Deep Learning via Semi-Supervised Embedding. Jason Weston, Frederic Ratle and Ronan Collobert Presented by: Janani Kalyanam

Size: px
Start display at page:

Download "Deep Learning via Semi-Supervised Embedding. Jason Weston, Frederic Ratle and Ronan Collobert Presented by: Janani Kalyanam"

Transcription

1 Deep Learning via Semi-Supervised Embedding Jason Weston, Frederic Ratle and Ronan Collobert Presented by: Janani Kalyanam

2 Review Deep Learning Extract low-level features first. Extract more complicated features as we progress. Called pre-training. Perform supervised task at the end, and fine tune weights by back propagation.

3 Review Deep Learning, contd. Training Algorithm Labels, y Back propagation Input

4 Review Deep Learning, contd. Input Input, approximation mimimize x f dec (f enc (x)) 2

5 Authors point of view Shallow methods give nice insights to the problem, but are restrictive. Deep methods are complicated. Moreover, all the unsupervised methods proposed, like RBMs or auto-associators seem to be different from existing unsupervised learning techniques.

6 Authors point of view Shallow methods give nice insights to the problem, but are restrictive. Deep methods are complicated. Moreover, all the unsupervised methods proposed, like RBMs or auto-associators seem to be different from existing unsupervised learning techniques. Why not try to borrow the nice ideas from shallow methods and put it in a deep learning framework?

7 Proposition Choose an unsupervised learning algorithm (that already exists in shallow literature) Choose a model with deep architecture The unsupervised learning is plugged into any layer of the architecture as an auxiliary task (as opposed to learning the unsupervised task first, and then performing fine-tuning, or back propagation) Train supervised and unsupervised tasks simultaneously

8 Outline Review some embedding algorithms Embedding algorithms used in a shallow architecure How do the authors apply the embedding algorithm to a deep architecture? Experiments

9 Outline Review some embedding algorithms Embedding algorithms used in a shallow architecure How do the authors apply the embedding algorithm to a deep architecture? Experiments

10 Review: Embedding Algorithms General formulation minimize α U L(f(x i,α),f(x j,α),w ij ) i,j=1 f(x) R n is an embedding to be learned given x R d L is a loss function between pairs of example W is a matrix of similarity/dissimilarity

11 Review: Embedding Algorithm (contd.) Multidimensional Scaling Preserves distances between points while embedding them into a lower dimensional space L(f i,f j,w ij ) = ( f i f j W ij ) 2

12 Review: Embedding Algorithm contd. Laplacian Eigen Maps Create a sparse, connected graph using some notion of neighbors. Create a weight matrix using k-nn or heat kernals: exp (x i x j )/(scaling)

13 Review: Embedding Algorithms contd. Formulation: L(f i,f j,w ij ) = ij ij W ij f i f j 2 Impose suitable constraints to prevent trivial solutions.

14 Review: Embedding Algorithm (contd.) Margin based loss function for Siamese Networks Encourages similar examples to be close, and separates dissimilar ones at least by margin m { fi f L(f i,f j,w ij ) = j 2 if W ij = 1 max(0,m f i f j 2 ) if W ij = 0

15 Outline Review some embedding algorithms Embedding algorithms used in a shallow architecure How do the authors apply the embedding algorithm to a deep architecture? Experiments

16 Review: Embedding in shallow architecture Label Propagation min L i=1 L+U f i y i 2 +λ i,j=1 W ij f i f j 2 Encourages examples with high similarity value to get the same label Due to transitivity, neighbors or neighbors also get the same label

17 Example

18 Example, contd

19 Example, contd

20 Review: Embedding in shallow architecture LapSVM min w 2 +γ L i=1 L+U H(y i,f(x i ))+λ i,j=1 W ij f(x i ) f(x j ) 2 First two terms are from SVM formulation, third term includes unlabeled data

21 Outline Review some embedding algorithms Embedding algorithms used in a shallow architecure How do the authors apply the embedding algorithm to a deep architecture? Experiments

