GIS based topology for wireless sensor network modeling: Arc-Node topology approach

Size: px
Start display at page:

Download "GIS based topology for wireless sensor network modeling: Arc-Node topology approach"

Transcription

1 GIS based topology for wireless sensor network modeling: Arc-Node topology approach S.Amin Hosseini (Author) Zanjan Branch, Islamic Azad University, Zanjan,. Iran Behrooz Minaei Bidgoli University of. Science and Technology, Tehran, Iran Mehdi Afzali Zanjan Branch, Islamic Azad University, Zanjan,. Iran Abstract in wireless sensor network, sensors usually deployed randomly over environment. Some important aspect of network including, coverage and hole detection are under research. Existing natural and artificial obstacles in environment may cause failure in algorithm that network using in real environment. Hence in this work, Arc- Node topology base on GIS is designed to modeling network. Our topology is based on spatial data structure which is important part of GIS. Keywords: wireless sensor network, GIS, Arc-Node topology, spatial mining. 1. INTRODUCTION Introducing of wireless sensor network and use this technology in electronic and transmission industry was useful because of tiny sensor and low energy consumption and multiple useful applications. This tiny sensor has ability to sensing environment and process of information due to create wide network as wireless sensor network. WSNs technology has very broad application respects, which can be used in military, industrial, and agriculture control and biomedical and etc. In majority of application, we have to release sensors in environment randomly, such as using airplanes because of wide region and numbers of sensors. Result of this spreading is unknown location of sensors in environment and region. In other hand protocols and algorithms over this type of network should be aware of situation of sensors and ability to self-deployment. Other unique feature of WSN is ability of cooperation and synchronization beside sensors. Every sensor has own processor. Instead of sending all information to base station, first sensor itself did some process with received data and send information to base station to use. One of the most important problems in sensor network is coverage which determines how well the sensors spread in region. Coverage problem is one of the factors of WSN 1 QoS (Quality of services) Coverage and in WSN is direct related to how modeling network. Node location, energy consumption, hole detection, and other aspect of network is based on network modeling.[2][3] Modeling sensor network is under study since WSN introduce but recently research focus on reality of models. In most of model that will be discussed in next section doesn't consider reality. For example existence of obstacle or lake in region can make mistake for model and 1 Wireless sensor network algorithm. Our model in this paper focuses on GIS feature and will use GIS topology to modeling network. This modeling could work with every GIS software and combination of GIS and sensor network feature can be creating useful model for sensor network. The rest of the paper is organized as follows. In section 2 the area of modeling sensor network over recent year is introduced. In section 3 spatial data is introduced. In section 4 we will compare spatial and aspatial mining. In section 5 we will explain how to presenting object in spatial. Base element of spatial mining explains in section 6. Spatial data structure and arc-node model introduce in section 7 and 8. In last section we will implement arc-node topology over wireless sensor network and mining location of sensor. 2. RELATED WORK Application of WSN in spatial domain includes region and environment monitoring using number of sensors. (Duckham et al. 2005, Werner-Allen et al. 2006). In some recent works GIS information use for defining best position of node location but most of the time putting sensor in exact time isn t possible. A geosensor network is define by Nittel et al.(2004) as a WSN that work on phenomena in geographic space. This type of network modeling is distributed model. One of the most important factors in WSN is decentralizing algorithm and make distributed monitoring. Because energy consumption is one of critical issue of WSN and making decision in own sensor will reduce energy consumption in compare of being one base station to handle and manage sensors. There is a lot of research in sensor network coverage in multiple ways, most of research is base of Voronoi diagram approach, here we have three of algorithm that use Voronoi approach to modeling sensor network for solve coverage problem. Voronoi itself, Vector base model and Minimax model are three of important model which are base of most of research. The Voronoi diagram [14] [15] is an important data structure in computational geometry. It represents the proximity information about a set of geometric nodes. The Voronoi diagram of a collection of nodes partitions the space into polygons. Every point in a given polygon is closer to the node in this polygon than to any other node. The algorithms rely on Voronoi diagram have several problem practically. One of the foremost assumptions of this work is that sensor can easily detect all or most of its Voronoi neighbors through local communication, but these assumption isn t correct in real world, because sensing range of sensor may not be enough to cover all neighbors. 315

2 Other issue about voronoi is significant sensing overlaps or voids among sensor may be ignored leading to poor network coverage. 3. SPATIAL DATA Advanced in database technology and data collection technique including text, remote sensing, geographical data, image, etc., have huge amount of data [5]. This huge data also need mechanism for handling. This growing data creates has necessity of knowledge discovery from data which data mining or knowledge discovery in database (KDD) are field to reach information. One of the most important data is geographical data which growing quickly over the world. The data that collect in geographical software also called spatial data. Spatial data is important part of GIS and spatial analyzing. In other hand spatial analyzing need spatial data with difference specification. Next we will describe some part of GIS system: Spatial data organization Defining map symbol and present them Making multiple element Difference in data structure In first part we describe two general spatial and aspatial data. Spatial data related to spatial object and location of object, so elements should be able to present over map. In second part we will describe symbol over map and determine ways to maintain object in database. In third part we study more detail about symbols. There is two multiple data model: raster and vector that will determine spatial object specification and at the end Arc-Node data model will be explain. 4. SPATIAL AND ASPATIAL MINING Data analyzing accomplish as spatial and aspatial way. In spatial analyzing we concentrate on data's location, prediction and description of phenomenon using location base data, while in aspatial analyzing for description of phenomenon, spatial data and details is not needed. Some variable has spatial meaning in compare of others. It depends on having spatial dependency; subject can be analyzing using spatial or non-spatial. For example capitation data are absolutely spatial base but can use it in non-spatial way too. 5. SPATIAL OBJECT: HOW TO PRESENT? In spatial-based analyzing we should present related symbols over map to make spatial relation between them. Location base data and feature processing has developed in GIS software. Best process need clear definition of spatial objects. Digital presentation of spatial objects present as point, line and polygon.[8][9] Point is zero dimensions that present geometrical location. Accordingly, point shape uses just for presenting location and other measurement is not meaningful. Although points has different size but area of point is not meaningful. Line is one dimension in geometrical and also present direction and size. 6. BASE ELEMENTS OF SPATIAL DATA Spatial mining has need six data element. Location: exact location of every spatial combination must be exist and be able to present in Cartesian coordinate. Attribute data: in this part very important feature about spatial combination is under study. For example if every point show the shaft in map, attribute information must be exist about height, quality, water level and ownership of shaft. Topology: Topology defines dependency among map's element. For example if there is polygon in map, maybe you need to know its polygon is inside other polygon or not. About linear shape maybe you need to know that two lines has been contact directly or using middle line or are completely separate. About points, distance of points from each other and distance from specific location is most interest in related work. Containment: determined that combination will be in polygon's scope or not. Adjacency: determined that polygons are neighborhood each other or not. Adjacency uses for study over spatial dependency between map's elements. Connectivity: determined that two line are connect or not. Connectivity issue using in transportation and routing and also use in finding minimum routing path. As we mention before, point, line and polygon is basic spatial object. Point is simplest spatial object that needed lowest level of information for analyzing. Minimum data for presenting point is location and attribute data. In spatial data, point represent as: Pi(x, y, z1, z2, z3 zn) (1) Where i is point identify number, x and y is coordinate of point and z1 to zn is attribute variable. Spatial Dependency among points represent with mathematic relation. Line and line are other important topological element is GIS. Thus, Line will present as: Lj(p1,p2,...,pn,z1,z2, zm,η1, η2, η3,.. ηq) (2) Where j is line identify number, p1 to pn determine direction of line using points order and z1 to zn are attribute variable. Variables η1 to η2 are extra information about line and. Extra information could use for line and explain how line connect each other. Other useful way to is Arc-node topology that will explain in this paper. Polygon combination is most complex than other spatial objects and define using set of line and direction. Polygons define over 2D environment, so every polygon has specific area and has unknown shape and size too. Exploring spatial dependency is very hard and complex without making specific structure for polygons. A necessary data element structure for polygon combination is like: Gk=(L1,, Ln,Z1,, Zm,S1,, Sr, φ1, φs φ1,, φt) (3) Where k is polygon identify number, L1,, Ln are combination of lines for drawing polygon lines, Z1, Zm are attribute variables, S1, Sr are neighbors polygon feature, φ1 φs is identify number of polygon that 316

