VNS-based heuristic with an exponential neighborhood for the server load balancing problem

Size: px
Start display at page:

Download "VNS-based heuristic with an exponential neighborhood for the server load balancing problem"

Transcription

1 Available online at Electronic Notes in Discrete Mathematics 47 (2015) VNS-based heuristic with an exponential neighborhood for the server load balancing problem I. Davydov 1,3 Y. Kochetov 2,3 Novosibirsk State University, Novosibirsk, Russia Abstract We consider the server load balancing problem which is originated from optimal web hosting in cloud computing. We have developed VNS-based heuristic to tackle this problem. In order to improve the efficiency of the algorithm, we apply new exponential neighborhood based on the assignment problem. Computational experiments on real world and randomly generated test instances indicate the efficiency of the algorithm. Keywords: variable neighborhood, metaheuristic, assignment problem, large neighborhood 1 Introduction We consider the following problem which is originated from optimal web hosting in cloud computing [8]. We are given a finite set of servers. Each server 1 vann.davydov@gmail.com 2 jkochet@math.nsc.ru 3 This work was carried out in Novosibirsk State University and supported by the Ministry of education and science of the Russian Federation, contract N02.G / 2014 Elsevier B.V. All rights reserved.

2 54 I. Davydov, Y. Kochetov / Electronic Notes in Discrete Mathematics 47 (2015) contains the set of disks (or images of disks). Internet sites with heterogeneous information are distributed among the disks. A lot of users visit these sites and generate the load for the servers. The load is changed during time interval and can be characterized by some parameters: CPU, RAM, and others. We assume that the number of requests of users are known for each site and as a result for each disk and each server. If the load of the server does not exceed a given threshold, we say that the server is working in regular mode. Otherwise, an overload appears which causes abnormal client-request processing time. To avoid the overload, we can move the disks to another one. Such moving requires some computational efforts. We will call them as overhead expenses. We assume that the expenses are known for each parameter if a disk is extracted from one server and moved to another one. An initial location of disks among the servers is given. The problem is to find a relocation of disks to minimize the total exceeding over the thresholds during the time interval subject to overhead expenses for each server. To tackle this problem, we suggest the local search approach based on the VNS framework [3,4]. We use simple neighborhoods with linear and quadratic power and present a new neighborhood with an exponential power. The main idea of new neighborhood is to choose one disk from each server and relocate these disks in an optimal way. Each server gets one disk and the total overload is minimized. The solution of the assignment problem gives us the optimal disks relocation. 2 Mathematical model Let us introduce the following notations: S is the set of servers, D is the set of disks, T is the time interval, R is the set of parameters and c drt is the load of disk d in time t with respect to parameter r, c sr is the threshold of the server s with respect to parameter r, x 0 ds is the initial distribution of the disks, b w sdr (be sdr ) are the overhead expenses of inserting (ejecting) disk d to (from) server s with respect to parameter r, Bsr w (Be sr ) are the maximum allowed overhead expenses of inserting (ejecting) disks to (from) server s with respect to parameter r. Decision variables: x ds = 1, if disk d is located on server s, andx ds =0otherwise. y str is the overload on server s in time t with respect to parameter r.

3 I. Davydov, Y. Kochetov / Electronic Notes in Discrete Mathematics 47 (2015) Now we can write the problem as the mixed integer linear program [8]: min (1) s S t T r R y str (2) (3) (4) (5) (6) s. t. y str c drt x ds c sr for all s S, t T,r R, d D x ds =1foralld D, s S b w sdr x ds(1 x 0 ds ) Bw sr for all s S, r R, d D b e sdr x0 ds (1 x ds) Bsr e for all s S, r R, d D y str 0,x ds {0, 1} for all d D, s S, t T,r R. The goal function (1) gives the total overload among all servers through the whole time interval. Inequality (2) determines this overload for each server and each parameter in each time moment. Equality (3) ensures that each disk is located exactly on one server. Inequalities (4) and (5) restrict the overhead expenses for insertion and ejection of disks for each server and each parameter. Note that the problem is strongly NP-hard even for T =1, R =1. It is easy to see that the well known 3-partition problem can be reduced to this particular case of the problem (1) (6). Remind that in the 3-partition problem we are given a positive integer b and a set N = {1, 2,..., 3m} of 3m elements. Each element j has a positive integer size a j,and 3m j=1 a j = mb. The problem is to determine whether a partition of the set N into m subsets, each containing exactly three elements from N and such that the sum of the sizes in each subset is b, exists. This problem is NP-hard in the strong sense. To reduce it to our problem, we put S = m, D =3m, c sr = b, c drt = a d for all s S, d D. Commercialsoftware,forexample,CPLEX,GUROBI,andothersmaybe applied to solve the problem. Unfortunately, the problem has large integrality gap. As a result, we can find optimal solution for small instances only. For example, in case S = 20, D = 200, T = 150, R = 2, CPLEX software can not find optimal solution during 24 hours. This lead us to develop metaheuristics which perform well in solving hard optimization problems.

