition monoid and several related monoids D. G. FitzGerald 1 and Kwok Wai Lau 2 1 School of Mathematics and Physics, University of Tasmania (address for correspondence) 2 Sydney

More information

Explicit homomorphisms of hexagonal graphs to one vertex deleted Petersen graph

Explicit homomorphisms of hexagonal graphs to one vertex deleted Petersen graph MATHEMATICAL COMMUNICATIONS 391 Math. Commun., Vol. 14, No. 2, pp. 391-398 (2009) Explicit homomorphisms of hexagonal graphs to one vertex deleted Petersen graph Petra Šparl1 and Janez Žerovnik2, 1 Faculty

More information

The External Network Problem

The External Network Problem The External Network Problem Jan van den Heuvel and Matthew Johnson CDAM Research Report LSE-CDAM-2004-15 December 2004 Abstract The connectivity of a communications network can often be enhanced if the

More information

arxiv: v3 [math.co] 19 Nov 2015

arxiv: v3 [math.co] 19 Nov 2015 A Proof of Erdös - Faber - Lovász Conjecture Suresh M. H., V. V. P. R. V. B. Suresh Dara arxiv:1508.03476v3 [math.co] 19 Nov 015 Abstract Department of Mathematical and Computational Sciences, National

More information

COMBINATORIC AND ALGEBRAIC ASPECTS OF A CLASS OF PLANAR GRAPHS

COMBINATORIC AND ALGEBRAIC ASPECTS OF A CLASS OF PLANAR GRAPHS Communications to SIMAI Congress, ISSN 87-905, Vol. (007 DOI: 0.685/CSC060 COMBINATORIC AND ALGEBRAIC ASPECTS OF A CLASS OF PLANAR GRAPHS M. LA BARBIERA Department of Mathematics, University of Messina,

More information

Connection and separation in hypergraphs

Connection and separation in hypergraphs Theory and Applications of Graphs Volume 2 Issue 2 Article 5 2015 Connection and separation in hypergraphs Mohammad A. Bahmanian Illinois State University, mbahman@ilstu.edu Mateja Sajna University of

More information

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path.

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path. 3 Matchings Hall s Theorem Matching: A matching in G is a subset M E(G) so that no edge in M is a loop, and no two edges in M are incident with a common vertex. A matching M is maximal if there is no matching

More information