22 Semi-supervised learning in Deep architecture

23 Semi-supervised learning in Deep architecture Deep learning set-up f(x) = h 3 (h 2 (h 1 (x))) Supervised training is to minimize L(f(x i ),y i ) Can add unsupervised training to any of the layers Output: L(f(xi ),f(x j ),W ij ) Intermediate: L(h 2 (h 1 (x i )),h 2 (h 1 (x j )),W ij ) Auxiliary: L(e(xi ),e(x j ),W ij ) where e(x i ) = e(h 2 (h 1 (x)))

24 Outline Review some embedding algorithms Embedding algorithms used in a shallow architecure How do the authors apply the embedding algorithm to a deep architecture? Experiments

25 Experiments Small datasets Train g50c Text Uspst SVM TSVM LapSVM NN EmbedNN

26 MNIST 2 layers, crossvalidate over the number of hidden units, and learning rate. W ij is binary according to 10-nn criterion. Train 1h 6h 1k 3k SVM TSVM RBM SESM DBN-NCA DBN-rNCA NN EmbedNN-O EmbedI EmbedA

27 MNIST 50 hidden units on each layer. Classical NN compared to EmbedNN-O and EmberNN-ALL More sophisticated experiments on video data by taking images from consecutive streams for encoding W matrix. Train NN EmbedNN-O EmbedNN-ALL

28 Take away.. Unsupervised learning as an auxiliary tasks seems to work well.

29 The End Thank you!

Large Scale Manifold Transduction

Large Scale Manifold Transduction Large Scale Manifold Transduction Michael Karlen, Jason Weston, Ayse Erkan & Ronan Collobert NEC Labs America, Princeton, USA Ećole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland New York University,

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Large-Scale Semi-Supervised Learning

Large-Scale Semi-Supervised Learning Large-Scale Semi-Supervised Learning Jason WESTON a a NEC LABS America, Inc., 4 Independence Way, Princeton, NJ, USA 08540. Abstract. Labeling data is expensive, whilst unlabeled data is often abundant

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

Efficient Iterative Semi-supervised Classification on Manifold

Efficient Iterative Semi-supervised Classification on Manifold . Efficient Iterative Semi-supervised Classification on Manifold... M. Farajtabar, H. R. Rabiee, A. Shaban, A. Soltani-Farani Sharif University of Technology, Tehran, Iran. Presented by Pooria Joulani

More information

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart Machine Learning The Breadth of ML Neural Networks & Deep Learning Marc Toussaint University of Stuttgart Duy Nguyen-Tuong Bosch Center for Artificial Intelligence Summer 2017 Neural Networks Consider

More information

Efficient Algorithms may not be those we think

Efficient Algorithms may not be those we think Efficient Algorithms may not be those we think Yann LeCun, Computational and Biological Learning Lab The Courant Institute of Mathematical Sciences New York University http://yann.lecun.com http://www.cs.nyu.edu/~yann

More information

Energy Based Models, Restricted Boltzmann Machines and Deep Networks. Jesse Eickholt

Energy Based Models, Restricted Boltzmann Machines and Deep Networks. Jesse Eickholt Energy Based Models, Restricted Boltzmann Machines and Deep Networks Jesse Eickholt ???? Who s heard of Energy Based Models (EBMs) Restricted Boltzmann Machines (RBMs) Deep Belief Networks Auto-encoders

More information

Marginalized Denoising Autoencoder via Graph Regularization for Domain Adaptation

Marginalized Denoising Autoencoder via Graph Regularization for Domain Adaptation Marginalized Denoising Autoencoder via Graph Regularization for Domain Adaptation Yong Peng, Shen Wang 2, and Bao-Liang Lu,3, Center for Brain-Like Computing and Machine Intelligence, Department of Computer

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction Akarsh Pokkunuru EECS Department 03-16-2017 Contractive Auto-Encoders: Explicit Invariance During Feature Extraction 1 AGENDA Introduction to Auto-encoders Types of Auto-encoders Analysis of different