4 56 I. Davydov, Y. Kochetov / Electronic Notes in Discrete Mathematics 47 (2015) Variable neighborhood search In order to develop local search based heuristics we should choose the appropriate neighborhoods. The choice of neighborhoods is very important because it crucially affects the efficiency of the algorithms. In this work we use three neighborhoods. Two neighborhoods have polynomial size. The third one has exponential size. Elements of this large neighborhood are optimal solutions of the assignment problem. Using of large neighborhoods allows us to increase the efficiency of computational methods [1,7]. Let x =(x ds ) be a feasible solution. By Move(x)wedenoteasetoffeasible solutions which can be obtained from x by choosing one disk, ejecting it from the server and inserting it to another server. This neighborhood contains at most D S solutions. The second neighborhood consists of all feasible solutions which can be obtained from x by swapping two disks between different servers. We denote this neighborhood as Swap(x). It contains at most D 2 solutions. Although these neighborhoods are polynomial, we will use of theirs randomized versions. This trick allows to increase the efficiency of the local search and reduce the computational efforts per iteration [3,9]. By Move q (x) wedenoterandomized neighborhood with the parameter q, 0<q<1. Move q (x) isapartof Move(x) neighborhood. Each element of Move(x) is included into Move q (x) with probability q. Swap q (x) neighborhood is defined in a similar way. Now we introduce a new neighborhood Assign(x). Its elements are constructed as follows. For each server we define a set of disks D s,s S which may be ejected from server s under constraints (5). Then we eject one disk from each set D s. Subset of the ejected disks we denote as D. If D s = for server s, we eject a dummy disk which has no load and overhead expenses. We define Δ ds as the total overload of server s if we eject one disk from server s andtheninsertdiskd from the set D: { Δ ds =max 0, c d rtx d s c sr + c drt }, t T r R d D\D if constraints (4) hold and Δ ds =+ otherwise. Define new variables: z ds = 1 if the disk d from D is inserted on server s, and z ds = 0 otherwise. We can get an optimal relocation of ejected disks by solving the assignment problem: min{ (7) Δ ds z ds z ds = z ds =1,z ds {0, 1},d D, s S}. d D s S d D s S

5 I. Davydov, Y. Kochetov / Electronic Notes in Discrete Mathematics 47 (2015) The goal function provides the total overload of all servers during the time interval. Constraints ensure that each disk moves to one server only, and each server gets exactly one disk. Note that if D s, s S, the solution of the assignment problem does not change the number of disks on each server. The following trick allows us to expand capabilities of this neighborhood. Let us assume that each server contains one dummy disk without load and overhead expenses. If this disk is included in D, then none of disks were ejected from the server. Hence, in the optimal solution of the assignment problem one of the servers gets a dummy disk, thus the number of disks on this server decrease by one. Thereby, we can reclaim the shortcomings of this neighborhood, e.g. do not eject disks from some servers, for example, from servers with minimal load. As we have mentioned before, the elements of this neighborhood are optimal solutions of the assignment problem. Thus, the size of this neighborhood is equal to s S ( D s +1), if the optimal solution of the assignment problem is unique. Exploration of this neighborhood requires huge computational time. So, we will use randomized version of this neighborhood [3,9]. During the local search, we will randomly generate l max instances of the assignment problem and return the improved solution. General framework of our VNS method can be presented as follows: (i) Put x ds := x 0 ds, define parameters q, l max, k max and stopping condition. (ii) Repeat the following sequence until the stopping condition is met: (a) k := 1; (b) Repeat the following steps until k = k max : Choose k disks randomly and move them to other servers; Apply local improvement algorithm by Move q and Swap q neighborhoods. Apply the assignment problem (7) for improving the current solution l max times. If the improved solution x is better than x, thenx := x and k := 1, otherwise k := k +1. (iii) Return x. As the stopping condition we use the running time of the method. Elements from the sets D s are selected at random with uniform distribution. To accelerate the method we put q =0.3, l max =5andk max =7.

6 58 I. Davydov, Y. Kochetov / Electronic Notes in Discrete Mathematics 47 (2015) Computational experiments The developed algorithm was implemented in Delphi 7.0 and tested on PC Intel Core i5 3.20GHz, RAM 4Gb 32-bit. The experiments were conducted on the randomly generated test instances from [8] where S = 20, D = 200, T = 150, R = 2. Moreover, we have used the algorithm for real world application where S =20, D = 200, T = 1008, R =6. Computational results for random instances are presented in Table 1. The first column indicates the value of the threshold parameter c sr of the servers. Columns from the second to fifth contain results of the experiments from [8]. The value F LP gives us the optimal value of the linear programming relaxation and provides the lower bound on the global optimum. The value t LP indicates computational time in seconds. The forth and fifth columns represent the results of an approximation algorithm based on the linear programming relaxation. Algorithm was terminated after 50 minutes. The best found solutions are presented in column F ILP. As we can see, in some instances 50 minutes was not enough for getting any valuable results. The last two columns demonstrate the results of the VNS algorithm. Column F VNS presents the objective function value, column t VNS indicates computational time in seconds. Algorithm was stopped after 20 minutes or in case the lower bound was reached. Note that the problem can be solved easily if the server threshold is high. The exact solution is found within one second. Instances with low threshold level are easy as well. If c sr = 600, one second is enough to reach the lower bound. In cases of threshold level from 800 to 810 we were able to find yet unknown optimal solutions. For the threshold level from 650 to 750, the lower bound was not reached, although in case c sr = 650 the difference between the optimal solution and the lower bound is less than 1%. Similar results were obtained for the same instances with Bsr w = Bsr e = The most difficult instances correspond to threshold level 700. In the next experiment we used this value of c sr. The results of the experiments on 10 test instances with Bsr w = Be sr = 500 are presented in Table 2. Comparison of the last three columns show that the VNS algorithm outperforms the previous one although looses in the third instance. Nevertheless, the last column shows that deviation of the results from the lower bound ε = 100%(F VNS F LP )/F VNS is small enough even in this case. In the last experiment we used the real data from some servers and applied the VNS algorithm for load balancing. Computational results have shown that our approach can reduce the total overload considerably if we terminate the calculations after one hour.

