AN ALGORITHM FOR A MINIMUM COVER OF A GRAPH

Size: px
Start display at page:

Download "AN ALGORITHM FOR A MINIMUM COVER OF A GRAPH"

Transcription

1 AN ALGORITHM FOR A MINIMUM COVER OF A GRAPH ROBERT Z. NORMAN1 AND MICHAEL O. RABIN2 Introduction. This paper contains two similar theorems giving conditions for a minimum cover and a maximum matching of a graph. Both of these conditions depend on the concept of an alternating path, due to Petersen [2]. These results immediately lead to algorithms for a minimum cover and a maximum matching respectively. The first part of the paper contains a noninductive proof of the minimum cover theorem (Theorem 1) and the resultant algorithm. Next we define a set of "level transformations" on the set of minimum covers; any minimum cover can be obtained from any other minimum cover by a finite sequence of level transformations (Theorem 2). Thus we have a procedure for finding all minimum covers: First, reduce any cover to a minimum cover by the algorithm; second, apply the level transformations to obtain all other minimum covers. The treatment of the maximum matching theorem and its corresponding algorithm, in the following section, closely parallels that given for minimum covers. The final section establishes a relationship between minimum covers and maximum matchings. Both the minimum cover theorem and the maximum matching theorem were first proved by induction. The inductive proof of the maximum matching theorem, together with a discussion of its relevance to two similar theorems dealing with point-covers and pointmatchings, are given in Berge [l]. The problem of finding a simple algorithm for obtaining a minimum cover of a graph was proposed by Paul Roth as the one-dimensional instance of the more general question of finding a minimum cover for a cubical complex. This problem is a topological formulation of the synthesis of a switching system with minimum cost (cf. Roth [3]). 1. General definitions. Let G be a graph. A set C of edges of G is a cover of G if every vertex of G is incident to an edge of C. We shall present a procedure for reducing a given cover to a minimum cover, Presented to the Society October 26, 1957; received by the editors January 20, Supported in part by an Office of Naval Research Logistics Project at Princeton University. 2 Now at the Hebrew University in Jerusalem. 315

2 316 R. Z. NORMAN AND M. O. RABIN [April using the concept of an alternating path first introduced by Petersen [2]. By a path of G we mean a sequence of pairwise distinct successively adjacent edges of G. If is a set of edges of G, an alternating path of (G, E) is a path whose edges are alternately in E and not in E. The first and last edges of a path are its terminal edges. Its terminal vertices are the vertex incident to the first but not the second edge, and the vertex incident to the last but not the preceding edge. Let C be a cover of G. An alternating path of (G, C) is a reducing path if (1) its terminal edges are in C; (2) its terminal vertices are incident to edges of C which are not terminal edges of the path. If (G, C) possesses no reducing path, C is called an irreducible cover of G. A cover with the fewest possible edges is a minimum cover. 2. Irreducible and minimum covers. It is easy to see that every minimum cover is irreducible. The converse of this statement is the main topic of this section. Theorem 1. Every irreducible cover is a minimum cover. This theorem gives rise to an algorithm for finding a minimum cover. For if C is a nonminimum cover of G, it has a reducing path ir. We can form a new cover C from C by replacing the edges of ir in C with those edges of ir not in C. Then since x begins and ends with edges of C, C" has one fewer edge than C. This process is repeated until an irreducible cover is formed; such a cover is a minimum cover. To prove the theorem we shall make use of the following distance function. Let E and F be two sets of edges of a graph G. The distance d(e, F) is defined as the number of edges of E not in F. Lemma 1. Let C be an irreducible d(ci, C)=0. Then Ci = C. cover and let G be a cover for which Proof. The assumption d(ci, C)=0 asserts that every edge of Cx is in C. Since & is a cover, both vertices of any edge e in C Cx would be covered by edges of Ci; thus e is a reducing path of length 1 of (G, C), contradicting the irreducibility of C. In the following let C be an irreducible cover of a graph G and let M be a minimum cover chosen so that d(m, C) is a minimum. We contend that M=C. Lemma 2. If e is in M C, then e is not adjacent to any edge of M. Proof. Let e={vi, vt} and assume that Vi is incident to another