More information

A Geometric Perspective on Data Analysis

A Geometric Perspective on Data Analysis A Geometric Perspective on Data Analysis Partha Niyogi The University of Chicago Collaborators: M. Belkin, X. He, A. Jansen, H. Narayanan, V. Sindhwani, S. Smale, S. Weinberger A Geometric Perspectiveon

More information

Parallel Implementation of Deep Learning Using MPI

Parallel Implementation of Deep Learning Using MPI Parallel Implementation of Deep Learning Using MPI CSE633 Parallel Algorithms (Spring 2014) Instructor: Prof. Russ Miller Team #13: Tianle Ma Email: tianlema@buffalo.edu May 7, 2014 Content Introduction

More information

Recursive Similarity-Based Algorithm for Deep Learning

Recursive Similarity-Based Algorithm for Deep Learning Recursive Similarity-Based Algorithm for R Tomasz Maszczyk & W lodzis law Duch Nicolaus Copernicus University Toruń, Poland ICONIP 2012 {tmaszczyk,wduch}@is.umk.pl 1 / 21 R Similarity-Based Learning ()

More information

SCENE understanding from remotely sensed images is a

SCENE understanding from remotely sensed images is a PREPRINT: TO APPEAR IN IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 12, NO. 9, DOI 10.1109/LGRS.2015.2438227 1 Semi-supervised Hyperspectral Image Classification via Neighborhood Graph Learning Daniel

More information

Autoencoders, denoising autoencoders, and learning deep networks

Autoencoders, denoising autoencoders, and learning deep networks 4 th CiFAR Summer School on Learning and Vision in Biology and Engineering Toronto, August 5-9 2008 Autoencoders, denoising autoencoders, and learning deep networks Part II joint work with Hugo Larochelle,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Clustering Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1 / 19 Outline

More information

DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION

DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION S.Dhanalakshmi #1 #PG Scholar, Department of Computer Science, Dr.Sivanthi Aditanar college of Engineering, Tiruchendur

More information

Improving Image Segmentation Quality Via Graph Theory

Improving Image Segmentation Quality Via Graph Theory International Symposium on Computers & Informatics (ISCI 05) Improving Image Segmentation Quality Via Graph Theory Xiangxiang Li, Songhao Zhu School of Automatic, Nanjing University of Post and Telecommunications,

More information

Learning Deep Neural Networks for High Dimensional Output Problems

Learning Deep Neural Networks for High Dimensional Output Problems Learning Deep Neural Networks for High Dimensional Output Problems Benjamin Labbé, Romain Hérault, Clement Chatelain To cite this version: Benjamin Labbé, Romain Hérault, Clement Chatelain. Learning Deep

More information

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen Lecture 13 Deep Belief Networks Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny,bhuvana,stanchen}@us.ibm.com 12 December 2012

More information

Unsupervised Learning of Spatiotemporally Coherent Metrics

Unsupervised Learning of Spatiotemporally Coherent Metrics Unsupervised Learning of Spatiotemporally Coherent Metrics Ross Goroshin, Joan Bruna, Jonathan Tompson, David Eigen, Yann LeCun arxiv 2015. Presented by Jackie Chu Contributions Insight between slow feature

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio Université de Montréal 13/06/2007

More information

Vulnerability of machine learning models to adversarial examples

Vulnerability of machine learning models to adversarial examples Vulnerability of machine learning models to adversarial examples Petra Vidnerová Institute of Computer Science The Czech Academy of Sciences Hora Informaticae 1 Outline Introduction Works on adversarial

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Learning independent, diverse binary hash functions: pruning and locality

Learning independent, diverse binary hash functions: pruning and locality Learning independent, diverse binary hash functions: pruning and locality Ramin Raziperchikolaei and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced

More information

Pair-wise Distance Metric Learning of Neural Network Model for Spoken Language Identification

Pair-wise Distance Metric Learning of Neural Network Model for Spoken Language Identification INTERSPEECH 2016 September 8 12, 2016, San Francisco, USA Pair-wise Distance Metric Learning of Neural Network Model for Spoken Language Identification 2 1 Xugang Lu 1, Peng Shen 1, Yu Tsao 2, Hisashi

More information

Subject. Dataset. Copy paste feature of the diagram. Importing the dataset. Copy paste feature into the diagram.

