Large Rainbow Matchings in Edge-Colored Graphs

Size: px
Start display at page:

Download "Large Rainbow Matchings in Edge-Colored Graphs"

Transcription

1 Large Rainbow Matchings in Edge-Colored Graphs Alexandr Kostochka, Matthew Yancey 1 May 13, Department of Mathematics, University of Illinois, Urbana, IL yancey1@illinois.edu.

2 Rainbow Matchings in Graphs A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. r = rm(g) = number of edges in largest rainbow matching in G

3 Rainbow Matchings in Graphs A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. r = rm(g) = number of edges in largest rainbow matching in G A B C

4 Rainbow Matchings in Graphs A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. r = rm(g) = number of edges in largest rainbow matching in G A B C r = 3

5 Rainbow Matchings in Graphs A rainbow subgraph of an edge-colored graph is a subgraph whose edges have distinct colors. r = rm(g) = number of edges in largest rainbow matching in G A B C r = 3

6 Color Degree For v V (G), ˆd(v) is the number of distinct colors on the edges incident to v. k = ˆδ(G) = min ˆd(v)

7 Color Degree For v V (G), ˆd(v) is the number of distinct colors on the edges incident to v. k = ˆδ(G) = min ˆd(v) A B C

8 Color Degree For v V (G), ˆd(v) is the number of distinct colors on the edges incident to v. k = ˆδ(G) = min ˆd(v) A B C d(a) = 3, ˆd(A) = 2.

9 Color Degree For v V (G), ˆd(v) is the number of distinct colors on the edges incident to v. k = ˆδ(G) = min ˆd(v) A B C d(a) = 3, ˆd(A) = 2. d(b) = 4, ˆd(B) = 3.

10 Color Degree For v V (G), ˆd(v) is the number of distinct colors on the edges incident to v. k = ˆδ(G) = min ˆd(v) A B C d(a) = 3, ˆd(A) = 2. d(b) = 4, ˆd(B) = 3. d(c) = 4, ˆd(C) = 2

11 Color Degree For v V (G), ˆd(v) is the number of distinct colors on the edges incident to v. k = ˆδ(G) = min ˆd(v) A B C d(a) = 3, ˆd(A) = 2. d(b) = 4, ˆd(B) = 3. d(c) = 4, ˆd(C) = 2 k = 2

12 Color Degree For v V (G), ˆd(v) is the number of distinct colors on the edges incident to v. k = ˆδ(G) = min ˆd(v) A B C d(a) = 3, ˆd(A) = 2. d(b) = 4, ˆd(B) = 3. d(c) = 4, ˆd(C) = 2 k = 2

13 Early Results Theorem (Li and Wang, 2008) r 5k Theorem (Li and Wang, 2008) For k 3 and G bipartite, r 2k 3 Conjecture (Li and Wang, 2008) For k 4, r k 2..

14 Tight Examples k = 3 r = 1 k = 2 bipartite r = 1 K n k = n - 1 r = n/2 or (n-1)/2

15 Further Results Theorem (Li and Xu, 2007) If G is a properly colored complete graph other than K 4, then r k 2. Theorem (LeSaulnier, Stocker, Wegner, and West, 2010) r k 2 and r k 2 if any of the following are true G is triange-free G is properly colored and n k + 2 n 3(k 1) 2

16 Our Results Theorem (Kostochka and Y, 2011+) If k 4, then r k 2 Theorem (Kostochka and Y, 2011+) If G is triangle-free, then r 2k 3.

17 Notation M E H E i u 1 u 2 u i u r e 1 v 1 v 2 2 e e e i r v i v r w i w 2 w 1 w p edge r = k p = n - k + 1 e i has color i

18 Notation Let φ be an ordering on the vertices such that φ(u 1 ) < φ(v 1 ) < φ(u 2 ) < φ(v 2 ) < < φ(u r ) < φ(v r ) An important edge, e = wz, is an edge with color not in M and with w H and z V (M) such that φ(z) is the minimum of all edges incident to w with the same color as wz.

19 The Inequality number of important edges out of M = number of important edges out of H p(k r) = (k + 1) p 2 On average the vertices in M are incident to more than p 2 important edges.

20 The Inequality number of important edges out of M = number of important edges out of H p(k r) = (k + 1) p 2 On average the vertices in M are incident to more than p 2 important edges. Lemma (LeSaulnier, Stocker, Wegner, and West, 2010) Each e i is incident to at most p + 1 important edges. Furthermore, if e i is incident to p + 1 important edges, then E i has Configuration A or Configuration B.