3 1959I AN ALGORITHM FOR A MINIMUM COVER OF A GRAPH 317 edge ei of M. Let e2 be an edge of C incident to v2. The set M' = MKJ[e2} [e] is a cover. Since e is in M, M' has no more edges than M, and hence it too is a minimum cover. Therefore e2 is not in M and d(m', C)=d(M, C) l, contrary to the hypothesis that d(m, C) is a minimum. Proof of Theorem 1. Assume d(m, C)>0, so that M C is not empty. Consider the collection of all simple paths (i.e., those without repeated vertices) satisfying the conditions: (a) the edges of the path are alternately in M C and in C; (b) the terminal edges of the path are in M C. The collection is nonempty since a single edge of M C is a path satisfying (a) and (b). Let tr=(eo,, en), e,= {vi, vi+i}, be a path of maximal length in the collection. The vertex vo is covered by an edge ei = {u0, v0} in C. Now ua = vn is impossible because then M' = MW{ei, ei, e3,, en-i} \eo, e2,, en} would be a minimum cover with d(m', Q <d(m, C). Similarly, there is an edge e = {un, vn} in C such that Un^Vo. We contend that u0 and un are covered by edges of C other than ei and e '. If u0=vk for some k, then k<n, and one of the edges ek-i or ek is in C. Otherwise w0 is incident to no edge of tt and we proceed as follows: Let ei' be an edge of M incident to u0. By Lemma 2, ei'^ei. But now ei' must be in C, for otherwise the path (ei', ei, eo, e\,, en) is a path longer than tt satisfying (a) and (b). Hence again wo is covered by an edge of C different from ei and c». A similar argument holds for un. The path (ei, ee, ei,, en, el) is therefore a reducing path of (G, C), contradicting the irreducibility of C. Thus d(m, C)=0, and by Lemma 1, M=C. 3. Level transformations and minimum covers. Motivated by the previous proof, we are led to define two operations, 7\ and T2, called level transformations which, when applied to a minimum cover, transform it into a new minimum cover. Application of a 7Vtransformation to any cover C consists of picking a path (ei, e2, e3) of three edges such that e2 and e3 are in C, and forming the cover TiiC) = CU{ei} {e2}. Application of a ^-transformation to a cover C consists of picking a circuit (ei, e2,, e2n) such that for all k, e2k-i is in C and e2k is not in C, and forming the cover TiiC) = C W \e2, d,, e2n} \ei, e3,, e2n-i\. A T-transformation may decrease the number of edges of a cover by one; a ^-transformation always leaves the number of edges invariant. When applied to a minimum cover, M, however, both TiiM) and TiiM) have the same cardinality as M, and are thus both mini-

4 318 R. Z. NORMAN AND M. O. RABIN [April mum covers. Since the most interesting applications of Fi and T2 are to minimum covers, the use of the term "level transformation" is justified. Examining the proofs of Lemmata 1 and 2 and the proof of the main theorem, one immediately sees that they actually entail the following statement: Let C be an irreducible cover and let T be a collection of covers closed with respect to Ji- and ^-transformations. If M int minimizes d(m', C) for M' in T, then M=C. From this remark we immediately derive two results. Theorem 2. If Mi and M2 are minimum covers, then M2 can be obtained by applying a (finite) sequence of level transformations to Mi. Proof. Let T be the collection of all minimum covers obtainable from Mi by a finite sequence of level transformations; T is certainly closed with respect to level transformations. As M2 is a minimum cover, it must be irreducible; hence M2 = M ior some M in T. Theorem 3. The collection 911 of all minimum covers of a graph G can be characterized as the nonempty collection of covers of G closed with respect to Ti- and Transformations in which all elements have the same cardinality. Proof. Let T be such a collection. Let M be any minimum cover. Then by the closure of T, M is in T. Since all elements of T have the same cardinality, this implies rc9tl That r = 31t now follows from Theorem Unaugmentable and maximum marchings. A set P of edges of a graph G is a matching if no two of its edges are adjacent. An augmenting path of (G, P) is an alternating (G, P) path whose terminal vertices are incident to no edges of P. Such a path is easily seen to be a simple path. If (G, P) has no augmenting path, P is called unaugmentable. A matching with the greatest possible number of edges is maximum. Of course every maximum matching is unaugmentable. The converse of this theorem is a theorem due to Berge [l] which gives rise to an algorithm similar to the one just discussed. Theorem 4 (Berge). Every unaugmentable matching is maximum. Proof. Let P be an unaugmentable matching and let M be a maximum matching for which d(p, M) is a minimum. Clearly, if d(p, M)=0 then P = M. We construct a path of maximum length whose edges are alternately in P M and M. Since M is also unaugmentable, it cannot begin and end with edges oip M. It has, there-

5 1959] AN ALGORITHM FOR A MINIMUM COVER OF A GRAPH 319 fore, equally many edges oi P M and M. Now from M we can form a new maximum matching M' by exchanging the edges of the path in M for those in P. Then d(p, M') <d(p, M), contrary to the minimality of d(p, M). 5. Relations between covers and matchings. Let C be a cover of a graph. We shall say that C is minimal if no proper subset of it is a cover. Similarly, a matching is maximal if no proper superset of it is a matching. Let C be a minimal cover of G. For each vertex Vi of G we define its C-degree a,- as the number of edges of C incident to»,-. Let A be the set of multiply covered vertices of G, i.e., those for which a,->l. For each vertex Vi oia, we delete from C a< 1 edges incident to Vi. The resulting set P is a matching, since the P-degree of each point is at most 1. However, P need not be a maximal matching. Let P be a maximal matching. Then for each vertex of P-degree 0, add to P any incident edge of the graph. The result is, of course, a cover, but it need not be minimal. However, if we begin with a minimum cover C, this process produces a maximum matching, while if we start with a maximum matching, the process yields a minimum cover. To demonstrate, let C be a minimum cover of a graph G, and let P result from C by elimination of a,- 1 edges incident to each multiply covered vertex v{. Let c denote the number of edges of C, and let a= 2Z(o» 1) be the number of edges deleted in forming P. Thus a is the number of vertices of P-degree 0. If P is not maximum there is a matching P' with c a + 1 edges, and the number of vertices of P'-degree 0 is a 2. Form a cover by adding one edge incident to each vertex of P-degree 0. This cover has c l edges, contrary to the hypothesis that C is a minimum cover. The dual assertion is proved similarly. References 1. C. Berge, Two theorems in graph theory, Proc. Nat. Acad. Sci. U.S.A. vol. 43 (1957) pp J. Petersen, Die Theorie der reguldren Graphen, Acta Math. vol. 51 (1891) pp J. P. Roth, Algebraic topological methods for the synthesis of switching systems I, Trans. Amer. Math. Soc. vol. 88 (1958) pp Dartmouth College, Princeton University and International Business Machines Corporation