7 I. Davydov, Y. Kochetov / Electronic Notes in Discrete Mathematics 47 (2015) Table 1 Computational results for B w sr = Be sr = 500 c sr t LP F LP t ILP F ILP t VNS F VNS Table 2 Computational results for c sr = 700 Instance F LP F ILP F VNS ε(%) , , , , , , , , , ,1

8 60 I. Davydov, Y. Kochetov / Electronic Notes in Discrete Mathematics 47 (2015) Conclusions We have considered the server load balancing problem and shown that it is NP-hard in the strong sense. We have presented the VNS-based algorithm with polynomial and exponential neighborhoods. Optimal solutions of the assignment problem have used for finding elements of the exponential neighborhood. Computational results for real world and randomly generated test instances have been reported. For future research it is interesting to investigate some new ideas for VNS, for example, optimal recombination operators [5,6,2] instead of the random shaking at Step (b) of the method. References [1] Ahuja, R. K., O. Ergun, J.B. Orlin and A.P. Punnen, A survey of very large scale neighborhood search techniques, Discrete Applied Mathematics 123 (2002), pp [2] Davidovic, T., Teodorovic, D. and Selmic, M., Bee colony optimization - Part I: The algorithm overview to appear in Yugoslav Journal of Operations Research (2014) DOI / YJOR D. [3] Davydov, I., Y. Kochetov, N. Mladenovic and D. Urosevic, F ast metaheuristics for the discrete (r p)-centroid problem, Automat. Rem. Contr. 75 (2014), pp [4] Hansen, P. and N. Mladenovic, V ariable neighborhood search, European Journal of Operational Research 13 (2001), pp [5] Eremeev, A., O ptimal recombination in genetic algorithms for combinatorial optimization problems - Part I, Yugoslav Journal of Operations Research 24 (2014), pp [6]Eremeev,A.and Kovalenko,J.,O ptimal recombination in genetic algorithms for combinatorial optimization problems - Part II, Yugoslav Journal of Operations Research 24 (2014), pp [7] Kochetov, Y., E. Alekseeva, T. Levanova and M. Loresh, Large neighborhood local search for the p-median problem, Yugoslav Journal of Operations Research 15 (2005), pp [8] Kochetov, Y. and N. Kochetova, T he server load balancing problem (in Russian), Vestn. Novos. U. Inf. Tech. 11 (2013), pp [9] Melnikov, A., Randomized local search for the discrete competitive facility location problem, Automation and Remote Control 75 (2014), pp

Solving dynamic memory allocation problems in embedded systems with parallel variable neighborhood search strategies

Solving dynamic memory allocation problems in embedded systems with parallel variable neighborhood search strategies Available online at www.sciencedirect.com Electronic Notes in Discrete Mathematics 47 (2015) 85 92 www.elsevier.com/locate/endm Solving dynamic memory allocation problems in embedded systems with parallel

More information

Solving Capacitated P-Median Problem by Hybrid K-Means Clustering and Fixed Neighborhood Search algorithm

Solving Capacitated P-Median Problem by Hybrid K-Means Clustering and Fixed Neighborhood Search algorithm Proceedings of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 10, 2010 Solving Capacitated P-Median Problem by Hybrid K-Means Clustering

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

GRASP. Greedy Randomized Adaptive. Search Procedure

GRASP. Greedy Randomized Adaptive. Search Procedure GRASP Greedy Randomized Adaptive Search Procedure Type of problems Combinatorial optimization problem: Finite ensemble E = {1,2,... n } Subset of feasible solutions F 2 Objective function f : 2 Minimisation

More information

GAUSSIAN VARIABLE NEIGHBORHOOD SEARCH FOR THE FILE TRANSFER SCHEDULING PROBLEM

GAUSSIAN VARIABLE NEIGHBORHOOD SEARCH FOR THE FILE TRANSFER SCHEDULING PROBLEM Yugoslav Journal of Operations Research 26 (2016), Number 2, 173 188 DOI: 10.2298/YJOR150124006D GAUSSIAN VARIABLE NEIGHBORHOOD SEARCH FOR THE FILE TRANSFER SCHEDULING PROBLEM Zorica DRAŽIĆ Faculty of

More information

Variable Neighborhood Search for Solving the Balanced Location Problem

Variable Neighborhood Search for Solving the Balanced Location Problem TECHNISCHE UNIVERSITÄT WIEN Institut für Computergraphik und Algorithmen Variable Neighborhood Search for Solving the Balanced Location Problem Jozef Kratica, Markus Leitner, Ivana Ljubić Forschungsbericht

More information

Variable Neighborhood Search

Variable Neighborhood Search Variable Neighborhood Search Hansen and Mladenovic, Variable neighborhood search: Principles and applications, EJOR 43 (2001) 1 Basic notions of VNS Systematic change of the neighborhood in search Does

More information

Solving Large Aircraft Landing Problems on Multiple Runways by Applying a Constraint Programming Approach

Solving Large Aircraft Landing Problems on Multiple Runways by Applying a Constraint Programming Approach Solving Large Aircraft Landing Problems on Multiple Runways by Applying a Constraint Programming Approach Amir Salehipour School of Mathematical and Physical Sciences, The University of Newcastle, Australia

More information

An Efficient Heuristic Algorithm for Capacitated Lot Sizing Problem with Overtime Decisions

An Efficient Heuristic Algorithm for Capacitated Lot Sizing Problem with Overtime Decisions An Efficient Heuristic Algorithm for Capacitated Lot Sizing Problem with Overtime Decisions Cagatay Iris and Mehmet Mutlu Yenisey Department of Industrial Engineering, Istanbul Technical University, 34367,

More information

Two models of the capacitated vehicle routing problem

Two models of the capacitated vehicle routing problem Croatian Operational Research Review 463 CRORR 8(2017), 463 469 Two models of the capacitated vehicle routing problem Zuzana Borčinová 1, 1 Faculty of Management Science and Informatics, University of