3 polygon K include them, and φ1, φt is identify number of polygon that include polygon K. 7. DATA STRUCTURE Spatial data can be classified in two groups: Raster and Vector. In raster structure spatial attribute organized in coordinate system but in vector structure spatial data organized as set of vector. Data structure determined organization and processing multiple part of in GIS. In vector data structure every spatial combination present using set of vectors. In mathematic definition vector start with specific <x,y> coordinate and specific direction <0-360> and vector length. Every lines present using sequence of vector. sensing disk will be model's point. Arcs in every circle will be draw from every point to nearest point in each circle. For example, consider the simple Arc-node model for four sensors illustration in Figure 1. Arc-node topology maintains information in multiple files. For example we consider part of Urumie Lake and use some sensor for getting information about this lake. We put sensor randomly beside of lake that you could see sensors field with drawn circle as you can see in figure ARC-NODE DATA MODEL Arc-node topology is one of the basic structures that using for organization of different part of data in GIS based systems. This data model is efficient information system that works with vectors. In this model arc data are basic element and every arc has two start and end node which between two nodes is some vertex. Every node define as <x,y> coordinate and difference between vertex and node is how using of topology. Nodes use coordinate and topology, but vertex just has coordinated. Arc data has number of attribute: Arc identify number Start Node's ID End Node's ID Left Polygon's ID Right polygon's ID Start node coordinate End node coordinate Coordinate of all vertex Node's topology will be meaningful when presenting of crossing is proposed. In Arc-Node model every point uses as a point and scope of polygons present using set of arc and set of connected arc. In addition, topological relation between polygons represent as point. Topological relation is most important advantage of arc-node topology; For example supposed that we want check status of polygon's neighbor's. One simple way to do this purpose is checking arc that is beside of polygon. Arc information registered in multiple files. ATT and PAT are two important tables to region modeling. PAT table maintain information about polygons. First record of this table has whole region information and other regions information will maintain in next records. Information about arcs also maintain in ATT table. For every region and arc has considered identify number and in ATT table for every arc has maintain start node, end node, left region and right region. Connectivity, containment, adjacency are three important elements in Arc-model which using these model could find neighbors polygon easily. Fig 1: Simple Arc-Node model for four sensors Arc-node topology maintains information in multiple files. For example we consider part of Urumie Lake and use some sensor for getting information about this lake. We put sensor randomly beside of lake that you could see sensors field with drawn circle as you can see in figure 3. In next step topology should define arcs and nodes. Every points of contact sensing radius is model's node. As you can see in figure 4 nodes and arc has drawn over map. We maintain information of nodes, arcs and region (polygons) in separated files. Also you can see this information in figure 6, 7, 8. Fig 2: satellite image from part of Urumie Lake 9. ARC-NODE MODEL IN WSN As we mention before Arc-node model divided region using drawing arcs. For drawing arc we should define rule and formulate network. One can, we suppose that network's sensor is model's node and contact point of 317

4 P7 P8 P9 P Fig 3: spread sensors randomely over Lake Fig 4: first step of modeling: finding node location using sensing radius contact point Polygons information helps software to make better sensors decision about location and neighbor's sensor and environment. Next step is register arcs in ATT tables as below: TABLE 2: ATT TABLE FOR WIRELESS SENSOR NETWORK R Arc's ID Start Node End Node Right polygon Left polygon 1 1 N2 N1 P2-2 2 N13 N15 - P4 3 3 N15 N14 - P N12 N14 P3-5 5 N2 N1 P2 P1 6 6 N2 N3 P4 P9 7 7 N1 N10 P10 P3 8 8 N14 N11 P3 P5 9 9 N3 N4 P5 P N11 N9 P6 P N10 N7 P10 P N8 N7 P7 P N7 N6 P10 P N5 N6 P7 P N4 N5 P8 P N4 N9 P5 P N8 N5 P8 P9 10. STATE OF OUR WORK In this section our approach compare with similar work like Minimax and VEC and VOR. These solution are based on voronoi diagram which has problem on modeling network in obstacle consideration. Other different is on how deploying of sensors which these three method need complete connected network but in our work connected network isn t necessary. Fig 5: second step of modeling: draw arcs between nodes over network TABLE 3: COMPARITION OF PREVIOUS SHEMES WITH THE PROPOSED SHEME After drawing arc and making model's information file, we could set ATT and PAT tables for sensor network. We will use three information file that include node location, arc information and region (polygon) data. We register network polygons information in PAT table as below: Proposed solution Minimax Characteristic Deployment strategy Known other sensor location TABLE 1: PAT TABLE FORWIRELESS SENSOR NETWORK R Polygon's ID 0 P1 P2 P3 P4 P5 P6 Area(km) Surface(km 2 ) VOR VEC Our approach Distributed No (need just first hop) 318