Subject. Dataset. Copy paste feature of the diagram. Importing the dataset. Copy paste feature into the diagram. Subject Copy paste feature into the diagram. When we define the data analysis process into Tanagra, it is possible to copy components (or entire branches of components) towards another location into the

More information

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA

Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Retrospective ICML99 Transductive Inference for Text Classification using Support Vector Machines Thorsten Joachims Then: Universität Dortmund, Germany Now: Cornell University, USA Outline The paper in

More information

REMOTE sensing image classification is a challenging task

REMOTE sensing image classification is a challenging task IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 5, MAY 2010 2271 Semisupervised Neural Networks for Efficient Hyperspectral Image Classification Frédéric Ratle, Gustavo Camps-Valls, Senior

More information

The Pre-Image Problem in Kernel Methods

The Pre-Image Problem in Kernel Methods The Pre-Image Problem in Kernel Methods James Kwok Ivor Tsang Department of Computer Science Hong Kong University of Science and Technology Hong Kong The Pre-Image Problem in Kernel Methods ICML-2003 1

More information

Learning Hierarchies at Two-class Complexity

Learning Hierarchies at Two-class Complexity Learning Hierarchies at Two-class Complexity Sandor Szedmak ss03v@ecs.soton.ac.uk Craig Saunders cjs@ecs.soton.ac.uk John Shawe-Taylor jst@ecs.soton.ac.uk ISIS Group, Electronics and Computer Science University

More information

Semi-supervised Methods

Semi-supervised Methods Semi-supervised Methods Irwin King Joint work with Zenglin Xu Department of Computer Science & Engineering The Chinese University of Hong Kong Academia Sinica 2009 Irwin King (CUHK) Semi-supervised Methods

More information

Learning Transferable Features with Deep Adaptation Networks

Learning Transferable Features with Deep Adaptation Networks Learning Transferable Features with Deep Adaptation Networks Mingsheng Long, Yue Cao, Jianmin Wang, Michael I. Jordan Presented by Changyou Chen October 30, 2015 1 Changyou Chen Learning Transferable Features

More information

Aarti Singh. Machine Learning / Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg

Aarti Singh. Machine Learning / Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg Spectral Clustering Aarti Singh Machine Learning 10-701/15-781 Apr 7, 2010 Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg 1 Data Clustering Graph Clustering Goal: Given data points X1,, Xn and similarities

More information

Dictionary learning Based on Laplacian Score in Sparse Coding

Dictionary learning Based on Laplacian Score in Sparse Coding Dictionary learning Based on Laplacian Score in Sparse Coding Jin Xu and Hong Man Department of Electrical and Computer Engineering, Stevens institute of Technology, Hoboken, NJ 73 USA Abstract. Sparse

More information

Diffusion Wavelets for Natural Image Analysis

Diffusion Wavelets for Natural Image Analysis Diffusion Wavelets for Natural Image Analysis Tyrus Berry December 16, 2011 Contents 1 Project Description 2 2 Introduction to Diffusion Wavelets 2 2.1 Diffusion Multiresolution............................

More information

K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms

K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms Pascal Vincent and Yoshua Bengio Dept. IRO, Université de Montréal C.P. 6128, Montreal, Qc, H3C 3J7, Canada {vincentp,bengioy}@iro.umontreal.ca

More information

MOST machine learning algorithms rely on the assumption

MOST machine learning algorithms rely on the assumption 1 Domain Adaptation on Graphs by Learning Aligned Graph Bases Mehmet Pilancı and Elif Vural arxiv:183.5288v1 [stat.ml] 14 Mar 218 Abstract We propose a method for domain adaptation on graphs. Given sufficiently