More information

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007)

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007) In the name of God Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm Spring 2009 Instructor: Dr. Masoud Yaghini Outlines Problem Definition Modeling As A Set Partitioning

More information

A Randomized Algorithm for Minimizing User Disturbance Due to Changes in Cellular Technology

A Randomized Algorithm for Minimizing User Disturbance Due to Changes in Cellular Technology A Randomized Algorithm for Minimizing User Disturbance Due to Changes in Cellular Technology Carlos A. S. OLIVEIRA CAO Lab, Dept. of ISE, University of Florida Gainesville, FL 32611, USA David PAOLINI

More information

Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems

Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-1, January 2016 Variable Neighbourhood Search for Uncapacitated Warehouse Location Problems Kemal Alaykiran,

More information

HEURISTIC ALGORITHMS FOR THE GENERALIZED MINIMUM SPANNING TREE PROBLEM

HEURISTIC ALGORITHMS FOR THE GENERALIZED MINIMUM SPANNING TREE PROBLEM Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics - ICTAMI 24, Thessaloniki, Greece HEURISTIC ALGORITHMS FOR THE GENERALIZED MINIMUM SPANNING TREE PROBLEM

More information

A two-level metaheuristic for the All Colors Shortest Path Problem

A two-level metaheuristic for the All Colors Shortest Path Problem Noname manuscript No (will be inserted by the editor) A two-level metaheuristic for the All Colors Shortest Path Problem F Carrabs R Cerulli R Pentangelo A Raiconi Received: date / Accepted: date Abstract

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

SOLVING THE TASK ASSIGNMENT PROBLEM WITH A VARIABLE NEIGHBORHOOD SEARCH. Jozef Kratica, Aleksandar Savić, Vladimir Filipović, Marija Milanović

SOLVING THE TASK ASSIGNMENT PROBLEM WITH A VARIABLE NEIGHBORHOOD SEARCH. Jozef Kratica, Aleksandar Savić, Vladimir Filipović, Marija Milanović Serdica J. Computing 4 (2010), 435 446 SOLVING THE TASK ASSIGNMENT PROBLEM WITH A VARIABLE NEIGHBORHOOD SEARCH Jozef Kratica, Aleksandar Savić, Vladimir Filipović, Marija Milanović Abstract. In this paper

More information

Branch-and-Bound Algorithms for Constrained Paths and Path Pairs and Their Application to Transparent WDM Networks

Branch-and-Bound Algorithms for Constrained Paths and Path Pairs and Their Application to Transparent WDM Networks Branch-and-Bound Algorithms for Constrained Paths and Path Pairs and Their Application to Transparent WDM Networks Franz Rambach Student of the TUM Telephone: 0049 89 12308564 Email: rambach@in.tum.de

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

A Row-and-Column Generation Method to a Batch Machine Scheduling Problem

A Row-and-Column Generation Method to a Batch Machine Scheduling Problem The Ninth International Symposium on Operations Research and Its Applications (ISORA 10) Chengdu-Jiuzhaigou, China, August 19 23, 2010 Copyright 2010 ORSC & APORC, pp. 301 308 A Row-and-Column Generation

More information

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen University of Copenhagen Outline Motivation and Background Minimum-Weight Spanner Problem Greedy Spanner Algorithm Exact Algorithm:

More information

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem Computational Complexity CSC 5802 Professor: Tom Altman Capacitated Problem Agenda: Definition Example Solution Techniques Implementation Capacitated VRP (CPRV) CVRP is a Vehicle Routing Problem (VRP)

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

Local search heuristic for multiple knapsack problem

Local search heuristic for multiple knapsack problem International Journal of Intelligent Information Systems 2015; 4(2): 35-39 Published online February 14, 2015 (http://www.sciencepublishinggroup.com/j/ijiis) doi: 10.11648/j.ijiis.20150402.11 ISSN: 2328-7675

More information

Principles of Optimization Techniques to Combinatorial Optimization Problems and Decomposition [1]

Principles of Optimization Techniques to Combinatorial Optimization Problems and Decomposition [1] International Journal of scientific research and management (IJSRM) Volume 3 Issue 4 Pages 2582-2588 2015 \ Website: www.ijsrm.in ISSN (e): 2321-3418 Principles of Optimization Techniques to Combinatorial

More information

A Hybrid Improvement Heuristic for the Bin Packing Problem

A Hybrid Improvement Heuristic for the Bin Packing Problem MIC 2001-4th Metaheuristics International Conference 63 A Hybrid Improvement Heuristic for the Bin Packing Problem Adriana C.F. Alvim Dario J. Aloise Fred Glover Celso C. Ribeiro Department of Computer

More information

Minimum Weight Constrained Forest Problems. Problem Definition

Minimum Weight Constrained Forest Problems. Problem Definition Slide 1 s Xiaoyun Ji, John E. Mitchell Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY, USA jix@rpi.edu, mitchj@rpi.edu 2005 Optimization Days Montreal, Canada May 09, 2005

More information

A New Algorithm for Solving the Operation Assignment Problem in 3-Machine Robotic Cell Scheduling

A New Algorithm for Solving the Operation Assignment Problem in 3-Machine Robotic Cell Scheduling Australian Journal of Basic and Applied Sciences, 5(12): 1578-1585, 211 ISSN 1991-8178 A New Algorithm for Solving the Operation Assignment Problem in 3-Machine Robotic Cell Scheduling 1 Mohammad Fathian,