5 environment without considering reality such as obstacle, lake, etc. Arc-node topology modeled network using arcs and environment feature and topological relation between them and registered information in two tables. In feature work should study more network factor like, hole detection, mobility, etc. under this type of network modeling. This model will be useable with other GIS software like ArcGIS and etc. 11. REFERENCES Fig 6: (a) arcs information file define using numbers. (b) Nodes location file define using numbers. (c) Region (polygon) information defines using numbers. [1] Chuan Zhu, A survey on coverage and issue in wireless sensor networks,journal of Network and Computer Application, 2012, 35, [2] M.Amac Guvensan, On coverage issues in directional sensor networks: A survey, Ad Hoc Network, 2011, 9, [3] M.Argany A GIS Based wireless sensor network coverage estimation and optimization: A voronoi Approach, Trans on Comput. Sci. XIV,2011, 6970, [4] Kung-Ying, Hole detection and Boundary Recognition in WSN, IEEE [5] Linghe Kong, Surface Coverage in Sensor Network, IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEM, Vol X.No X [6] Subir Halder, Enhancement of wireless sensor network lifetime by deploying heterogeneous nodes, Journal of Network and Computer Applications,2013, (ARTICLE IN PRESS) [7] Megiddo, N.: Linear-time algorithms for linear programming in R3 and related problems.siam J. Computing 12, (1983) [8] Sharifzadeh, M., Shahabi, C.: Supporting spatial aggregation in sensor network databases.in: Proc. 12th Annual ACM International Workshop on Geographic Information Systems,pp (2004) [9] Jie jia, Multi-objective optimization for coverage control in wireless sensor network with adjustable sensing radius, Computers and mathematic with application, 2009, 57, [10] Peng-jun Wan, Coverage by randomly deployed wireless sensor networks, IEEE International Symposium on network Computing, [11] Yue Wang, Boundary Recognition in sensor networks by topological method, MobiCom '06 Proceedings of the 12th annual international conference on Mobile computing and networking,2006, [12] Nadeem Ahmed, The holes problem in wireless sensor networks: a survey, ACMSIGMOBILE Mobile Computing and Communications Review Homepage archive Volume 9 Issue 2, April 2005, Pages [13] Fucai Yu, Anchor Node Based Virtual Modeling of Holes in Wireless Sensor Networks, Communications, ICC '08. IEEE International Conference on, 2008, [14] Hwa Chun, Computational geometry based distributed coverage hole detection protocol for the wireless sensor networks, Journal of Network and Computer Application, 34, 2011, CONCLUSION AND FEATURE WORK In this paper we study new version of WSN modeling using GIS topology because previous work just try to modeling network with simulator over 2D and 3D 319

Analysis Range-Free Node Location Algorithm in WSN

Analysis Range-Free Node Location Algorithm in WSN International Conference on Education, Management and Computer Science (ICEMC 2016) Analysis Range-Free Node Location Algorithm in WSN Xiaojun Liu1, a and Jianyu Wang1 1 School of Transportation Huanggang

More information

CFMTL: Clustering Wireless Sensor Network Using Fuzzy Logic and Mobile Sink In Three-Level

CFMTL: Clustering Wireless Sensor Network Using Fuzzy Logic and Mobile Sink In Three-Level CFMTL: Clustering Wireless Sensor Network Using Fuzzy Logic and Mobile Sink In Three-Level Ali Abdi Seyedkolaei 1 and Ali Zakerolhosseini 2 1 Department of Computer, Shahid Beheshti University, Tehran,

More information

Mobile Element Scheduling for Efficient Data Collection in Wireless Sensor Networks: A Survey

Mobile Element Scheduling for Efficient Data Collection in Wireless Sensor Networks: A Survey Journal of Computer Science 7 (1): 114-119, 2011 ISSN 1549-3636 2011 Science Publications Mobile Element Scheduling for Efficient Data Collection in Wireless Sensor Networks: A Survey K. Indra Gandhi and

More information

Energy Aware Node Placement Algorithm for Wireless Sensor Network

Energy Aware Node Placement Algorithm for Wireless Sensor Network Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 6 (2014), pp. 541-548 Research India Publications http://www.ripublication.com/aeee.htm Energy Aware Node Placement Algorithm

More information

A survey of wireless sensor networks deployment techniques

A survey of wireless sensor networks deployment techniques A survey of wireless sensor networks deployment techniques Michał Marks Institute of Control and Computation Engineering Warsaw University of Technology Research and Academic Computer Network (NASK) DSTIS

More information

PROJECT REPORT VIRTUAL COORDINATE GENERATOR AND ROUTING SIMULATION TOOL FOR WIRELESS SENSOR NETWORKS IN 2 AND 3-DIMENSIONAL NETWORK SPACE

PROJECT REPORT VIRTUAL COORDINATE GENERATOR AND ROUTING SIMULATION TOOL FOR WIRELESS SENSOR NETWORKS IN 2 AND 3-DIMENSIONAL NETWORK SPACE PROJECT REPORT VIRTUAL COORDINATE GENERATOR AND ROUTING SIMULATION TOOL FOR WIRELESS SENSOR NETWORKS IN 2 AND 3-DIMENSIONAL NETWORK SPACE Submitted by Aravindhan Vijayaraj Department of Electrical and

More information

Boundary Recognition in Sensor Networks. Ng Ying Tat and Ooi Wei Tsang

Boundary Recognition in Sensor Networks. Ng Ying Tat and Ooi Wei Tsang Boundary Recognition in Sensor Networks Ng Ying Tat and Ooi Wei Tsang School of Computing, National University of Singapore ABSTRACT Boundary recognition for wireless sensor networks has many applications,

More information

New Active Caching Method to Guarantee Desired Communication Reliability in Wireless Sensor Networks

New Active Caching Method to Guarantee Desired Communication Reliability in Wireless Sensor Networks J. Basic. Appl. Sci. Res., 2(5)4880-4885, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com New Active Caching Method to Guarantee Desired

More information

An Energy Efficient Coverage Method for Clustered Wireless Sensor Networks

An Energy Efficient Coverage Method for Clustered Wireless Sensor Networks An Energy Efficient Coverage Method for Clustered Wireless Sensor Networks J. Shanbehzadeh, M. Mehrani, A. Sarrafzadeh, and Z. Razaghi Abstract an important issue in WSN is the regional covering. A coverage

More information

An efficient implementation of the greedy forwarding strategy

An efficient implementation of the greedy forwarding strategy An efficient implementation of the greedy forwarding strategy Hannes Stratil Embedded Computing Systems Group E182/2 Technische Universität Wien Treitlstraße 3 A-1040 Vienna Email: hannes@ecs.tuwien.ac.at