GRAPHS WITH 1-FACTORS

GRAPHS WITH 1-FACTORS proceedings of the american mathematical society Volume 42, Number 1, January 1974 GRAPHS WITH 1-FACTORS DAVID P. SUMNER Abstract. In this paper it is shown that if G is a connected graph of order 2n (n>

More information

A matching of maximum cardinality is called a maximum matching. ANn s/2

A matching of maximum cardinality is called a maximum matching. ANn s/2 SIAM J. COMPUT. Vol. 2, No. 4, December 1973 Abstract. ANn s/2 ALGORITHM FOR MAXIMUM MATCHINGS IN BIPARTITE GRAPHS* JOHN E. HOPCROFT" AND RICHARD M. KARP The present paper shows how to construct a maximum

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Matching Theory. Figure 1: Is this graph bipartite?

Matching Theory. Figure 1: Is this graph bipartite? Matching Theory 1 Introduction A matching M of a graph is a subset of E such that no two edges in M share a vertex; edges which have this property are called independent edges. A matching M is said to

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

THE TRANSITIVE REDUCTION OF A DIRECTED GRAPH*

THE TRANSITIVE REDUCTION OF A DIRECTED GRAPH* SIAM J. COMPUT. Vol. 1, No. 2, June 1972 THE TRANSITIVE REDUCTION OF A DIRECTED GRAPH* A. V. AHO, M. R. GAREY" AND J. D. ULLMAN Abstract. We consider economical representations for the path information

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees.

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees. Tree 1. Trees and their Properties. Spanning trees 3. Minimum Spanning Trees 4. Applications of Minimum Spanning Trees 5. Minimum Spanning Tree Algorithms 1.1 Properties of Trees: Definition: A graph G

More information

(Received Judy 13, 1971) (devised Nov. 12, 1971)

(Received Judy 13, 1971) (devised Nov. 12, 1971) J. Math. Vol. 25, Soc. Japan No. 1, 1973 Minimal 2-regular digraphs with given girth By Mehdi BEHZAD (Received Judy 13, 1971) (devised Nov. 12, 1971) 1. Abstract. A digraph D is r-regular if degree v =

More information

AN ALGORITHM WHICH GENERATES THE HAMILTONIAN CIRCUITS OF A CUBIC PLANAR MAP

AN ALGORITHM WHICH GENERATES THE HAMILTONIAN CIRCUITS OF A CUBIC PLANAR MAP AN ALGORITHM WHICH GENERATES THE HAMILTONIAN CIRCUITS OF A CUBIC PLANAR MAP W. L. PRICE ABSTRACT The paper describes an algorithm which generates those Hamiltonian circuits of a given cubic planar map

More information

THE WORD AND CONJUGACY PROBLEMS FOR THE KNOT GROUP OF ANY TAME, PRIME, ALTERNATING KNOT

THE WORD AND CONJUGACY PROBLEMS FOR THE KNOT GROUP OF ANY TAME, PRIME, ALTERNATING KNOT PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 30, No. 1, September 1971 THE WORD AND CONJUGACY PROBLEMS FOR THE KNOT GROUP OF ANY TAME, PRIME, ALTERNATING KNOT C. M. WEINBAUM Abstract. The decision

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

On Sequential Topogenic Graphs

On Sequential Topogenic Graphs Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 36, 1799-1805 On Sequential Topogenic Graphs Bindhu K. Thomas, K. A. Germina and Jisha Elizabath Joy Research Center & PG Department of Mathematics Mary

More information

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs.