21 The Inequality number of important edges out of M = number of important edges out of H p(k r) = (k + 1) p 2 On average the vertices in M are incident to more than p 2 important edges. Lemma (LeSaulnier, Stocker, Wegner, and West, 2010) Each e i is incident to at most p + 1 important edges. Furthermore, if e i is incident to p + 1 important edges, then E i has Configuration A or Configuration B.

22 p + 1 Configurations M H M H e 1 e 1 e 2 e 2 u i e i v i e i e r e r Configuration A Configuration B p = 3

23 Special Vertices A special vertex is a vertex v with d(v) = n 1, ˆd(v) = k, and one color is incident to it n k times (all other colors are incident to it once). If E i has Configuration A then v i is special.

24 Special Vertices A special vertex is a vertex v with d(v) = n 1, ˆd(v) = k, and one color is incident to it n k times (all other colors are incident to it once). If E i has Configuration A then v i is special. Let v be a special vertex. The main color of v is the color that is repeated on the edges incident to v. A main edge of v is an edge incident to v colored the main color of v.

25 Special Vertices A special vertex is a vertex v with d(v) = n 1, ˆd(v) = k, and one color is incident to it n k times (all other colors are incident to it once). If E i has Configuration A then v i is special. Let v be a special vertex. The main color of v is the color that is repeated on the edges incident to v. A main edge of v is an edge incident to v colored the main color of v.

26 Main Edges We will assume that G is a minimal counter-example to the theorem, and that M contains the most main edges out of all maximum rainbow matchings in G. Lemma If E i has Configuration A, then u i is special with main color i.

27 Main Edges We will assume that G is a minimal counter-example to the theorem, and that M contains the most main edges out of all maximum rainbow matchings in G. Lemma If E i has Configuration A, then u i is special with main color i. Proof. Suppose not. v i is special with a main color that is important, so it can not be i. Since u i is not special with main color i, edge e i is not a main edge. Replace e i with one of the main edges of v i. This is still a rainbow matching of same size, and now has more main edges, which contradicts our choice of M.

28 Main Edges We will assume that G is a minimal counter-example to the theorem, and that M contains the most main edges out of all maximum rainbow matchings in G. Lemma If E i has Configuration A, then u i is special with main color i. Proof. Suppose not. v i is special with a main color that is important, so it can not be i. Since u i is not special with main color i, edge e i is not a main edge. Replace e i with one of the main edges of v i. This is still a rainbow matching of same size, and now has more main edges, which contradicts our choice of M.

29 The Two Cases Let a be the number of times Configuration A occurs and b be the number of times Configuration B occurs. Case 1: a > 0 We will assume that E 1 has Configuration A. Consider edges u 1 u i for i such that E i has Configuration A or B. We will attempt to replace e 1 and e i with u 1 u i and important edges of v 1 and v i to prove that M was not a maximum rainbow matching.

30 The Two Cases Let a be the number of times Configuration A occurs and b be the number of times Configuration B occurs. Case 1: a > 0 We will assume that E 1 has Configuration A. Consider edges u 1 u i for i such that E i has Configuration A or B. We will attempt to replace e 1 and e i with u 1 u i and important edges of v 1 and v i to prove that M was not a maximum rainbow matching.

31 5-Alternating Paths M H e 1 e h e i... e r If edge u 1 u i has color 1, i, or a color not in M, then we generate a contradiction to either the maximality of M or minimality of G.

32 5-Alternating Path Plus a 2-Alternating Path If the color of edge u 1 u i matches the color of edge e h in M. M H e 1 e h e i e r

33 5-Alternating Path Plus a 2-Alternating Path If the color of edge u 1 u i matches the color of edge e h in M. M H e 1 e h e i e r Try to replace e 1, e i, and e h with u 1 u i and important edges adjacent to v 1, v i, and v h.

34 5-Alternating Path Plus a 2-Alternating Path If the color of edge u 1 u i matches the color of edge e h in M. M H e 1 e h e i e r Try to replace e 1, e i, and e h with u 1 u i and important edges adjacent to v 1, v i, and v h.

35 Conclusion of Case 1 p k number of important edges out of H = number of important edges out of M (a + b)(p + 1) + (a + b 1)2 + ( k 1 2a 2b + 1)p 2 And Case 1 is done!