More information

Novel Cluster Based Routing Protocol in Wireless Sensor Networks

Novel Cluster Based Routing Protocol in Wireless Sensor Networks ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 32 Novel Cluster Based Routing Protocol in Wireless Sensor Networks Bager Zarei 1, Mohammad Zeynali 2 and Vahid Majid Nezhad 3 1 Department of Computer

More information

Study on Wireless Sensor Networks Challenges and Routing Protocols

Study on Wireless Sensor Networks Challenges and Routing Protocols International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 2251-838X / Vol, 5 (7): 824-828 Science Explorer Publications Study on Wireless Sensor Networks

More information

Distributed Coordinate-free Hole Detection and Recovery

Distributed Coordinate-free Hole Detection and Recovery Distributed Coordinate-free Hole Detection and Recovery Xiaoyun Li xliw@essex.ac.uk David K. Hunter dkhunter@essex.ac.uk Kun Yang kunyang@essex.ac.uk Abstract A distributed algorithm is introduced which

More information

Mobile Agent Driven Time Synchronized Energy Efficient WSN

Mobile Agent Driven Time Synchronized Energy Efficient WSN Mobile Agent Driven Time Synchronized Energy Efficient WSN Sharanu 1, Padmapriya Patil 2 1 M.Tech, Department of Electronics and Communication Engineering, Poojya Doddappa Appa College of Engineering,

More information

Link Lifetime Prediction in Mobile Ad-Hoc Network Using Curve Fitting Method

Link Lifetime Prediction in Mobile Ad-Hoc Network Using Curve Fitting Method IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017 265 Link Lifetime Prediction in Mobile Ad-Hoc Network Using Curve Fitting Method Mohammad Pashaei, Hossein Ghiasy

More information

Nodes Energy Conserving Algorithms to prevent Partitioning in Wireless Sensor Networks

Nodes Energy Conserving Algorithms to prevent Partitioning in Wireless Sensor Networks IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 139 Nodes Energy Conserving Algorithms to prevent Partitioning in Wireless Sensor Networks MINA MAHDAVI

More information

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University Lecture 6: GIS Spatial Analysis GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University 1 Spatial Data It can be most simply defined as information that describes the distribution

More information

Hole Detection and Boundary Recognition in Wireless Sensor Networks

Hole Detection and Boundary Recognition in Wireless Sensor Networks Hole Detection and Boundary Recognition in Wireless Sensor Networks Kun-Ying Hsieh Dept. of Computer Science and Information Engineering National Central University Jhongli, 32054, Taiwan E-mail: rocky@axp1.csie.ncu.edu.tw

More information

M. Andrea Rodríguez-Tastets. I Semester 2008

M. Andrea Rodríguez-Tastets. I Semester 2008 M. -Tastets Universidad de Concepción,Chile andrea@udec.cl I Semester 2008 Outline refers to data with a location on the Earth s surface. Examples Census data Administrative boundaries of a country, state

More information

Research on Relative Coordinate Localization of Nodes Based on Topology Control

Research on Relative Coordinate Localization of Nodes Based on Topology Control Journal of Information Hiding and Multimedia Signal Processing c 2018 ISSN 2073-4212 Ubiquitous International Volume 9, Number 2, March 2018 Research on Relative Coordinate Localization of Nodes Based

More information

Dominating Set & Clustering Based Network Coverage for Huge Wireless Sensor Networks

Dominating Set & Clustering Based Network Coverage for Huge Wireless Sensor Networks Dominating Set & Clustering Based Network Coverage for Huge Wireless Sensor Networks Mohammad Mehrani, Ali Shaeidi, Mohammad Hasannejad, and Amir Afsheh Abstract Routing is one of the most important issues

More information

MultiHop Routing for Delay Minimization in WSN

MultiHop Routing for Delay Minimization in WSN MultiHop Routing for Delay Minimization in WSN Sandeep Chaurasia, Saima Khan, Sudesh Gupta Abstract Wireless sensor network, consists of sensor nodes in capacity of hundred or thousand, which deployed

More information

Minimum Overlapping Layers and Its Variant for Prolonging Network Lifetime in PMRC-based Wireless Sensor Networks

Minimum Overlapping Layers and Its Variant for Prolonging Network Lifetime in PMRC-based Wireless Sensor Networks Minimum Overlapping Layers and Its Variant for Prolonging Network Lifetime in PMRC-based Wireless Sensor Networks Qiaoqin Li 12, Mei Yang 1, Hongyan Wang 1, Yingtao Jiang 1, Jiazhi Zeng 2 1 Department

More information

Dalimir Orfanus (IFI UiO + ABB CRC), , Cyber Physical Systems Clustering in Wireless Sensor Networks 2 nd part : Examples

Dalimir Orfanus (IFI UiO + ABB CRC), , Cyber Physical Systems Clustering in Wireless Sensor Networks 2 nd part : Examples Dalimir Orfanus (IFI UiO + ABB CRC), 27.10.2011, Cyber Physical Systems Clustering in Wireless Sensor Networks 2 nd part : Examples Clustering in Wireless Sensor Networks Agenda LEACH Energy efficient

More information

Time Synchronization in Wireless Sensor Networks: CCTS

Time Synchronization in Wireless Sensor Networks: CCTS Time Synchronization in Wireless Sensor Networks: CCTS 1 Nerin Thomas, 2 Smita C Thomas 1, 2 M.G University, Mount Zion College of Engineering, Pathanamthitta, India Abstract: A time synchronization algorithm

More information

Wireless Sensor Networks --- Concepts and Challenges

Wireless Sensor Networks --- Concepts and Challenges Wireless Sensor Networks --- Concepts and Challenges Outline Basic Concepts Applications Characteristics and Challenges 2 1 Basic Concepts Traditional Sensing Method Wired/Wireless Object Signal analysis

More information

Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks

Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks Hui Tian, Hong Shen and Teruo Matsuzawa Graduate School of Information Science Japan Advanced Institute of Science and Technology

More information

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN:

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 2, April-May, 2013 ISSN: Fast Data Collection with Reduced Interference and Increased Life Time in Wireless Sensor Networks Jayachandran.J 1 and Ramalakshmi.R 2 1 M.Tech Network Engineering, Kalasalingam University, Krishnan koil.