Advanced Combinatorial Optimization September 17, Lecture 3. Sketch some results regarding ear-decompositions and factor-critical graphs. 18.438 Advanced Combinatorial Optimization September 17, 2009 Lecturer: Michel X. Goemans Lecture 3 Scribe: Aleksander Madry ( Based on notes by Robert Kleinberg and Dan Stratila.) In this lecture, we

More information

Simultaneous Diagonal Flips in Plane Triangulations

Simultaneous Diagonal Flips in Plane Triangulations @ _ d j 5 6 5 6 Simultaneous Diagonal Flips in Plane Triangulations Prosenjit Bose Jurek Czyzowicz Zhicheng Gao Pat Morin David R. Wood Abstract Simultaneous diagonal flips in plane triangulations are

More information

Rigidity, connectivity and graph decompositions

Rigidity, connectivity and graph decompositions First Prev Next Last Rigidity, connectivity and graph decompositions Brigitte Servatius Herman Servatius Worcester Polytechnic Institute Page 1 of 100 First Prev Next Last Page 2 of 100 We say that a framework

More information

FURTHER APPLICATIONS OF CLUTTER DOMINATION PARAMETERS TO PROJECTIVE DIMENSION

FURTHER APPLICATIONS OF CLUTTER DOMINATION PARAMETERS TO PROJECTIVE DIMENSION FURTHER APPLICATIONS OF CLUTTER DOMINATION PARAMETERS TO PROJECTIVE DIMENSION HAILONG DAO AND JAY SCHWEIG Abstract. We study the relationship between the projective dimension of a squarefree monomial ideal

More information

Embedding a graph-like continuum in some surface

Embedding a graph-like continuum in some surface Embedding a graph-like continuum in some surface R. Christian R. B. Richter G. Salazar April 19, 2013 Abstract We show that a graph-like continuum embeds in some surface if and only if it does not contain

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

Basics of Graph Theory

Basics of Graph Theory Basics of Graph Theory 1 Basic notions A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Simple graphs have their

More information

Graph Theory Questions from Past Papers

Graph Theory Questions from Past Papers Graph Theory Questions from Past Papers Bilkent University, Laurence Barker, 19 October 2017 Do not forget to justify your answers in terms which could be understood by people who know the background theory

More information

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path.

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path. 3 Matchings Hall s Theorem Matching: A matching in G is a subset M E(G) so that no edge in M is a loop, and no two edges in M are incident with a common vertex. A matching M is maximal if there is no matching

More information

Subdivisions of Graphs: A Generalization of Paths and Cycles

Subdivisions of Graphs: A Generalization of Paths and Cycles Subdivisions of Graphs: A Generalization of Paths and Cycles Ch. Sobhan Babu and Ajit A. Diwan Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076,

More information

Module 7. Independent sets, coverings. and matchings. Contents

Module 7. Independent sets, coverings. and matchings. Contents Module 7 Independent sets, coverings Contents and matchings 7.1 Introduction.......................... 152 7.2 Independent sets and coverings: basic equations..... 152 7.3 Matchings in bipartite graphs................

More information

Chapter-0: Introduction. Chapter 0 INTRODUCTION

Chapter-0: Introduction. Chapter 0 INTRODUCTION Chapter 0 INTRODUCTION 1 Graph Theory is a branch of Mathematics which has become quite rich and interesting for several reasons. In last three decades hundreds of research article have been published

More information

11.1. Definitions. 11. Domination in Graphs

11.1. Definitions. 11. Domination in Graphs 11. Domination in Graphs Some definitions Minimal dominating sets Bounds for the domination number. The independent domination number Other domination parameters. 11.1. Definitions A vertex v in a graph

More information

HW Graph Theory SOLUTIONS (hbovik)

HW Graph Theory SOLUTIONS (hbovik) Diestel 1.3: Let G be a graph containing a cycle C, and assume that G contains a path P of length at least k between two vertices of C. Show that G contains a cycle of length at least k. If C has length

More information

ON SWELL COLORED COMPLETE GRAPHS

ON SWELL COLORED COMPLETE GRAPHS Acta Math. Univ. Comenianae Vol. LXIII, (1994), pp. 303 308 303 ON SWELL COLORED COMPLETE GRAPHS C. WARD and S. SZABÓ Abstract. An edge-colored graph is said to be swell-colored if each triangle contains

More information

Bijective Proofs of Two Broken Circuit Theorems

Bijective Proofs of Two Broken Circuit Theorems Bijective Proofs of Two Broken Circuit Theorems Andreas Blass PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PENNSYLVANIA 16802 Bruce Eli Sagan THE UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PENNSYLVANIA

More information

A NOTE ON PROPER MAPS

A NOTE ON PROPER MAPS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 51, Number 1, August 1975 A NOTE ON PROPER MAPS CHUNG-WU HO1 ABSTRACT. The authot establishes some necessary and sufficient conditions on a Hausdorff

More information

Sharp lower bound for the total number of matchings of graphs with given number of cut edges

Sharp lower bound for the total number of matchings of graphs with given number of cut edges South Asian Journal of Mathematics 2014, Vol. 4 ( 2 ) : 107 118 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE Sharp lower bound for the total number of matchings of graphs with given number of cut

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Bohdan Zelinka Join graphs of trees Czechoslovak Mathematical Journal, Vol. 30 (1980), No. 2, 332--335 Persistent URL: http://dml.cz/dmlcz/101681 Terms of use: Institute