36 Case 2 We no longer have special vertices to use. However, we know that p = 3. (k 1) + p = n n = k + 2

37 Case 2 We no longer have special vertices to use. However, we know that p = 3. (k 1) + p = n n = k + 2 Every vertex is adjacent to n 2 distinct colors. Every vertex is like a special vertex!

38 Case 2 We no longer have special vertices to use. However, we know that p = 3. (k 1) + p = n n = k + 2 Every vertex is adjacent to n 2 distinct colors. Every vertex is like a special vertex!

39 Open Problem Conjecture (Li and Wang, 2008) For bipartite graphs, r k 1 if k is even and r k if k is odd. If true, this would be a generalization of H. J. Ryser s conjecture (1967) for the maximum size of a transveral in a latin square.

40 M. Kano and X. Li, Monochromatic and heterochromatic subgraphs in edge-colored graphs a survey. Graphs Combin. 24 (2008), T. D. LeSaulnier, C. Stocker, P. S. Wegner, and D. B. West, Rainbow Matching in Edge-Colored Graphs. Electron. J. Combin. 17 (2010), Paper #N26. H. Li and G. Wang, Color degree and heterochromatic matchings in edge-colored bipartite graphs. Util. Math. 77 (2008), X. Li and Z. Xu, On the existence of a rainbow 1-factor in proper coloring of K (r) rn. arxiv: [math.co] 19 Nov G. Wang and H. Li, Heterochromatic matchings in edge-colored graphs. Electron. J. Combin. 15 (2008), Paper #R138.

Short proofs of coloring theorems on planar graphs

Short proofs of coloring theorems on planar graphs Short proofs of coloring theorems on planar graphs Oleg V. Borodin Alexandr V. Kostochka Bernard Lidický Matthew Yancey February 28, 20 Abstract A recent lower bound on the number of edges in a k-critical

More information

3-coloring planar graphs with four triangles

3-coloring planar graphs with four triangles 3-coloring planar graphs with four triangles Oleg V. Borodin, Zdeněk Dvořák, Alexandr V. Kostochka, Bernard Lidický, Matthew Yancey Sobolev Institute of Mathematics and Novosibirsk State University Charles

More information

Rainbow spanning trees in properly coloured complete graphs

Rainbow spanning trees in properly coloured complete graphs Rainbow spanning trees in properly coloured complete graphs József Balogh, Hong Liu and Richard Montgomery April 24, 2017 Abstract In this short note, we study pairwise edge-disjoint rainbow spanning trees

More information

On vertex-coloring edge-weighting of graphs

On vertex-coloring edge-weighting of graphs Front. Math. China DOI 10.1007/s11464-009-0014-8 On vertex-coloring edge-weighting of graphs Hongliang LU 1, Xu YANG 1, Qinglin YU 1,2 1 Center for Combinatorics, Key Laboratory of Pure Mathematics and

More information

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H.

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H. Abstract We discuss a class of graphs called perfect graphs. After defining them and getting intuition with a few simple examples (and one less simple example), we present a proof of the Weak Perfect Graph

More information

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction

Vertex Colorings without Rainbow or Monochromatic Subgraphs. 1 Introduction Vertex Colorings without Rainbow or Monochromatic Subgraphs Wayne Goddard and Honghai Xu Dept of Mathematical Sciences, Clemson University Clemson SC 29634 {goddard,honghax}@clemson.edu Abstract. This

More information

Extremal results for Berge-hypergraphs

Extremal results for Berge-hypergraphs Extremal results for Berge-hypergraphs Dániel Gerbner Cory Palmer Abstract Let G be a graph and H be a hypergraph both on the same vertex set. We say that a hypergraph H is a Berge-G if there is a bijection

More information

On vertex types of graphs

On vertex types of graphs On vertex types of graphs arxiv:1705.09540v1 [math.co] 26 May 2017 Pu Qiao, Xingzhi Zhan Department of Mathematics, East China Normal University, Shanghai 200241, China Abstract The vertices of a graph

More information

1 Matchings in Graphs

1 Matchings in Graphs Matchings in Graphs J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 J J 2 J 3 J 4 J 5 J J J 6 8 7 C C 2 C 3 C 4 C 5 C C 7 C 8 6 Definition Two edges are called independent if they are not adjacent

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

8 Colouring Planar Graphs

8 Colouring Planar Graphs 8 Colouring Planar Graphs The Four Colour Theorem Lemma 8.1 If G is a simple planar graph, then (i) 12 v V (G)(6 deg(v)) with equality for triangulations. (ii) G has a vertex of degree 5. Proof: For (i),