More information

Estimating the Free Region of a Sensor Node

Estimating the Free Region of a Sensor Node Estimating the Free Region of a Sensor Node Laxmi Gewali, Navin Rongratana, Jan B. Pedersen School of Computer Science, University of Nevada 4505 Maryland Parkway Las Vegas, NV, 89154, USA Abstract We

More information

Catching BlackHole Attacks in Wireless Sensor Networks

Catching BlackHole Attacks in Wireless Sensor Networks Catching BlackHole Attacks in Wireless Sensor Networks Ashish M 1 and Mr. Jason Martis 2 1 M. Tech, Department Of ISE, NMAM Institute of Technology, Nitte 2 Asst. Prof, Department Of ISE, NMAM Institute

More information

Energy and Memory Efficient Clone Detection in Wireless Sensor Networks

Energy and Memory Efficient Clone Detection in Wireless Sensor Networks Energy and Memory Efficient Clone Detection in Wireless Sensor Networks Chennai) 1 Vladymir.F, 2 J.Sivanesa Selvan, 3 Mr.Prabhu.D 1 (Information Technology, Loyola Institute of Technology, Chennai) ( Email:

More information

A Modified Fault Tolerant Location-Based Service Discovery Protocol for Vehicular Networks

A Modified Fault Tolerant Location-Based Service Discovery Protocol for Vehicular Networks A Modified Fault Tolerant Location-Based Service Discovery Protocol for Vehicular Networks Saeed Fathi Ghiri 1 and Morteza Rahmani and Hassan Almasi 2 1 Department of Computer Engineering, Azad University

More information

4.0 DIGITIZATION, EDITING AND STRUCTURING OF MAP DATA

4.0 DIGITIZATION, EDITING AND STRUCTURING OF MAP DATA .0 DIGITIZATION, EDITING AND STRUCTURING OF MAP DATA The process of digitizing existing maps is a transformation from one analog) form of information to another digital) form. Data input is the operation

More information

Using Consensus Estimate Technique Aimed To Reducing Energy Consumption and Coverage Improvement in Wireless Sensor Networks

Using Consensus Estimate Technique Aimed To Reducing Energy Consumption and Coverage Improvement in Wireless Sensor Networks IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 1 Using Consensus Estimate Technique Aimed To Reducing Energy Consumption and Coverage Improvement in Wireless

More information

Literature Review on Hole Detection and Healing in Wireless Sensor Network

Literature Review on Hole Detection and Healing in Wireless Sensor Network Review Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Samidha

More information

Wireless Sensor Networks --- Concepts and Challenges

Wireless Sensor Networks --- Concepts and Challenges Outline Wireless Sensor Networks --- Concepts and Challenges Basic Concepts Applications Characteristics and Challenges 2 Traditional Sensing Method Basic Concepts Signal analysis Wired/Wireless Object

More information

CACHING IN WIRELESS SENSOR NETWORKS BASED ON GRIDS

CACHING IN WIRELESS SENSOR NETWORKS BASED ON GRIDS International Journal of Wireless Communications and Networking 3(1), 2011, pp. 7-13 CACHING IN WIRELESS SENSOR NETWORKS BASED ON GRIDS Sudhanshu Pant 1, Naveen Chauhan 2 and Brij Bihari Dubey 3 Department

More information

Wireless Sensor Networks Localization Methods: Multidimensional Scaling vs. Semidefinite Programming Approach

Wireless Sensor Networks Localization Methods: Multidimensional Scaling vs. Semidefinite Programming Approach Wireless Sensor Networks Localization Methods: Multidimensional Scaling vs. Semidefinite Programming Approach Biljana Stojkoska, Ilinka Ivanoska, Danco Davcev, 1 Faculty of Electrical Engineering and Information

More information

Rumor Routing Algorithm

Rumor Routing Algorithm Aleksi.Ahtiainen@hut.fi T-79.194 Seminar on Theoretical Computer Science Feb 9 2005 Contents Introduction The Algorithm Research Results Future Work Criticism Conclusions Introduction is described in paper:

More information

Fault-tolerant in wireless sensor networks using fuzzy logic

Fault-tolerant in wireless sensor networks using fuzzy logic International Research Journal of Applied and Basic Sciences 2014 Available online at www.irjabs.com ISSN 2251-838X / Vol, 8 (9): 1276-1282 Science Explorer Publications Fault-tolerant in wireless sensor

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION ABSTRACT 1st International Conference on Applied Soft Computing Techniques 22 & 23.04.2017 In association with International Journal of Scientific Research in Science and Technology Optimal Polling Point

More information

Computer Based Image Algorithm For Wireless Sensor Networks To Prevent Hotspot Locating Attack

Computer Based Image Algorithm For Wireless Sensor Networks To Prevent Hotspot Locating Attack Computer Based Image Algorithm For Wireless Sensor Networks To Prevent Hotspot Locating Attack J.Anbu selvan 1, P.Bharat 2, S.Mathiyalagan 3 J.Anand 4 1, 2, 3, 4 PG Scholar, BIT, Sathyamangalam ABSTRACT:

More information

Location Based Energy-Efficient Reliable Routing Protocol for Wireless Sensor Networks

Location Based Energy-Efficient Reliable Routing Protocol for Wireless Sensor Networks Location Based Energy-Efficient Reliable Routing Protocol for Wireless Sensor Networks RAFE ALASEM 1, AHMED REDA 2 AND MAHMUD MANSOUR 3 (1) Computer Science Department Imam Muhammad ibn Saud Islamic University

More information

High Speed Data Collection in Wireless Sensor Network

High Speed Data Collection in Wireless Sensor Network High Speed Data Collection in Wireless Sensor Network Kamal Kr. Gola a, *, Bhumika Gupta b, Zubair Iqbal c a Department of Computer Science & Engineering, Uttarakhand Technical University, Uttarakhand,

More information

A Review on Efficient Opportunistic Forwarding Techniques used to Handle Communication Voids in Underwater Wireless Sensor Networks

A Review on Efficient Opportunistic Forwarding Techniques used to Handle Communication Voids in Underwater Wireless Sensor Networks Advances in Wireless and Mobile Communications. ISSN 0973-6972 Volume 10, Number 5 (2017), pp. 1059-1066 Research India Publications http://www.ripublication.com A Review on Efficient Opportunistic Forwarding

More information

Energy Efficient Hierarchical Cluster-Based Routing for Wireless Sensor Networks

Energy Efficient Hierarchical Cluster-Based Routing for Wireless Sensor Networks IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.4, April 2016 115 Energy Efficient Hierarchical Cluster-Based Routing for Wireless Sensor Networks Shideh Sadat Shirazi,

More information

Geographic Adaptive Fidelity and Geographic Energy Aware Routing in Ad Hoc Routing

Geographic Adaptive Fidelity and Geographic Energy Aware Routing in Ad Hoc Routing 309 Geographic Adaptive Fidelity and Geographic Energy Aware Routing in Ad Hoc Routing Sinchan Roychowdhury Instrumentation Control Engineering Calcutta Institute of Engineering & Management Kolkata, India

More information

CSMA based Medium Access Control for Wireless Sensor Network

CSMA based Medium Access Control for Wireless Sensor Network CSMA based Medium Access Control for Wireless Sensor Network H. Hoang, Halmstad University Abstract Wireless sensor networks bring many challenges on implementation of Medium Access Control protocols because

More information

Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network

Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network V. Shunmuga Sundari 1, N. Mymoon Zuviria 2 1 Student, 2 Asisstant Professor, Computer Science and Engineering, National College

More information

Presenting A Distributed Algorithm For The Energy Consumption Reduction in Underwater.