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Problem Set 2 Solutions Graph Theory 2016 EPFL Frank de Zeeuw & Claudiu Valculescu 1. Prove that the following statements about a graph G are equivalent. - G is a tree; - G is minimally connected (it is

More information

GEOMETRIC DISTANCE-REGULAR COVERS

GEOMETRIC DISTANCE-REGULAR COVERS NEW ZEALAND JOURNAL OF MATHEMATICS Volume 22 (1993), 31-38 GEOMETRIC DISTANCE-REGULAR COVERS C.D. G o d s i l 1 (Received March 1993) Abstract. Let G be a distance-regular graph with valency k and least

More information

Two Characterizations of Hypercubes

Two Characterizations of Hypercubes Two Characterizations of Hypercubes Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen Department of Mathematics, University of Oulu University of Oulu, Faculty of Technology, Mathematics Division, P.O.

More information

arxiv: v2 [math.co] 13 Aug 2013

arxiv: v2 [math.co] 13 Aug 2013 Orthogonality and minimality in the homology of locally finite graphs Reinhard Diestel Julian Pott arxiv:1307.0728v2 [math.co] 13 Aug 2013 August 14, 2013 Abstract Given a finite set E, a subset D E (viewed

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

The Dual Neighborhood Number of a Graph

The Dual Neighborhood Number of a Graph Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 47, 2327-2334 The Dual Neighborhood Number of a Graph B. Chaluvaraju 1, V. Lokesha 2 and C. Nandeesh Kumar 1 1 Department of Mathematics Central College

More information

EXTREMALLY DISCONNECTED SPACES

EXTREMALLY DISCONNECTED SPACES EXTREMALLY DISCONNECTED SPACES DONA PAPERT STRAUSS Introduction. By an extremally disconnected space we shall mean a Hausdorff space in which the closure of every open set is open. These spaces are known

More information

Non-zero disjoint cycles in highly connected group labelled graphs

Non-zero disjoint cycles in highly connected group labelled graphs Non-zero disjoint cycles in highly connected group labelled graphs Ken-ichi Kawarabayashi Paul Wollan Abstract Let G = (V, E) be an oriented graph whose edges are labelled by the elements of a group Γ.

More information

RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES. Contents 1. Introduction 1 2. The proof of Theorem References 9

RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES. Contents 1. Introduction 1 2. The proof of Theorem References 9 RATIONAL CURVES ON SMOOTH CUBIC HYPERSURFACES IZZET COSKUN AND JASON STARR Abstract. We prove that the space of rational curves of a fixed degree on any smooth cubic hypersurface of dimension at least

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

Some Elementary Lower Bounds on the Matching Number of Bipartite Graphs

Some Elementary Lower Bounds on the Matching Number of Bipartite Graphs Some Elementary Lower Bounds on the Matching Number of Bipartite Graphs Ermelinda DeLaViña and Iride Gramajo Department of Computer and Mathematical Sciences University of Houston-Downtown Houston, Texas

More information

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs

Discrete Applied Mathematics. A revision and extension of results on 4-regular, 4-connected, claw-free graphs Discrete Applied Mathematics 159 (2011) 1225 1230 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam A revision and extension of results

More information

arxiv:submit/ [math.co] 9 May 2011

arxiv:submit/ [math.co] 9 May 2011 arxiv:submit/0243374 [math.co] 9 May 2011 Connectivity and tree structure in finite graphs J. Carmesin R. Diestel F. Hundertmark M. Stein 6 May, 2011 Abstract We prove that, for every integer k 0, every

More information

Proof of the Caccetta-Häggkvist conjecture for in-tournaments with respect to the minimum out-degree, and pancyclicity

Proof of the Caccetta-Häggkvist conjecture for in-tournaments with respect to the minimum out-degree, and pancyclicity AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 57 (2013), Pages 313 320 Proof of the Caccetta-Häggkvist conjecture for in-tournaments with respect to the minimum out-degree, and pancyclicity Nicolas Lichiardopol

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

The Connectivity and Diameter of Second Order Circuit Graphs of Matroids

The Connectivity and Diameter of Second Order Circuit Graphs of Matroids Graphs and Combinatorics (2012) 28:737 742 DOI 10.1007/s00373-011-1074-6 ORIGINAL PAPER The Connectivity and Diameter of Second Order Circuit Graphs of Matroids Jinquan Xu Ping Li Hong-Jian Lai Received:

More information

Bipartite Coverings and the Chromatic Number

Bipartite Coverings and the Chromatic Number Bipartite Coverings and the Chromatic Number Dhruv Mubayi Sundar Vishwanathan Department of Mathematics, Department of Computer Science Statistics, and Computer Science Indian Institute of Technology University

More information

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class.