More information

Monochromatic Tree Partition for Complete. Multipartite Graphs

Monochromatic Tree Partition for Complete. Multipartite Graphs Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 43, 2129-2134 Monochromatic Tree Partition for Complete Multipartite Graphs Shili Wen and Peipei Zhu Department of Mathematics Zhejiang Normal University

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap

Applied Mathematical Sciences, Vol. 5, 2011, no. 49, Július Czap Applied Mathematical Sciences, Vol. 5, 011, no. 49, 437-44 M i -Edge Colorings of Graphs Július Czap Department of Applied Mathematics and Business Informatics Faculty of Economics, Technical University

More information

ON SWELL COLORED COMPLETE GRAPHS

ON SWELL COLORED COMPLETE GRAPHS Acta Math. Univ. Comenianae Vol. LXIII, (1994), pp. 303 308 303 ON SWELL COLORED COMPLETE GRAPHS C. WARD and S. SZABÓ Abstract. An edge-colored graph is said to be swell-colored if each triangle contains

More information

Proper connection number of graphs

Proper connection number of graphs Proper connection number of graphs Ruxandra MARINESCU-GHEMECI University of Bucharest verman@fmi.unibuc.ro Mihai Patrascu Seminar in Theoretical Computer Science Ruxandra MARINESCU-GHEMECI (UB) Proper

More information

Partitioning Complete Multipartite Graphs by Monochromatic Trees

Partitioning Complete Multipartite Graphs by Monochromatic Trees Partitioning Complete Multipartite Graphs by Monochromatic Trees Atsushi Kaneko, M.Kano 1 and Kazuhiro Suzuki 1 1 Department of Computer and Information Sciences Ibaraki University, Hitachi 316-8511 Japan

More information

Planarity: dual graphs

Planarity: dual graphs : dual graphs Math 104, Graph Theory March 28, 2013 : dual graphs Duality Definition Given a plane graph G, the dual graph G is the plane graph whose vtcs are the faces of G. The correspondence between

More information

Graph theory - solutions to problem set 1

Graph theory - solutions to problem set 1 Graph theory - solutions to problem set 1 1. (a) Is C n a subgraph of K n? Exercises (b) For what values of n and m is K n,n a subgraph of K m? (c) For what n is C n a subgraph of K n,n? (a) Yes! (you

More information

Equitable edge colored Steiner triple systems

Equitable edge colored Steiner triple systems AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 0 (0), Pages 63 Equitable edge colored Steiner triple systems Atif A. Abueida Department of Mathematics University of Dayton 300 College Park, Dayton, OH 69-36

More information

CONNECTIVITY AND NETWORKS

CONNECTIVITY AND NETWORKS CONNECTIVITY AND NETWORKS We begin with the definition of a few symbols, two of which can cause great confusion, especially when hand-written. Consider a graph G. (G) the degree of the vertex with smallest

More information

On Choosability with Separation of Planar Graphs with Forbidden Cycles

On Choosability with Separation of Planar Graphs with Forbidden Cycles On Choosability with Separation of Planar Graphs with Forbidden Cycles Ilkyoo Choi Bernard Lidický Derrick Stolee March, 203 Abstract We study choosability with separation which is a constrained version

More information

Near-colorings: non-colorable graphs and NP-completeness

Near-colorings: non-colorable graphs and NP-completeness Near-colorings: non-colorable graphs and NP-completeness M. Montassier and P. Ochem LIRMM (Université de Montpellier, CNRS), Montpellier, France. February 16, 015 Abstract A graph G is (d 1,..., d l )-colorable

More information

Cycles of given size in a dense graph

Cycles of given size in a dense graph Monash University 23 March 2015 Corrádi-Hajnal Theorem Theorem (Corrádi, Hajnal (1963)) Every graph with minimum degree 2k and at least 3k vertices contains k (vertex) disjoint cycles. Corrádi-Hajnal Theorem

More information

Graphs with maximum degree 5 are acyclically 7-colorable

Graphs with maximum degree 5 are acyclically 7-colorable Also available at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 4 (2011) 153 164 Graphs with maximum degree 5 are acyclically 7-colorable

More information

Cycles through specified vertices in triangle-free graphs

Cycles through specified vertices in triangle-free graphs March 6, 2006 Cycles through specified vertices in triangle-free graphs Daniel Paulusma Department of Computer Science, Durham University Science Laboratories, South Road, Durham DH1 3LE, England daniel.paulusma@durham.ac.uk