More information

Outline. Optimales Recycling - Tourenplanung in der Altglasentsorgung

Outline. Optimales Recycling - Tourenplanung in der Altglasentsorgung 1 Optimales Recycling - Ruhr-Universität Bochum, 15.02.2013 2 1. Introduction and Motivation 2. Problem Definition 3. Literature Review 4. Mathematical Model 5. Variable Neighborhood Search 6. Numerical

More information

A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints

A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints Sohaib Afifi 1, Duc-Cuong Dang 1,2, and Aziz Moukrim 1 1 Université de Technologie de Compiègne

More information

α Coverage to Extend Network Lifetime on Wireless Sensor Networks

α Coverage to Extend Network Lifetime on Wireless Sensor Networks Noname manuscript No. (will be inserted by the editor) α Coverage to Extend Network Lifetime on Wireless Sensor Networks Monica Gentili Andrea Raiconi Received: date / Accepted: date Abstract An important

More information

11.1 Facility Location

11.1 Facility Location CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Facility Location ctd., Linear Programming Date: October 8, 2007 Today we conclude the discussion of local

More information

Tabu Search for Constraint Solving and Its Applications. Jin-Kao Hao LERIA University of Angers 2 Boulevard Lavoisier Angers Cedex 01 - France

Tabu Search for Constraint Solving and Its Applications. Jin-Kao Hao LERIA University of Angers 2 Boulevard Lavoisier Angers Cedex 01 - France Tabu Search for Constraint Solving and Its Applications Jin-Kao Hao LERIA University of Angers 2 Boulevard Lavoisier 49045 Angers Cedex 01 - France 1. Introduction The Constraint Satisfaction Problem (CSP)

More information

5. Lecture notes on matroid intersection

5. Lecture notes on matroid intersection Massachusetts Institute of Technology Handout 14 18.433: Combinatorial Optimization April 1st, 2009 Michel X. Goemans 5. Lecture notes on matroid intersection One nice feature about matroids is that a

More information

Parallel Computing in Combinatorial Optimization

Parallel Computing in Combinatorial Optimization Parallel Computing in Combinatorial Optimization Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Course Outline Objective: provide an overview of the current research on the design of parallel

More information

Branch-and-Cut and GRASP with Hybrid Local Search for the Multi-Level Capacitated Minimum Spanning Tree Problem

Branch-and-Cut and GRASP with Hybrid Local Search for the Multi-Level Capacitated Minimum Spanning Tree Problem Branch-and-Cut and GRASP with Hybrid Local Search for the Multi-Level Capacitated Minimum Spanning Tree Problem Eduardo Uchoa Túlio A.M. Toffolo Mauricio C. de Souza Alexandre X. Martins + Departamento

More information

Algorithms for Decision Support. Integer linear programming models

Algorithms for Decision Support. Integer linear programming models Algorithms for Decision Support Integer linear programming models 1 People with reduced mobility (PRM) require assistance when travelling through the airport http://www.schiphol.nl/travellers/atschiphol/informationforpassengerswithreducedmobility.htm

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

Adjusted Clustering Clarke-Wright Saving Algorithm for Two Depots-N Vehicles

Adjusted Clustering Clarke-Wright Saving Algorithm for Two Depots-N Vehicles Adjusted Clustering Clarke-Wright Saving Algorithm for Two Depots-N Vehicles S. Halim, L. Yoanita Department of Industrial Engineering, Petra Christian University, Surabaya, Indonesia (halim@petra.ac.id)

More information

Hybrid ant colony optimization algorithm for two echelon vehicle routing problem

Hybrid ant colony optimization algorithm for two echelon vehicle routing problem Available online at www.sciencedirect.com Procedia Engineering 15 (2011) 3361 3365 Advanced in Control Engineering and Information Science Hybrid ant colony optimization algorithm for two echelon vehicle

More information

Assigning Judges to Competitions Using Tabu Search Approach

Assigning Judges to Competitions Using Tabu Search Approach Assigning Judges to Competitions Using Tabu Search Approach Amina Lamghari Jacques A. Ferland Computer science and OR dept. University of Montreal Faculty of Information Technology University of Science

More information

USING INJECTION POINTS IN REFORMULATION LOCAL SEARCH FOR SOLVING CONTINUOUS LOCATION PROBLEMS

USING INJECTION POINTS IN REFORMULATION LOCAL SEARCH FOR SOLVING CONTINUOUS LOCATION PROBLEMS Yugoslav Journal of Operations Research 27 (2017), Number 3, 291 300 DOI: 10.2298/YJOR160517018B USING INJECTION POINTS IN REFORMULATION LOCAL SEARCH FOR SOLVING CONTINUOUS LOCATION PROBLEMS Jack BRIMBERG

More information

Size-reduction methods for the unrelated parallel machines problem and makespan criterion

Size-reduction methods for the unrelated parallel machines problem and makespan criterion 4 th International Conference on Industrial Engineering and Industrial Management XIV Congreso de Ingeniería de Organización Donostia- San Sebastián, September 8 th -10 th 2010 Size-reduction methods for

More information

A Benders decomposition approach for the robust shortest path problem with interval data

A Benders decomposition approach for the robust shortest path problem with interval data A Benders decomposition approach for the robust shortest path problem with interval data R. Montemanni, L.M. Gambardella Istituto Dalle Molle di Studi sull Intelligenza Artificiale (IDSIA) Galleria 2,

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Very Large Scale Neighborhood Search. Collaborators include: Ravi Ahuja, Ozlem Ergun, Abraham Punnen, Dushyant Sharma

Very Large Scale Neighborhood Search. Collaborators include: Ravi Ahuja, Ozlem Ergun, Abraham Punnen, Dushyant Sharma Very Large Scale Neighborhood Search Collaborators include: Ravi Ahuja, Ozlem Ergun, Abraham Punnen, Dushyant Sharma Neighborhood Search Combinatorial Optimization: minimize (f(s) : S F) f is typically

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

Hybrid Differential Evolution Algorithm for Traveling Salesman Problem

Hybrid Differential Evolution Algorithm for Traveling Salesman Problem Available online at www.sciencedirect.com Procedia Engineering 15 (2011) 2716 2720 Advanced in Control Engineeringand Information Science Hybrid Differential Evolution Algorithm for Traveling Salesman

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Instituto Nacional de Pesquisas Espaciais - INPE/LAC Av. dos Astronautas, 1758 Jd. da Granja. CEP São José dos Campos S.P.