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class. CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 19 Thursday, March 29 GRAPH THEORY Graph isomorphism Definition 19.1 Two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) are isomorphic, write G 1 G

More information

Wu, Y.-Q., The reducibility of surgered 3-manifolds, Topology and its Applications 43 (1992)

Wu, Y.-Q., The reducibility of surgered 3-manifolds, Topology and its Applications 43 (1992) Topology and its Applications 43 (1992) 213-218 North-Holland 213 The reducibility Smanifolds of surgered Ying-Qing Wu Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA; and

More information

Pebble Sets in Convex Polygons

Pebble Sets in Convex Polygons 2 1 Pebble Sets in Convex Polygons Kevin Iga, Randall Maddox June 15, 2005 Abstract Lukács and András posed the problem of showing the existence of a set of n 2 points in the interior of a convex n-gon

More information

Math 443/543 Graph Theory Notes 2: Transportation problems

Math 443/543 Graph Theory Notes 2: Transportation problems Math 443/543 Graph Theory Notes 2: Transportation problems David Glickenstein September 15, 2014 1 Readings This is based on Chartrand Chapter 3 and Bondy-Murty 18.1, 18.3 (part on Closure of a Graph).

More information

MAXIMAL FLOW THROUGH A NETWORK

MAXIMAL FLOW THROUGH A NETWORK MAXIMAL FLOW THROUGH A NETWORK L. R. FORD, JR. AND D. R. FULKERSON Introduction. The problem discussed in this paper was formulated by T. Harris as follows: "Consider a rail network connecting two cities

More information

Matching and Factor-Critical Property in 3-Dominating-Critical Graphs

Matching and Factor-Critical Property in 3-Dominating-Critical Graphs Matching and Factor-Critical Property in 3-Dominating-Critical Graphs Tao Wang a,, Qinglin Yu a,b a Center for Combinatorics, LPMC Nankai University, Tianjin, China b Department of Mathematics and Statistics

More information

A New Game Chromatic Number

A New Game Chromatic Number Europ. J. Combinatorics (1997) 18, 1 9 A New Game Chromatic Number G. C HEN, R. H. S CHELP AND W. E. S HREVE Consider the following two-person game on a graph G. Players I and II move alternatively to

More information

SUMS OF SETS OF CONTINUED FRACTIONS

SUMS OF SETS OF CONTINUED FRACTIONS proceedings of the american mathematical society Volume 30, Number 2. October 1971 SUMS OF SETS OF NTINUED FRACTIONS T. W. CUSICK AND R. A. LEE Abstract. For each integer k jjj 2, let S(k) denote the set

More information

Graph Connectivity G G G

Graph Connectivity G G G Graph Connectivity 1 Introduction We have seen that trees are minimally connected graphs, i.e., deleting any edge of the tree gives us a disconnected graph. What makes trees so susceptible to edge deletions?

More information

Chain Packings and Odd Subtree Packings. Garth Isaak Department of Mathematics and Computer Science Dartmouth College, Hanover, NH

Chain Packings and Odd Subtree Packings. Garth Isaak Department of Mathematics and Computer Science Dartmouth College, Hanover, NH Chain Packings and Odd Subtree Packings Garth Isaak Department of Mathematics and Computer Science Dartmouth College, Hanover, NH 1992 Abstract A chain packing H in a graph is a subgraph satisfying given

More information

arxiv: v1 [math.co] 20 Nov 2013

arxiv: v1 [math.co] 20 Nov 2013 HOMOGENEOUS 2-PARTITE DIGRAPHS arxiv:1311.5056v1 [math.co] 20 Nov 2013 MATTHIAS HAMANN Abstract. We call a 2-partite digraph D homogeneous if every isomorphism between finite induced subdigraphs that respects

More information

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set γ 1 γ 3 γ γ 3 γ γ 1 R (a) an unbounded Yin set (b) a bounded Yin set Fig..1: Jordan curve representation of a connected Yin set M R. A shaded region represents M and the dashed curves its boundary M that

More information

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS

PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PACKING DIGRAPHS WITH DIRECTED CLOSED TRAILS PAUL BALISTER Abstract It has been shown [Balister, 2001] that if n is odd and m 1,, m t are integers with m i 3 and t i=1 m i = E(K n) then K n can be decomposed

More information

On the number of distinct directions of planes determined by n points in R 3

On the number of distinct directions of planes determined by n points in R 3 On the number of distinct directions of planes determined by n points in R 3 Rom Pinchasi August 27, 2007 Abstract We show that any set of n points in R 3, that is not contained in a plane, determines

More information

On Locating Domination Number of. Boolean Graph BG 2 (G)

On Locating Domination Number of. Boolean Graph BG 2 (G) International Mathematical Forum, Vol. 12, 2017, no. 20, 973-982 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7977 On Locating Domination Number of Boolean Graph BG 2 (G) M. Bhanumathi

More information

LECTURES 3 and 4: Flows and Matchings

LECTURES 3 and 4: Flows and Matchings LECTURES 3 and 4: Flows and Matchings 1 Max Flow MAX FLOW (SP). Instance: Directed graph N = (V,A), two nodes s,t V, and capacities on the arcs c : A R +. A flow is a set of numbers on the arcs such that