Presenting A Distributed Algorithm For The Energy Consumption Reduction in Underwater. IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 5, Ver. II (Sept - Oct. 2016), PP 95-102 www.iosrjournals.org Presenting A Distributed Algorithm For

More information

Hole repair algorithm in hybrid sensor networks

Hole repair algorithm in hybrid sensor networks Advances in Engineering Research (AER), volume 116 International Conference on Communication and Electronic Information Engineering (CEIE 2016) Hole repair algorithm in hybrid sensor networks Jian Liu1,

More information

Locating Objects in a Sensor Grid

Locating Objects in a Sensor Grid Locating Objects in a Sensor Grid Buddhadeb Sau 1 and Krishnendu Mukhopadhyaya 2 1 Department of Mathematics, Jadavpur University, Kolkata - 700032, India buddhadebsau@indiatimes.com 2 Advanced Computing

More information

INCREASE THE LIFETIME OF WIRELESS SENSOR NETWORKS USING HIERARCHICAL CLUSTERING WITH CLUSTER TOPOLOGY PRESERVATION

INCREASE THE LIFETIME OF WIRELESS SENSOR NETWORKS USING HIERARCHICAL CLUSTERING WITH CLUSTER TOPOLOGY PRESERVATION INCREASE THE LIFETIME OF WIRELESS SENSOR NETWORKS USING HIERARCHICAL CLUSTERING WITH CLUSTER TOPOLOGY PRESERVATION ABSTRACT Javad Baqeri, Ali Sedighimanesh and Mohammad Sedighimanesh Department of Electrical,

More information

Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees

Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees Pouya Ostovari Department of Computer and Information Siences Temple University Philadelphia, Pennsylvania, USA Email: ostovari@temple.edu

More information

Available online at ScienceDirect. Procedia Computer Science 92 (2016 )

Available online at  ScienceDirect. Procedia Computer Science 92 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 92 (2016 ) 425 430 2nd International Conference on Intelligent Computing, Communication & Convergence (ICCC-2016) Srikanta

More information

Survivability Evaluation in Wireless Sensor Network

Survivability Evaluation in Wireless Sensor Network 2011 3rd International Conference on Advanced Management Science IPEDR vol.19 (2011) (2011) IACSIT Press, Singapore Survivability Evaluation in Wireless Sensor Network Vahid Mavaji 1, Bahareh Abbasi 2

More information

A Modified LEACH Protocol for Increasing Lifetime of the Wireless Sensor Network

A Modified LEACH Protocol for Increasing Lifetime of the Wireless Sensor Network BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 3 Sofia 2016 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.1515/cait-2016-0040 A Modified LEACH Protocol for

More information

A Mobile-Sink Based Distributed Energy-Efficient Clustering Algorithm for WSNs

A Mobile-Sink Based Distributed Energy-Efficient Clustering Algorithm for WSNs A Mobile-Sink Based Distributed Energy-Efficient Clustering Algorithm for WSNs Sarita Naruka 1, Dr. Amit Sharma 2 1 M.Tech. Scholar, 2 Professor, Computer Science & Engineering, Vedant College of Engineering

More information

Energy Efficient Clustering Protocol for Wireless Sensor Network

Energy Efficient Clustering Protocol for Wireless Sensor Network Energy Efficient Clustering Protocol for Wireless Sensor Network Shraddha Agrawal #1, Rajeev Pandey #2, Mahesh Motwani #3 # Department of Computer Science and Engineering UIT RGPV, Bhopal, India 1 45shraddha@gmail.com

More information

Nearest Neighbor Query in Location- Aware Mobile Ad-Hoc Network

Nearest Neighbor Query in Location- Aware Mobile Ad-Hoc Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 3, March 2015,

More information

Routing protocols in WSN

Routing protocols in WSN Routing protocols in WSN 1.1 WSN Routing Scheme Data collected by sensor nodes in a WSN is typically propagated toward a base station (gateway) that links the WSN with other networks where the data can

More information

Link-Based Wormhole Detection in Wireless Sensor Networks

Link-Based Wormhole Detection in Wireless Sensor Networks Link-Based Wormhole Detection in Wireless Sensor Networks Xiaoyuan Zhou, Lijun Chen National Key Laboratory for Novel Software Technology Nanjing University Nanjing, P.R. China, 2123 zxy@smail.nju.edu.cn,

More information

Sensor Deployment Algorithm for Hole Detection and Healing By Using Local Healing

Sensor Deployment Algorithm for Hole Detection and Healing By Using Local Healing Sensor Deployment Algorithm for Hole Detection and Healing By Using Local Healing Rini Baby N M.G University, Kottayam, Kerala, India Abstract: The main services provided by a WSN (wireless sensor network)

More information

Energy aware geographic routing in wireless sensor networks with anchor nodes. Mircea Cretu Stancu Utrecht University Computing Science May 2013

Energy aware geographic routing in wireless sensor networks with anchor nodes. Mircea Cretu Stancu Utrecht University Computing Science May 2013 Energy aware geographic routing in wireless sensor networks with anchor nodes Mircea Cretu Stancu Utrecht University Computing Science May 2013 Overview Introduction Current paradigm EAGR preliminaries

More information

VIRTUAL FORCE ALGORITHM AND CUCKOO SEARCH ALGORITHM FOR NODE PLACEMENT TECHNIQUE IN WIRELESS SENSOR NETWORK

VIRTUAL FORCE ALGORITHM AND CUCKOO SEARCH ALGORITHM FOR NODE PLACEMENT TECHNIQUE IN WIRELESS SENSOR NETWORK VIRTUAL FORCE ALGORITHM AND CUCKOO SEARCH ALGORITHM FOR NODE PLACEMENT TECHNIQUE IN WIRELESS SENSOR NETWORK Puteri Azwa Ahmad 1, M. Mahmuddin 2, and Mohd Hasbullah Omar 3 1 Politeknik Tuanku Syed Sirajuddin,

More information

On the Analysis of Expected Distance between Sensor Nodes and the Base Station in Randomly Deployed WSNs

On the Analysis of Expected Distance between Sensor Nodes and the Base Station in Randomly Deployed WSNs On the Analysis of Expected Distance between Sensor Nodes and the Base Station in Randomly Deployed WSNs Cüneyt Sevgi 1 & Syed Amjad Ali 2 1 Işık University, Istanbul & 2 Bilkent University, Ankara, Turkey