Instituto Nacional de Pesquisas Espaciais - INPE/LAC Av. dos Astronautas, 1758 Jd. da Granja. CEP São José dos Campos S.P. XXXIV THE MINIMIZATION OF TOOL SWITCHES PROBLEM AS A NETWORK FLOW PROBLEM WITH SIDE CONSTRAINTS Horacio Hideki Yanasse Instituto Nacional de Pesquisas Espaciais - INPE/LAC Av. dos Astronautas, 1758 Jd.

More information

Graph Coloring via Constraint Programming-based Column Generation

Graph Coloring via Constraint Programming-based Column Generation Graph Coloring via Constraint Programming-based Column Generation Stefano Gualandi Federico Malucelli Dipartimento di Elettronica e Informatica, Politecnico di Milano Viale Ponzio 24/A, 20133, Milan, Italy

More information

A New Bound for the Midpoint Solution in Minmax Regret Optimization with an Application to the Robust Shortest Path Problem

A New Bound for the Midpoint Solution in Minmax Regret Optimization with an Application to the Robust Shortest Path Problem A New Bound for the Midpoint Solution in Minmax Regret Optimization with an Application to the Robust Shortest Path Problem André Chassein and Marc Goerigk Fachbereich Mathematik, Technische Universität

More information

8 Matroid Intersection

8 Matroid Intersection 8 Matroid Intersection 8.1 Definition and examples 8.2 Matroid Intersection Algorithm 8.1 Definitions Given two matroids M 1 = (X, I 1 ) and M 2 = (X, I 2 ) on the same set X, their intersection is M 1

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 10: Optimisation (1) A/Prof Chun Tung Chou CSE, UNSW COMP9334, Chun Tung Chou, 2016 Three Weeks of Optimisation The lectures for these

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

C 1 Modified Genetic Algorithm to Solve Time-varying Lot Sizes Economic Lot Scheduling Problem

C 1 Modified Genetic Algorithm to Solve Time-varying Lot Sizes Economic Lot Scheduling Problem C 1 Modified Genetic Algorithm to Solve Time-varying Lot Sizes Economic Lot Scheduling Problem Bethany Elvira 1, Yudi Satria 2, dan Rahmi Rusin 3 1 Student in Department of Mathematics, University of Indonesia,

More information

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini Metaheuristic Development Methodology Fall 2009 Instructor: Dr. Masoud Yaghini Phases and Steps Phases and Steps Phase 1: Understanding Problem Step 1: State the Problem Step 2: Review of Existing Solution

More information

Effective probabilistic stopping rules for randomized metaheuristics: GRASP implementations

Effective probabilistic stopping rules for randomized metaheuristics: GRASP implementations Effective probabilistic stopping rules for randomized metaheuristics: GRASP implementations Celso C. Ribeiro Isabel Rosseti Reinaldo C. Souza Universidade Federal Fluminense, Brazil July 2012 1/45 Contents

More information

Solving the Capacitated Single Allocation Hub Location Problem Using Genetic Algorithm

Solving the Capacitated Single Allocation Hub Location Problem Using Genetic Algorithm Solving the Capacitated Single Allocation Hub Location Problem Using Genetic Algorithm Faculty of Mathematics University of Belgrade Studentski trg 16/IV 11 000, Belgrade, Serbia (e-mail: zoricast@matf.bg.ac.yu)

More information

ACO and other (meta)heuristics for CO

ACO and other (meta)heuristics for CO ACO and other (meta)heuristics for CO 32 33 Outline Notes on combinatorial optimization and algorithmic complexity Construction and modification metaheuristics: two complementary ways of searching a solution

More information

A Memetic Algorithm for Parallel Machine Scheduling

A Memetic Algorithm for Parallel Machine Scheduling A Memetic Algorithm for Parallel Machine Scheduling Serafettin Alpay Eskişehir Osmangazi University, Industrial Engineering Department, Eskisehir, Turkiye Abstract - This paper focuses on the problem of

More information

Models and Algorithms for Competitive Facility Location Problems with Different Customer Behavior

Models and Algorithms for Competitive Facility Location Problems with Different Customer Behavior TECHNISCHE UNIVERSITÄT WIEN Institut für Computergraphik und Algorithmen Models and Algorithms for Competitive Facility Location Problems with Different Customer Behavior Benjamin Biesinger, Bin Hu, and

More information

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007

Topic: Local Search: Max-Cut, Facility Location Date: 2/13/2007 CS880: Approximations Algorithms Scribe: Chi Man Liu Lecturer: Shuchi Chawla Topic: Local Search: Max-Cut, Facility Location Date: 2/3/2007 In previous lectures we saw how dynamic programming could be

More information

New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm

New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm New Trials on Test Data Generation: Analysis of Test Data Space and Design of Improved Algorithm So-Yeong Jeon 1 and Yong-Hyuk Kim 2,* 1 Department of Computer Science, Korea Advanced Institute of Science