More information

Day 3 Lecture 1. Unsupervised Learning

Day 3 Lecture 1. Unsupervised Learning Day 3 Lecture 1 Unsupervised Learning Semi-supervised and transfer learning Myth: you can t do deep learning unless you have a million labelled examples for your problem. Reality You can learn useful representations

More information

Fashion Style in 128 Floats: Joint Ranking and Classification using Weak Data for Feature Extraction SUPPLEMENTAL MATERIAL

Fashion Style in 128 Floats: Joint Ranking and Classification using Weak Data for Feature Extraction SUPPLEMENTAL MATERIAL Fashion Style in 128 Floats: Joint Ranking and Classification using Weak Data for Feature Extraction SUPPLEMENTAL MATERIAL Edgar Simo-Serra Waseda University esimo@aoni.waseda.jp Hiroshi Ishikawa Waseda

More information

Emotion Detection using Deep Belief Networks

Emotion Detection using Deep Belief Networks Emotion Detection using Deep Belief Networks Kevin Terusaki and Vince Stigliani May 9, 2014 Abstract In this paper, we explore the exciting new field of deep learning. Recent discoveries have made it possible

More information

Data mining techniques for actuaries: an overview

Data mining techniques for actuaries: an overview Data mining techniques for actuaries: an overview Emiliano A. Valdez joint work with Banghee So and Guojun Gan University of Connecticut Advances in Predictive Analytics (APA) Conference University of

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Unsupervised learning Daniel Hennes 29.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Supervised learning Regression (linear

More information

3 : Representation of Undirected GMs

3 : Representation of Undirected GMs 0-708: Probabilistic Graphical Models 0-708, Spring 202 3 : Representation of Undirected GMs Lecturer: Eric P. Xing Scribes: Nicole Rafidi, Kirstin Early Last Time In the last lecture, we discussed directed

More information

PTE : Predictive Text Embedding through Large-scale Heterogeneous Text Networks

PTE : Predictive Text Embedding through Large-scale Heterogeneous Text Networks PTE : Predictive Text Embedding through Large-scale Heterogeneous Text Networks Pramod Srinivasan CS591txt - Text Mining Seminar University of Illinois, Urbana-Champaign April 8, 2016 Pramod Srinivasan

More information

Clustering algorithms and autoencoders for anomaly detection

Clustering algorithms and autoencoders for anomaly detection Clustering algorithms and autoencoders for anomaly detection Alessia Saggio Lunch Seminars and Journal Clubs Université catholique de Louvain, Belgium 3rd March 2017 a Outline Introduction Clustering algorithms

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Correlated Correspondences [ASP*04] A Complete Registration System [HAW*08] In this session Advanced Global Matching Some practical

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

CSE 6242 / CX October 9, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 / CX October 9, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 / CX 4242 October 9, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Volume Variety Big Data Era 2 Velocity Veracity 3 Big Data are High-Dimensional Examples of High-Dimensional Data Image

More information

Semi-Supervised Methods for Handwritten Character Recognition using Active Learning

Semi-Supervised Methods for Handwritten Character Recognition using Active Learning Semi-Supervised Methods for Handwritten Character Recognition using Active Learning Leonidas Lefakis a Marco A. Wiering a a Department of Information and Computing Sciences, Utrecht University P.O.Box

More information

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS Puyang Xu, Ruhi Sarikaya Microsoft Corporation ABSTRACT We describe a joint model for intent detection and slot filling based

More information

27: Hybrid Graphical Models and Neural Networks

27: Hybrid Graphical Models and Neural Networks 10-708: Probabilistic Graphical Models 10-708 Spring 2016 27: Hybrid Graphical Models and Neural Networks Lecturer: Matt Gormley Scribes: Jakob Bauer Otilia Stretcu Rohan Varma 1 Motivation We first look

More information

Spectral Clustering and Semi-Supervised learning using Evolving Similarity Graphs