More information

On Distributed Algorithms for Maximizing the Network Lifetime in Wireless Sensor Networks

On Distributed Algorithms for Maximizing the Network Lifetime in Wireless Sensor Networks On Distributed Algorithms for Maximizing the Network Lifetime in Wireless Sensor Networks Akshaye Dhawan Georgia State University Atlanta, Ga 30303 akshaye@cs.gsu.edu Abstract A key challenge in Wireless

More information

Geographical Routing Algorithms In Asynchronous Wireless Sensor Network

Geographical Routing Algorithms In Asynchronous Wireless Sensor Network Geographical Routing Algorithms In Asynchronous Wireless Sensor Network Vaishali.S.K, N.G.Palan Electronics and telecommunication, Cummins College of engineering for women Karvenagar, Pune, India Abstract-

More information

A Fault Tolerant Approach for WSN Chain Based Routing Protocols

A Fault Tolerant Approach for WSN Chain Based Routing Protocols International Journal of Computer Networks and Communications Security VOL. 3, NO. 2, FEBRUARY 2015, 27 32 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) A Fault

More information

THE CONTOUR TREE - A POWERFUL CONCEPTUAL STRUCTURE FOR REPRESENTING THE RELATIONSHIPS AMONG CONTOUR LINES ON A TOPOGRAPHIC MAP

THE CONTOUR TREE - A POWERFUL CONCEPTUAL STRUCTURE FOR REPRESENTING THE RELATIONSHIPS AMONG CONTOUR LINES ON A TOPOGRAPHIC MAP THE CONTOUR TREE - A POWERFUL CONCEPTUAL STRUCTURE FOR REPRESENTING THE RELATIONSHIPS AMONG CONTOUR LINES ON A TOPOGRAPHIC MAP Adrian ALEXEI*, Mariana BARBARESSO* *Military Equipment and Technologies Research

More information

Searching Algorithm of Dormant Node in Wireless Sensor Networks

Searching Algorithm of Dormant Node in Wireless Sensor Networks Searching Algorithm of Dormant Node in Wireless Sensor Networks https://doi.org/10.991/ijoe.v1i05.7054 Bo Feng Shaanxi University of Science &Technologyhaanxi Xi an, China ckmtvxo44@16.com Wei Tang Shaanxi

More information

An Energy Efficient Data Dissemination Algorithm for Wireless Sensor Networks

An Energy Efficient Data Dissemination Algorithm for Wireless Sensor Networks , pp.135-140 http://dx.doi.org/10.14257/astl.2014.48.22 An Energy Efficient Data Dissemination Algorithm for Wireless Sensor Networks Jin Wang 1, Bo Tang 1, Zhongqi Zhang 1, Jian Shen 1, Jeong-Uk Kim 2

More information

Comparison of Energy-Efficient Data Acquisition Techniques in WSN through Spatial Correlation

Comparison of Energy-Efficient Data Acquisition Techniques in WSN through Spatial Correlation Comparison of Energy-Efficient Data Acquisition Techniques in WSN through Spatial Correlation Paramvir Kaur * Sukhwinder Sharma # * M.Tech in CSE with specializationl in E-Security, BBSBEC,Fatehgarh sahib,

More information

Cell based GIS. Introduction to rasters

Cell based GIS. Introduction to rasters Week 9 Cell based GIS Introduction to rasters topics of the week Spatial Problems Modeling Raster basics Application functions Analysis environment, the mask Application functions Spatial Analyst in ArcGIS

More information

TOPOLOGICAL CONSTRAINTS, ACTIONS AND REFLEXES FOR GENERALIZATION BY OPTIMIZATION

TOPOLOGICAL CONSTRAINTS, ACTIONS AND REFLEXES FOR GENERALIZATION BY OPTIMIZATION 10 th ICA Workshop on Generalisation and Multiple Representation, 2-3 August 2007, Moscow TOPOLOGICAL CONSTRAINTS, ACTIONS AND REFLEXES FOR GENERALIZATION BY OPTIMIZATION Jean-Luc Monnot, Paul Hardy, &

More information

Prianka.P 1, Thenral 2

Prianka.P 1, Thenral 2 An Efficient Routing Protocol design and Optimizing Sensor Coverage Area in Wireless Sensor Networks Prianka.P 1, Thenral 2 Department of Electronics Communication and Engineering, Ganadipathy Tulsi s

More information

ScienceDirect. Analogy between immune system and sensor replacement using mobile robots on wireless sensor networks

ScienceDirect. Analogy between immune system and sensor replacement using mobile robots on wireless sensor networks Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 35 (2014 ) 1352 1359 18 th International Conference in Knowledge Based and Intelligent Information & Engineering Systems

More information

A Study of Open Middleware for Wireless Sensor Networks

A Study of Open Middleware for Wireless Sensor Networks , pp.105-109 http://dx.doi.org/10.14257/astl.2014.60.26 A Study of Open Middleware for Wireless Sensor Networks Chen-Nam 1, Do-Hyeun Kim 2 1,2 Dept. of Computing Engineering Jeju National University Jeju-Si

More information

Enhanced Timing-Sync Protocol for Sensor Networks

Enhanced Timing-Sync Protocol for Sensor Networks Enhanced Timing-Sync Protocol for Sensor Networks Shi Kyu Bae Abstract The prominent time synchronization protocol for wireless sensor networks (WSN), Timing-sync Protocol for Sensor Networks (TPSN), was

More information

Energy-Efficient Security Threshold Determination Method for the Enhancement of Interleaved Hop-By-Hop Authentication

Energy-Efficient Security Threshold Determination Method for the Enhancement of Interleaved Hop-By-Hop Authentication Vol. 9, No. 12, 218 Energy-Efficient Security Threshold Determination Method for the Enhancement of Interleaved Hop-By-Hop Authentication Ye Lim Kang 1, Tae Ho Cho *2 Department of Electrical and Computer

More information

Balanced Load Sharing Protocol for Wireless Sensor Networks

Balanced Load Sharing Protocol for Wireless Sensor Networks Balanced Load Sharing Protocol for Wireless Sensor Networks Maytham Safarª, Rabie Al-Mejbas b ªCollege of Engineering and Petroleum Kuwait University, Kuwait State ªE-mail: maytham@me.com, b mejbas@hotmail.com

More information

Model and Algorithms for the Density, Coverage and Connectivity Control Problem in Flat WSNs