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

Variable Neighborhood Search Based Algorithm for University Course Timetabling Problem

Variable Neighborhood Search Based Algorithm for University Course Timetabling Problem Variable Neighborhood Search Based Algorithm for University Course Timetabling Problem Velin Kralev, Radoslava Kraleva South-West University "Neofit Rilski", Blagoevgrad, Bulgaria Abstract: In this paper

More information

A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming

A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming A Computational Study of Conflict Graphs and Aggressive Cut Separation in Integer Programming Samuel Souza Brito and Haroldo Gambini Santos 1 Dep. de Computação, Universidade Federal de Ouro Preto - UFOP

More information

B553 Lecture 12: Global Optimization

B553 Lecture 12: Global Optimization B553 Lecture 12: Global Optimization Kris Hauser February 20, 2012 Most of the techniques we have examined in prior lectures only deal with local optimization, so that we can only guarantee convergence

More information

1. Lecture notes on bipartite matching February 4th,

1. Lecture notes on bipartite matching February 4th, 1. Lecture notes on bipartite matching February 4th, 2015 6 1.1.1 Hall s Theorem Hall s theorem gives a necessary and sufficient condition for a bipartite graph to have a matching which saturates (or matches)

More information

A LOWER BOUND FOR THE QAP BASED ON GRAPH THEORY AND LINEAR PROGRAMMING

A LOWER BOUND FOR THE QAP BASED ON GRAPH THEORY AND LINEAR PROGRAMMING A LOWER BOUND FOR THE QAP BASED ON GRAPH THEORY AND LINEAR PROGRAMMING André R. S. Amaral Universidade Federal do Espírito Santo, Departamento de Informática, 29060-900, Vitória, ES, Brasil Abstract Let

More information

Solving the p-center Problem with Tabu Search and Variable Neighborhood Search

Solving the p-center Problem with Tabu Search and Variable Neighborhood Search Solving the p-center Problem with Tabu Search and Variable Neighborhood Search Nenad Mladenović Service de Mathématiques de la Gestion, Université Libre de Bruxelles, Brussels, Belgium; GERAD and HEC Montréal,

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Analysis and Experimental Study of Heuristics for Job Scheduling Reoptimization Problems

Analysis and Experimental Study of Heuristics for Job Scheduling Reoptimization Problems Analysis and Experimental Study of Heuristics for Job Scheduling Reoptimization Problems Elad Iwanir and Tami Tamir Abstract Many real-life applications involve systems that change dynamically over time.

More information

An Introduction to Dual Ascent Heuristics

An Introduction to Dual Ascent Heuristics An Introduction to Dual Ascent Heuristics Introduction A substantial proportion of Combinatorial Optimisation Problems (COPs) are essentially pure or mixed integer linear programming. COPs are in general

More information

Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012

Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 Solving Assembly Line Balancing Problem in the State of Multiple- Alternative

More information

A Modular Multiphase Heuristic Solver for Post Enrolment Course Timetabling

A Modular Multiphase Heuristic Solver for Post Enrolment Course Timetabling A Modular Multiphase Heuristic Solver for Post Enrolment Course Timetabling Marco Chiarandini 1, Chris Fawcett 2, and Holger H. Hoos 2,3 1 University of Southern Denmark, Department of Mathematics and

More information

INSERTION SORT APPROACH FOR THE CAR SEQUENCING PROBLEM

INSERTION SORT APPROACH FOR THE CAR SEQUENCING PROBLEM 195 The 5 th International Conference on Information & Communication Technology and Systems INSERTION SORT APPROACH FOR THE CAR SEQUENCING PROBLEM Bilqis Amaliah 1, Chastine Fatichah 2 1,2 Informatics

More information

A Late Acceptance Hill-Climbing algorithm the winner of the International Optimisation Competition

A Late Acceptance Hill-Climbing algorithm the winner of the International Optimisation Competition The University of Nottingham, Nottingham, United Kingdom A Late Acceptance Hill-Climbing algorithm the winner of the International Optimisation Competition Yuri Bykov 16 February 2012 ASAP group research

More information

polygonal approximations

polygonal approximations An improved method for obtaining optimal polygonal approximations A. Carmona-Poyato; F. J. Madrid-Cuevas; N. L. Fernández-García; R. Medina-Carnicer Abstract In computer vision, polygonal approximations

More information

Simplicial Global Optimization

Simplicial Global Optimization Simplicial Global Optimization Julius Žilinskas Vilnius University, Lithuania September, 7 http://web.vu.lt/mii/j.zilinskas Global optimization Find f = min x A f (x) and x A, f (x ) = f, where A R n.

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

Massively Parallel Approximation Algorithms for the Knapsack Problem

Massively Parallel Approximation Algorithms for the Knapsack Problem Massively Parallel Approximation Algorithms for the Knapsack Problem Zhenkuang He Rochester Institute of Technology Department of Computer Science zxh3909@g.rit.edu Committee: Chair: Prof. Alan Kaminsky

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Column Generation Method for an Agent Scheduling Problem

Column Generation Method for an Agent Scheduling Problem Column Generation Method for an Agent Scheduling Problem Balázs Dezső Alpár Jüttner Péter Kovács Dept. of Algorithms and Their Applications, and Dept. of Operations Research Eötvös Loránd University, Budapest,

More information

Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems

Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems Local Search Approximation Algorithms for the Complement of the Min-k-Cut Problems Wenxing Zhu, Chuanyin Guo Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, Fuzhou