Spectral Clustering and Semi-Supervised learning using Evolving Similarity Graphs Spectral Clustering and Semi-Supervised learning using Evolving Similarity Graphs Christina Chrysouli a,, Anastasios Tefas a a Department of Informatics, Aristotle University of Thessaloniki, University

More information

Introduction to Deep Learning

Introduction to Deep Learning ENEE698A : Machine Learning Seminar Introduction to Deep Learning Raviteja Vemulapalli Image credit: [LeCun 1998] Resources Unsupervised feature learning and deep learning (UFLDL) tutorial (http://ufldl.stanford.edu/wiki/index.php/ufldl_tutorial)

More information

Probabilistic Siamese Network for Learning Representations. Chen Liu

Probabilistic Siamese Network for Learning Representations. Chen Liu Probabilistic Siamese Network for Learning Representations by Chen Liu A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Electrical

More information

Neural Networks: promises of current research

Neural Networks: promises of current research April 2008 www.apstat.com Current research on deep architectures A few labs are currently researching deep neural network training: Geoffrey Hinton s lab at U.Toronto Yann LeCun s lab at NYU Our LISA lab

More information

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation

Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Recognizing Handwritten Digits Using the LLE Algorithm with Back Propagation Lori Cillo, Attebury Honors Program Dr. Rajan Alex, Mentor West Texas A&M University Canyon, Texas 1 ABSTRACT. This work is

More information

Chapter 7: Competitive learning, clustering, and self-organizing maps

Chapter 7: Competitive learning, clustering, and self-organizing maps Chapter 7: Competitive learning, clustering, and self-organizing maps António R. C. Paiva EEL 6814 Spring 2008 Outline Competitive learning Clustering Self-Organizing Maps What is competition in neural

More information

Neural Networks for Machine Learning. Lecture 15a From Principal Components Analysis to Autoencoders

Neural Networks for Machine Learning. Lecture 15a From Principal Components Analysis to Autoencoders Neural Networks for Machine Learning Lecture 15a From Principal Components Analysis to Autoencoders Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed Principal Components

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

Grounded Compositional Semantics for Finding and Describing Images with Sentences

Grounded Compositional Semantics for Finding and Describing Images with Sentences Grounded Compositional Semantics for Finding and Describing Images with Sentences R. Socher, A. Karpathy, V. Le,D. Manning, A Y. Ng - 2013 Ali Gharaee 1 Alireza Keshavarzi 2 1 Department of Computational

More information

Stable and Multiscale Topological Signatures

Stable and Multiscale Topological Signatures Stable and Multiscale Topological Signatures Mathieu Carrière, Steve Oudot, Maks Ovsjanikov Inria Saclay Geometrica April 21, 2015 1 / 31 Shape = point cloud in R d (d = 3) 2 / 31 Signature = mathematical

More information

CSE 250B Project Assignment 4

CSE 250B Project Assignment 4 CSE 250B Project Assignment 4 Hani Altwary haltwa@cs.ucsd.edu Kuen-Han Lin kul016@ucsd.edu Toshiro Yamada toyamada@ucsd.edu Abstract The goal of this project is to implement the Semi-Supervised Recursive

More information

Contractive Auto-Encoders: Explicit Invariance During Feature Extraction

Contractive Auto-Encoders: Explicit Invariance During Feature Extraction : Explicit Invariance During Feature Extraction Salah Rifai (1) Pascal Vincent (1) Xavier Muller (1) Xavier Glorot (1) Yoshua Bengio (1) (1) Dept. IRO, Université de Montréal. Montréal (QC), H3C 3J7, Canada

More information

Deep (1) Matthieu Cord LIP6 / UPMC Paris 6

Deep (1) Matthieu Cord LIP6 / UPMC Paris 6 Deep (1) Matthieu Cord LIP6 / UPMC Paris 6 Syllabus 1. Whole traditional (old) visual recognition pipeline 2. Introduction to Neural Nets 3. Deep Nets for image classification To do : Voir la leçon inaugurale