More information

THE COMMUTATOR SUBGROUPS OF THE ALTERNATING KNOT GROUPS

THE COMMUTATOR SUBGROUPS OF THE ALTERNATING KNOT GROUPS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 28, No. 1, April 1971 THE COMMUTATOR SUBGROUPS OF THE ALTERNATING KNOT GROUPS KUNIO MURASUGI Abstract. The aim of this paper is to show that the

More information

A THREE AND FIVE COLOR THEOREM

A THREE AND FIVE COLOR THEOREM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, October 1975 A THREE AND FIVE COLOR THEOREM FRANK R. BERNHART1 ABSTRACT. Let / be a face of a plane graph G. The Three and Five Color Theorem

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

DISTRIBUTIVE LATTICES

DISTRIBUTIVE LATTICES BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 317-325 DOI: 10.7251/BIMVI1702317R Former BULLETIN

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

Parameterized graph separation problems

Parameterized graph separation problems Parameterized graph separation problems Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary, dmarx@cs.bme.hu Abstract.

More information

THE ISOMORPHISM PROBLEM FOR SOME CLASSES OF MULTIPLICATIVE SYSTEMS

THE ISOMORPHISM PROBLEM FOR SOME CLASSES OF MULTIPLICATIVE SYSTEMS THE ISOMORPHISM PROBLEM FOR SOME CLASSES OF MULTIPLICATIVE SYSTEMS BY TREVOR EVANS 1. Introduction. We give here a solution of the isomorphism problem for finitely presented algebras in various classes

More information

Properly Colored Paths and Cycles in Complete Graphs

Properly Colored Paths and Cycles in Complete Graphs 011 ¼ 9 È È 15 ± 3 ¾ Sept., 011 Operations Research Transactions Vol.15 No.3 Properly Colored Paths and Cycles in Complete Graphs Wang Guanghui 1 ZHOU Shan Abstract Let K c n denote a complete graph on

More information

A note on isolate domination

A note on isolate domination Electronic Journal of Graph Theory and Applications 4 (1) (016), 94 100 A note on isolate domination I. Sahul Hamid a, S. Balamurugan b, A. Navaneethakrishnan c a Department of Mathematics, The Madura

More information

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN TOMASZ LUCZAK AND FLORIAN PFENDER Abstract. We show that every 3-connected claw-free graph which contains no induced copy of P 11 is hamiltonian.

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

and Heinz-Jürgen Voss

and Heinz-Jürgen Voss Discussiones Mathematicae Graph Theory 22 (2002 ) 193 198 ON k-trestles IN POLYHEDRAL GRAPHS Michal Tkáč Department of Mathematics The Faculty of Business Economics in Košice University of Economics in

More information

VERTICES OF LOCALIZED IMBALANCE IN A BIASED GRAPH

VERTICES OF LOCALIZED IMBALANCE IN A BIASED GRAPH PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 101, Number 1, September 1987 VERTICES OF LOCALIZED IMBALANCE IN A BIASED GRAPH THOMAS ZASLAVSKY ABSTRACT. A biased graph consists of a graph T and

More information

UNKNOTTING 3-SPHERES IN SIX DIMENSIONS

UNKNOTTING 3-SPHERES IN SIX DIMENSIONS UNKNOTTING 3-SPHERES IN SIX DIMENSIONS E. C ZEEMAN Haefliger [2] has shown that a differentiable embedding of the 3-sphere S3 in euclidean 6-dimensions El can be differentiably knotted. On the other hand

More information

arxiv: v1 [math.co] 3 Apr 2016

arxiv: v1 [math.co] 3 Apr 2016 A note on extremal results on directed acyclic graphs arxiv:1604.0061v1 [math.co] 3 Apr 016 A. Martínez-Pérez, L. Montejano and D. Oliveros April 5, 016 Abstract The family of Directed Acyclic Graphs as

More information

Chapter 2. Splitting Operation and n-connected Matroids. 2.1 Introduction

Chapter 2. Splitting Operation and n-connected Matroids. 2.1 Introduction Chapter 2 Splitting Operation and n-connected Matroids The splitting operation on an n-connected binary matroid may not yield an n-connected binary matroid. In this chapter, we provide a necessary and

More information

Enumerating Perfect Matchings in a Ring of Diamonds

Enumerating Perfect Matchings in a Ring of Diamonds Enumerating Perfect Matchings in a Ring of Diamonds Shiena P. Tejada and Rhudaina Z. Mohammad College of Science of Mathematics Western Mindanao State University Abstract This paper presents an algorithm

More information

SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT

SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT SUBDIVISIONS OF TRANSITIVE TOURNAMENTS A.D. SCOTT Abstract. We prove that, for r 2 and n n(r), every directed graph with n vertices and more edges than the r-partite Turán graph T (r, n) contains a subdivision

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Topics in Combinatorial Optimization February 5, Lecture 2

Topics in Combinatorial Optimization February 5, Lecture 2 8.997 Topics in Combinatorial Optimization February 5, 2004 Lecture 2 Lecturer: Michel X. Goemans Scribe: Robert Kleinberg In this lecture, we will: Present Edmonds algorithm for computing a maximum matching

More information

Paths partition with prescribed beginnings in digraphs: a Chvátal-Erdős condition approach.