More information

LOW AND HIGH LEVEL HYBRIDIZATION OF ANT COLONY SYSTEM AND GENETIC ALGORITHM FOR JOB SCHEDULING IN GRID COMPUTING

LOW AND HIGH LEVEL HYBRIDIZATION OF ANT COLONY SYSTEM AND GENETIC ALGORITHM FOR JOB SCHEDULING IN GRID COMPUTING LOW AND HIGH LEVEL HYBRIDIZATION OF ANT COLONY SYSTEM AND GENETIC ALGORITHM FOR JOB SCHEDULING IN GRID COMPUTING Mustafa Muwafak Alobaedy 1, and Ku Ruhana Ku-Mahamud 2 2 Universiti Utara Malaysia), Malaysia,

More information

Solving Single Machine Scheduling Problem with Maximum Lateness Using a Genetic Algorithm

Solving Single Machine Scheduling Problem with Maximum Lateness Using a Genetic Algorithm Solving Single Machine Scheduling Problem with Maximum Lateness Using a Genetic Algorithm Habibeh NAZIF (Corresponding author) Department of Mathematics, Faculty of Science Universiti Putra Malaysia, 43400

More information

A Kruskal-Based Heuristic for the Rooted Delay-Constrained Minimum Spanning Tree Problem

A Kruskal-Based Heuristic for the Rooted Delay-Constrained Minimum Spanning Tree Problem A Kruskal-Based Heuristic for the Rooted Delay-Constrained Minimum Spanning Tree Problem Mario Ruthmair and Günther R. Raidl Institute of Computer Graphics and Algorithms Vienna University of Technology,

More information

Algorithms for the Bin Packing Problem with Conflicts

Algorithms for the Bin Packing Problem with Conflicts Algorithms for the Bin Packing Problem with Conflicts Albert E. Fernandes Muritiba *, Manuel Iori, Enrico Malaguti*, Paolo Toth* *Dipartimento di Elettronica, Informatica e Sistemistica, Università degli

More information

Methods and Models for Combinatorial Optimization Modeling by Linear Programming

Methods and Models for Combinatorial Optimization Modeling by Linear Programming Methods and Models for Combinatorial Optimization Modeling by Linear Programming Luigi De Giovanni, Marco Di Summa 1 Linear programming models Linear programming models are a special class of mathematical

More information

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec.

Randomized rounding of semidefinite programs and primal-dual method for integer linear programming. Reza Moosavi Dr. Saeedeh Parsaeefard Dec. Randomized rounding of semidefinite programs and primal-dual method for integer linear programming Dr. Saeedeh Parsaeefard 1 2 3 4 Semidefinite Programming () 1 Integer Programming integer programming

More information

Research Incubator: Combinatorial Optimization. Dr. Lixin Tao December 9, 2003

Research Incubator: Combinatorial Optimization. Dr. Lixin Tao December 9, 2003 Research Incubator: Combinatorial Optimization Dr. Lixin Tao December 9, 23 Content General Nature of Research on Combinatorial Optimization Problem Identification and Abstraction Problem Properties and

More information

CHAPTER 6 STATISTICAL MODELING OF REAL WORLD CLOUD ENVIRONMENT FOR RELIABILITY AND ITS EFFECT ON ENERGY AND PERFORMANCE

CHAPTER 6 STATISTICAL MODELING OF REAL WORLD CLOUD ENVIRONMENT FOR RELIABILITY AND ITS EFFECT ON ENERGY AND PERFORMANCE 143 CHAPTER 6 STATISTICAL MODELING OF REAL WORLD CLOUD ENVIRONMENT FOR RELIABILITY AND ITS EFFECT ON ENERGY AND PERFORMANCE 6.1 INTRODUCTION This chapter mainly focuses on how to handle the inherent unreliability

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

A Column Generation based Heuristic for Maximum Lifetime Coverage in Wireless Sensor Networks

A Column Generation based Heuristic for Maximum Lifetime Coverage in Wireless Sensor Networks A Column Generation based Heuristic for Maximum Lifetime Coverage in Wireless Sensor Networks Karine Deschinkel LIFC Laboratory, Université de Franche-Comté Belfort, France Email: karine.deschinkel@univ-fcomte.fr

More information

A Binary Integer Linear Programming-Based Approach for Solving the Allocation Problem in Multiprocessor Partitioned Scheduling

A Binary Integer Linear Programming-Based Approach for Solving the Allocation Problem in Multiprocessor Partitioned Scheduling A Binary Integer Linear Programming-Based Approach for Solving the Allocation Problem in Multiprocessor Partitioned Scheduling L. Puente-Maury, P. Mejía-Alvarez, L. E. Leyva-del-Foyo Department of Computer

More information

Optimization of fuzzy multi-company workers assignment problem with penalty using genetic algorithm

Optimization of fuzzy multi-company workers assignment problem with penalty using genetic algorithm Optimization of fuzzy multi-company workers assignment problem with penalty using genetic algorithm N. Shahsavari Pour Department of Industrial Engineering, Science and Research Branch, Islamic Azad University,

More information

Effective Local Search Algorithms for the Vehicle Routing Problem with General Time Window Constraints

Effective Local Search Algorithms for the Vehicle Routing Problem with General Time Window Constraints MIC 2001-4th Metaheuristics International Conference 293 Effective Local Search Algorithms for the Vehicle Routing Problem with General Time Window Constraints Toshihide Ibaraki Mikio Kubo Tomoyasu Masuda

More information

New algorithm for analyzing performance of neighborhood strategies in solving job shop scheduling problems

New algorithm for analyzing performance of neighborhood strategies in solving job shop scheduling problems Journal of Scientific & Industrial Research ESWARAMURTHY: NEW ALGORITHM FOR ANALYZING PERFORMANCE OF NEIGHBORHOOD STRATEGIES 579 Vol. 67, August 2008, pp. 579-588 New algorithm for analyzing performance

More information