More information

arxiv: v2 [cs.lg] 6 Jun 2015

arxiv: v2 [cs.lg] 6 Jun 2015 HOPE (Zhang and Jiang) 1 Hybrid Orthogonal Projection and Estimation (HOPE): A New Framework to Probe and Learn Neural Networks Shiliang Zhang and Hui Jiang arxiv:1502.00702v2 [cs.lg 6 Jun 2015 National

More information

RECENT years have witnessed the rapid growth of image. SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval

RECENT years have witnessed the rapid growth of image. SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval Jian Zhang, Yuxin Peng, and Junchao Zhang arxiv:607.08477v [cs.cv] 28 Jul 206 Abstract The hashing methods have been widely used for efficient

More information

Learning Two-Layer Contractive Encodings

Learning Two-Layer Contractive Encodings In Proceedings of International Conference on Artificial Neural Networks (ICANN), pp. 620-628, September 202. Learning Two-Layer Contractive Encodings Hannes Schulz and Sven Behnke Rheinische Friedrich-Wilhelms-Universität

More information

WITH increasing penetration of portable multimedia. A Convolutional Neural Network Based Chinese Text Detection Algorithm via Text Structure Modeling

WITH increasing penetration of portable multimedia. A Convolutional Neural Network Based Chinese Text Detection Algorithm via Text Structure Modeling 1 A Convolutional Neural Network Based Chinese Text Detection Algorithm via Text Structure Modeling Xiaohang Ren, Yi Zhou, Jianhua He, Senior Member, IEEE, Kai Chen Member, IEEE, Xiaokang Yang, Senior

More information

Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012

Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), June, 2012 Supervised Hashing with Kernels Wei Liu (Columbia Columbia), Jun Wang (IBM IBM), Rongrong Ji (Columbia), Yu Gang Jiang (Fudan), and Shih Fu Chang (Columbia Columbia) June, 2012 Outline Motivations Problem

More information

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CX 4242 DVA March 6, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Analyze! Limited memory size! Data may not be fitted to the memory of your machine! Slow computation!

More information

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version Shallow vs. deep networks Restricted Boltzmann Machines Shallow: one hidden layer Features can be learned more-or-less independently Arbitrary function approximator (with enough hidden units) Deep: two

More information

Semi-supervised learning and active learning

Semi-supervised learning and active learning Semi-supervised learning and active learning Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Combining classifiers Ensemble learning: a machine learning paradigm where multiple learners

More information

21 Analysis of Benchmarks

21 Analysis of Benchmarks 21 Analysis of Benchmarks In order to assess strengths and weaknesses of different semi-supervised learning (SSL) algorithms, we invited the chapter authors to apply their algorithms to eight benchmark

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Piyush Rai CS5350/6350: Machine Learning November 8, 2011 Semi-supervised Learning Supervised Learning models require labeled data Learning a reliable model usually requires plenty

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines CS 536: Machine Learning Littman (Wu, TA) Administration Slides borrowed from Martin Law (from the web). 1 Outline History of support vector machines (SVM) Two classes,

More information

A Local Learning Approach for Clustering

A Local Learning Approach for Clustering A Local Learning Approach for Clustering Mingrui Wu, Bernhard Schölkopf Max Planck Institute for Biological Cybernetics 72076 Tübingen, Germany {mingrui.wu, bernhard.schoelkopf}@tuebingen.mpg.de Abstract

More information

CSCI567 Machine Learning (Fall 2014)

CSCI567 Machine Learning (Fall 2014) CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 9, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 9, 2014 1 / 47

More information

Advanced Introduction to Machine Learning, CMU-10715

Advanced Introduction to Machine Learning, CMU-10715 Advanced Introduction to Machine Learning, CMU-10715 Deep Learning Barnabás Póczos, Sept 17 Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio

More information

Learning Two-View Stereo Matching

Learning Two-View Stereo Matching Learning Two-View Stereo Matching Jianxiong Xiao Jingni Chen Dit-Yan Yeung Long Quan Department of Computer Science and Engineering The Hong Kong University of Science and Technology The 10th European

More information

12 Classification using Support Vector Machines

12 Classification using Support Vector Machines 160 Bioinformatics I, WS 14/15, D. Huson, January 28, 2015 12 Classification using Support Vector Machines This lecture is based on the following sources, which are all recommended reading: F. Markowetz.