More information

Graph Theory Day Four

Graph Theory Day Four Graph Theory Day Four February 8, 018 1 Connected Recall from last class, we discussed methods for proving a graph was connected. Our two methods were 1) Based on the definition, given any u, v V(G), there

More information

Collapsible biclaw-free graphs

Collapsible biclaw-free graphs Collapsible biclaw-free graphs Hong-Jian Lai, Xiangjuan Yao February 24, 2006 Abstract A graph is called biclaw-free if it has no biclaw as an induced subgraph. In this note, we prove that if G is a connected

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Rainbow Vertex-Connection Number of 3-Connected Graph

Rainbow Vertex-Connection Number of 3-Connected Graph Applied Mathematical Sciences, Vol. 11, 2017, no. 16, 71-77 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.612294 Rainbow Vertex-Connection Number of 3-Connected Graph Zhiping Wang, Xiaojing

More information

Super connectivity of line graphs

Super connectivity of line graphs Information Processing Letters 94 (2005) 191 195 www.elsevier.com/locate/ipl Super connectivity of line graphs Jun-Ming Xu a,,minlü a, Meijie Ma a, Angelika Hellwig b a Department of Mathematics, University

More information

On the Rainbow Neighbourhood Number of Set-Graphs

On the Rainbow Neighbourhood Number of Set-Graphs On the Rainbow Neighbourhood Number of Set-Graphs Johan Kok, Sudev Naduvath arxiv:1712.02324v1 [math.gm] 6 Dec 2017 Centre for Studies in Discrete Mathematics Vidya Academy of Science & Technology Thalakkottukara,

More information

Math236 Discrete Maths with Applications

Math236 Discrete Maths with Applications Math236 Discrete Maths with Applications P. Ittmann UKZN, Pietermaritzburg Semester 1, 2012 Ittmann (UKZN PMB) Math236 2012 1 / 19 Degree Sequences Let G be a graph with vertex set V (G) = {v 1, v 2, v

More information

CMSC Honors Discrete Mathematics

CMSC Honors Discrete Mathematics CMSC 27130 Honors Discrete Mathematics Lectures by Alexander Razborov Notes by Justin Lubin The University of Chicago, Autumn 2017 1 Contents I Number Theory 4 1 The Euclidean Algorithm 4 2 Mathematical

More information

Coloring Subgraphs with Restricted Amounts of Hues

Coloring Subgraphs with Restricted Amounts of Hues Coloring Subgraphs with Restricted Amounts of Hues Wayne Goddard School of Computing and Dept of Mathematical Sciences Clemson University goddard@clemson.edu Robert Melville Dept of Mathematics Abstract

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY. Contents

VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY. Contents VIZING S THEOREM AND EDGE-CHROMATIC GRAPH THEORY ROBERT GREEN Abstract. This paper is an expository piece on edge-chromatic graph theory. The central theorem in this subject is that of Vizing. We shall

More information

Erdös-Gallai-type results for conflict-free connection of graphs

Erdös-Gallai-type results for conflict-free connection of graphs Erdös-Gallai-type results for conflict-free connection of graphs Meng Ji 1, Xueliang Li 1,2 1 Center for Combinatorics and LPMC arxiv:1812.10701v1 [math.co] 27 Dec 2018 Nankai University, Tianjin 300071,

More information

HW Graph Theory SOLUTIONS (hbovik)

HW Graph Theory SOLUTIONS (hbovik) Diestel 1.3: Let G be a graph containing a cycle C, and assume that G contains a path P of length at least k between two vertices of C. Show that G contains a cycle of length at least k. If C has length

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

Planar graphs. Chapter 8

Planar graphs. Chapter 8 Chapter 8 Planar graphs Definition 8.1. A graph is called planar if it can be drawn in the plane so that edges intersect only at vertices to which they are incident. Example 8.2. Different representations

More information

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff

Institute of Operating Systems and Computer Networks Algorithms Group. Network Algorithms. Tutorial 4: Matching and other stuff Institute of Operating Systems and Computer Networks Algorithms Group Network Algorithms Tutorial 4: Matching and other stuff Christian Rieck Matching 2 Matching A matching M in a graph is a set of pairwise

More information

Gallai-Ramsey Numbers for C7 with Multiple Colors

Gallai-Ramsey Numbers for C7 with Multiple Colors University of Central Florida Honors in the Major Theses Open Access Gallai-Ramsey Numbers for C7 with Multiple Colors 2017 Dylan Bruce University of Central Florida Find similar works at: http://stars.library.ucf.edu/honorstheses