Model and Algorithms for the Density, Coverage and Connectivity Control Problem in Flat WSNs Model and Algorithms for the Density, Coverage and Connectivity Control Problem in Flat WSNs Flávio V. C. Martins, cruzeiro@dcc.ufmg.br Frederico P. Quintão, fred@dcc.ufmg.br Fabíola G. Nakamura fgnaka@dcc.ufmg.br,fabiola@dcc.ufam.edu.br

More information

A Novel Geometric Diagram and Its Applications in Wireless Networks

A Novel Geometric Diagram and Its Applications in Wireless Networks A Novel Geometric Diagram and Its Applications in Wireless Networks Guangbin Fan * and Jingyuan Zhang * Department of Computer and Information Science, University of Mississippi University, MS 38677, Email:

More information

Distributed Data Aggregation Scheduling in Wireless Sensor Networks

Distributed Data Aggregation Scheduling in Wireless Sensor Networks Distributed Data Aggregation Scheduling in Wireless Sensor Networks Bo Yu, Jianzhong Li, School of Computer Science and Technology, Harbin Institute of Technology, China Email: bo yu@hit.edu.cn, lijzh@hit.edu.cn

More information

A REVIEW ON LEACH-BASED HIERARCHICAL ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORK

A REVIEW ON LEACH-BASED HIERARCHICAL ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORK A REVIEW ON LEACH-BASED HIERARCHICAL ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORK Md. Nadeem Enam 1, Ozair Ahmad 2 1 Department of ECE, Maulana Azad College of Engineering & Technology, Patna, (India)

More information

Context-aware Geographic Routing for Sensor Networks with Routing Holes

Context-aware Geographic Routing for Sensor Networks with Routing Holes Context-aware Geographic Routing for Sensor Networks with Routing Holes Jiaxi You, ominik Lieckfeldt, Frank Reichenbach, and irk Timmermann University of Rostock, Germany {jiaxi.you, dominik.lieckfeldt,

More information

Z-SEP: Zonal-Stable Election Protocol for Wireless Sensor Networks

Z-SEP: Zonal-Stable Election Protocol for Wireless Sensor Networks Z-SEP: Zonal-Stable Election Protocol for Wireless Sensor Networks S. Faisal 1, N. Javaid 1, A. Javaid 2, M. A. Khan 1, S. H. Bouk 1, Z. A. Khan 3 1 COMSATS Institute of Information Technology, Islamabad,

More information

Wireless Sensor Network Optimization using multiple Movable Sensors for Data Gathering

Wireless Sensor Network Optimization using multiple Movable Sensors for Data Gathering AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 2309-8414 Journal home page: www.ajbasweb.com Wireless Sensor Network Optimization using multiple Movable Sensors for Data Gathering

More information

A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks

A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks Stephen S. Yau, Wei Gao, and Dazhi Huang Dept. of Computer Science and Engineering Arizona State University Tempe,

More information

Data Models and Data processing in GIS

Data Models and Data processing in GIS PDHonline Course L155G (5 PDH) Data Models and Data processing in GIS Instructor: Steve Ramroop, Ph.D. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

More information

The Effect of Neighbor Graph Connectivity on Coverage Redundancy in Wireless Sensor Networks

The Effect of Neighbor Graph Connectivity on Coverage Redundancy in Wireless Sensor Networks The Effect of Neighbor Graph Connectivity on Coverage Redundancy in Wireless Sensor Networks Eyuphan Bulut, Zijian Wang and Boleslaw K. Szymanski Department of Computer Science and Center for Pervasive

More information

Packing Two Disks into a Polygonal Environment

Packing Two Disks into a Polygonal Environment Packing Two Disks into a Polygonal Environment Prosenjit Bose, School of Computer Science, Carleton University. E-mail: jit@cs.carleton.ca Pat Morin, School of Computer Science, Carleton University. E-mail:

More information

Significance of DSSD towards Cut Detection in Wireless Sensor Network

Significance of DSSD towards Cut Detection in Wireless Sensor Network Significance of DSSD towards Cut Detection in Wireless Sensor Network 1 G V N LAKSHMI PRIYANKA, 2 TELUGU KAVITHA, 3 B SWATHI and 4 P.SUMAN PRAKASH 1, 2, 3 Department of IT, GPCET, Kurnool. Andhra Pradesh,

More information

Routing towards a mobile sink using virtual coordinates in a wireless sensor network

Routing towards a mobile sink using virtual coordinates in a wireless sensor network Routing towards a mobile sink using virtual coordinates in a wireless sensor network Rouhollah Rahmatizadeh, Saad Ahmad Khan, Anura P. Jayasumana, Damla Turgut and Ladislau Bölöni Department of Electrical

More information

An Energy Efficient Clustering in Wireless Sensor Networks

An Energy Efficient Clustering in Wireless Sensor Networks , pp.37-42 http://dx.doi.org/10.14257/astl.2015.95.08 An Energy Efficient Clustering in Wireless Sensor Networks Se-Jung Lim 1, Gwang-Jun Kim 1* and Daehyon Kim 2 1 Department of computer engineering,

More information

Analysis and Performance evaluation of Traditional and Hierarchal Sensor Network

Analysis and Performance evaluation of Traditional and Hierarchal Sensor Network Vol.3, Issue.4, Jul - Aug. 2013 pp-1942-1946 ISSN: 2249-6645 Analysis and Performance evaluation of Traditional and Hierarchal Sensor Network Uma Narayanan 1, Arun Soman 2 *(Information Technology, Rajagiri

More information

Power Aware Metrics for Wireless Sensor Networks

Power Aware Metrics for Wireless Sensor Networks Power Aware Metrics for Wireless Sensor Networks Ayad Salhieh Department of ECE Wayne State University Detroit, MI 48202 ai4874@wayne.edu Loren Schwiebert Department of Computer Science Wayne State University

More information

Finding Optimal Tour Length of Mobile Agent in Wireless Sensor Network

Finding Optimal Tour Length of Mobile Agent in Wireless Sensor Network Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) Finding Optimal Tour Length of Mobile Agent in Wireless Sensor Network Anil Kumar Mahto anil.fiem16@gmail.com Ajay Prasad Department

More information

An Energy Efficiency Routing Algorithm of Wireless Sensor Network Based on Round Model. Zhang Ying-Hui

An Energy Efficiency Routing Algorithm of Wireless Sensor Network Based on Round Model. Zhang Ying-Hui Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015) An Energy Efficiency Routing Algorithm of Wireless Sensor Network Based on Round Model Zhang Ying-Hui Software

More information

WSN Routing Protocols

WSN Routing Protocols WSN Routing Protocols 1 Routing Challenges and Design Issues in WSNs 2 Overview The design of routing protocols in WSNs is influenced by many challenging factors. These factors must be overcome before

More information