More information

Software Documentation of the Potential Support Vector Machine

Software Documentation of the Potential Support Vector Machine Software Documentation of the Potential Support Vector Machine Tilman Knebel and Sepp Hochreiter Department of Electrical Engineering and Computer Science Technische Universität Berlin 10587 Berlin, Germany

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations Honglak Lee Roger Grosse Rajesh Ranganath Andrew Y. Ng Computer Science Department, Stanford University,

More information

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University

Shape Co-analysis. Daniel Cohen-Or. Tel-Aviv University Shape Co-analysis Daniel Cohen-Or Tel-Aviv University 1 High-level Shape analysis [Fu et al. 08] Upright orientation [Mehra et al. 08] Shape abstraction [Kalograkis et al. 10] Learning segmentation [Mitra

More information

Stacked Denoising Autoencoders for Face Pose Normalization

Stacked Denoising Autoencoders for Face Pose Normalization Stacked Denoising Autoencoders for Face Pose Normalization Yoonseop Kang 1, Kang-Tae Lee 2,JihyunEun 2, Sung Eun Park 2 and Seungjin Choi 1 1 Department of Computer Science and Engineering Pohang University

More information

Backpropagation + Deep Learning

Backpropagation + Deep Learning 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Backpropagation + Deep Learning Matt Gormley Lecture 13 Mar 1, 2018 1 Reminders

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

Extracting and Composing Robust Features with Denoising Autoencoders

Extracting and Composing Robust Features with Denoising Autoencoders Presenter: Alexander Truong March 16, 2017 Extracting and Composing Robust Features with Denoising Autoencoders Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol 1 Outline Introduction

More information

Class 6 Large-Scale Image Classification

Class 6 Large-Scale Image Classification Class 6 Large-Scale Image Classification Liangliang Cao, March 7, 2013 EECS 6890 Topics in Information Processing Spring 2013, Columbia University http://rogerioferis.com/visualrecognitionandsearch Visual

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images Marc Aurelio Ranzato Yann LeCun Courant Institute of Mathematical Sciences New York University - New York, NY 10003 Abstract

More information

To be Bernoulli or to be Gaussian, for a Restricted Boltzmann Machine

To be Bernoulli or to be Gaussian, for a Restricted Boltzmann Machine 2014 22nd International Conference on Pattern Recognition To be Bernoulli or to be Gaussian, for a Restricted Boltzmann Machine Takayoshi Yamashita, Masayuki Tanaka, Eiji Yoshida, Yuji Yamauchi and Hironobu

More information

arxiv: v2 [cs.lg] 11 Sep 2015

arxiv: v2 [cs.lg] 11 Sep 2015 A DEEP analysis of the META-DES framework for dynamic selection of ensemble of classifiers Rafael M. O. Cruz a,, Robert Sabourin a, George D. C. Cavalcanti b a LIVIA, École de Technologie Supérieure, University

More information

Ruslan Salakhutdinov and Geoffrey Hinton. University of Toronto, Machine Learning Group IRGM Workshop July 2007

Ruslan Salakhutdinov and Geoffrey Hinton. University of Toronto, Machine Learning Group IRGM Workshop July 2007 SEMANIC HASHING Ruslan Salakhutdinov and Geoffrey Hinton University of oronto, Machine Learning Group IRGM orkshop July 2007 Existing Methods One of the most popular and widely used in practice algorithms

More information

Multiresponse Sparse Regression with Application to Multidimensional Scaling

Multiresponse Sparse Regression with Application to Multidimensional Scaling Multiresponse Sparse Regression with Application to Multidimensional Scaling Timo Similä and Jarkko Tikka Helsinki University of Technology, Laboratory of Computer and Information Science P.O. Box 54,

More information