Paths partition with prescribed beginnings in digraphs: a Chvátal-Erdős condition approach. Paths partition with prescribed beginnings in digraphs: a Chvátal-Erdős condition approach. S. Bessy, Projet Mascotte, CNRS/INRIA/UNSA, INRIA Sophia-Antipolis, 2004 route des Lucioles BP 93, 06902 Sophia-Antipolis

More information

Recognizing Interval Bigraphs by Forbidden Patterns

Recognizing Interval Bigraphs by Forbidden Patterns Recognizing Interval Bigraphs by Forbidden Patterns Arash Rafiey Simon Fraser University, Vancouver, Canada, and Indiana State University, IN, USA arashr@sfu.ca, arash.rafiey@indstate.edu Abstract Let

More information

Weighted Geodetic Convex Sets in A Graph

Weighted Geodetic Convex Sets in A Graph IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. PP 12-17 www.iosrjournals.org Weighted Geodetic Convex Sets in A Graph Jill K. Mathew 1 Department of Mathematics Mar Ivanios

More information

Optimal Assignments in an Ordered Set: An Application of Matroid Theory

Optimal Assignments in an Ordered Set: An Application of Matroid Theory JOURNAL OF COMBINATORIAL THEORY 4, 176-180 (1968) Optimal Assignments in an Ordered Set: An Application of Matroid Theory DAVID GALE Operations Research Center, University of California, Berkeley, CaliJbrnia

More information

ANNALES DE L I. H. P., SECTION B

ANNALES DE L I. H. P., SECTION B ANNALES DE L I. H. P., SECTION B GARY CHARTRAND FRANK HARARY Planar Permutation Graphs Annales de l I. H. P., section B, tome 3, n o 4 (1967), p. 433438

More information

Eulerian subgraphs containing given edges

Eulerian subgraphs containing given edges Discrete Mathematics 230 (2001) 63 69 www.elsevier.com/locate/disc Eulerian subgraphs containing given edges Hong-Jian Lai Department of Mathematics, West Virginia University, P.O. Box. 6310, Morgantown,

More information

Dirac-type characterizations of graphs without long chordless cycles

Dirac-type characterizations of graphs without long chordless cycles Dirac-type characterizations of graphs without long chordless cycles Vašek Chvátal Department of Computer Science Rutgers University chvatal@cs.rutgers.edu Irena Rusu LIFO Université de Orléans irusu@lifo.univ-orleans.fr

More information

SEQUENTIALLY COHEN-MACAULAY GRAPHS OF FORM θ n1,...,n k. Communicated by Siamak Yassemi. 1. Introduction

SEQUENTIALLY COHEN-MACAULAY GRAPHS OF FORM θ n1,...,n k. Communicated by Siamak Yassemi. 1. Introduction Bulletin of the Iranian Mathematical Society Vol. 36 No. 2 (2010), pp 109-118. SEQUENTIALLY COHEN-MACAULAY GRAPHS OF FORM θ n1,...,n k F. MOHAMMADI* AND D. KIANI Communicated by Siamak Yassemi Abstract.

More information

Ramsey numbers in rainbow triangle free colorings

Ramsey numbers in rainbow triangle free colorings AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 46 (2010), Pages 269 284 Ramsey numbers in rainbow triangle free colorings Ralph J. Faudree Department of Mathematical Sciences University of Memphis Memphis,

More information

Notes on Interval Valued Fuzzy RW-Closed, Interval Valued Fuzzy RW-Open Sets in Interval Valued Fuzzy Topological Spaces

Notes on Interval Valued Fuzzy RW-Closed, Interval Valued Fuzzy RW-Open Sets in Interval Valued Fuzzy Topological Spaces International Journal of Fuzzy Mathematics and Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 23-38 Research India Publications http://www.ripublication.com Notes on Interval Valued Fuzzy RW-Closed,

More information

Super connectivity of line graphs

Super connectivity of line graphs Information Processing Letters 94 (2005) 191 195 www.elsevier.com/locate/ipl Super connectivity of line graphs Jun-Ming Xu a,,minlü a, Meijie Ma a, Angelika Hellwig b a Department of Mathematics, University

More information

The self-minor conjecture for infinite trees

The self-minor conjecture for infinite trees The self-minor conjecture for infinite trees Julian Pott Abstract We prove Seymour s self-minor conjecture for infinite trees. 1. Introduction P. D. Seymour conjectured that every infinite graph is a proper

More information

V10 Metabolic networks - Graph connectivity

V10 Metabolic networks - Graph connectivity V10 Metabolic networks - Graph connectivity Graph connectivity is related to analyzing biological networks for - finding cliques - edge betweenness - modular decomposition that have been or will be covered

More information

Superconcentrators of depth 2 and 3; odd levels help (rarely)

Superconcentrators of depth 2 and 3; odd levels help (rarely) Superconcentrators of depth 2 and 3; odd levels help (rarely) Noga Alon Bellcore, Morristown, NJ, 07960, USA and Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv

More information