More information

A note on the saturation number of the family of k-connected graphs

A note on the saturation number of the family of k-connected graphs A note on the saturation number of the family of k-connected graphs Paul S. Wenger January 8, 014 Abstract Given a family of graphs F, a graph G is F-saturated if no member of F is a subgraph of G, but

More information

1 Matching in Non-Bipartite Graphs

1 Matching in Non-Bipartite Graphs CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: September 30, 2010 Scribe: David Tobin 1 Matching in Non-Bipartite Graphs There are several differences

More information

Properly Colored Paths and Cycles in Complete Graphs

Properly Colored Paths and Cycles in Complete Graphs 011 ¼ 9 È È 15 ± 3 ¾ Sept., 011 Operations Research Transactions Vol.15 No.3 Properly Colored Paths and Cycles in Complete Graphs Wang Guanghui 1 ZHOU Shan Abstract Let K c n denote a complete graph on

More information

Star Forests, Dominating Sets and Ramsey-type Problems

Star Forests, Dominating Sets and Ramsey-type Problems Star Forests, Dominating Sets and Ramsey-type Problems Sheila Ferneyhough a, Ruth Haas b,denis Hanson c,1 and Gary MacGillivray a,1 a Department of Mathematics and Statistics, University of Victoria, P.O.

More information

Spanning eulerian subgraphs in N 2 -locally connected claw-free graphs

Spanning eulerian subgraphs in N 2 -locally connected claw-free graphs Spanning eulerian subgraphs in N 2 -locally connected claw-free graphs Hong-Jian Lai, Mingchu Li, Yehong Shao and Liming Xiong July 15, 2005 Abstract A graph G is N m -locally connected if for every vertex

More information

Matching and Factor-Critical Property in 3-Dominating-Critical Graphs

Matching and Factor-Critical Property in 3-Dominating-Critical Graphs Matching and Factor-Critical Property in 3-Dominating-Critical Graphs Tao Wang a,, Qinglin Yu a,b a Center for Combinatorics, LPMC Nankai University, Tianjin, China b Department of Mathematics and Statistics

More information

Bounds for the m-eternal Domination Number of a Graph

Bounds for the m-eternal Domination Number of a Graph Bounds for the m-eternal Domination Number of a Graph Michael A. Henning Department of Pure and Applied Mathematics University of Johannesburg South Africa mahenning@uj.ac.za Gary MacGillivray Department

More information

Module 7. Independent sets, coverings. and matchings. Contents

Module 7. Independent sets, coverings. and matchings. Contents Module 7 Independent sets, coverings Contents and matchings 7.1 Introduction.......................... 152 7.2 Independent sets and coverings: basic equations..... 152 7.3 Matchings in bipartite graphs................

More information

Spanning Eulerian Subgraphs in claw-free graphs

Spanning Eulerian Subgraphs in claw-free graphs Spanning Eulerian Subgraphs in claw-free graphs Zhi-Hong Chen Butler University, Indianapolis, IN 46208 Hong-Jian Lai West Virginia University, Morgantown, WV 26506 Weiqi Luo JiNan University, Guangzhou,

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

A Structure of the Subgraph Induced at a Labeling of a Graph by the Subset of Vertices with an Interval Spectrum

A Structure of the Subgraph Induced at a Labeling of a Graph by the Subset of Vertices with an Interval Spectrum Applied Mathematical Sciences, Vol. 8, 2014, no. 173, 8635-8641 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410850 A Structure of the Subgraph Induced at a Labeling of a Graph by the

More information

and Heinz-Jürgen Voss

and Heinz-Jürgen Voss Discussiones Mathematicae Graph Theory 22 (2002 ) 193 198 ON k-trestles IN POLYHEDRAL GRAPHS Michal Tkáč Department of Mathematics The Faculty of Business Economics in Košice University of Economics in

More information

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so:

Math 15 - Spring Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: Math 15 - Spring 2017 - Homework 2.6 Solutions 1. (2.6 # 20) The following graph has 45 vertices. In Sagemath, we can define it like so: dm = {0: [1,15], 1: [2,16,31], 2: [3,17,32], 3: [4,18,33], 4: [5,19,34],

More information

arxiv: v1 [math.co] 3 Mar 2019

arxiv: v1 [math.co] 3 Mar 2019 A note on the Turán number of a Berge odd cycle Dániel Gerbner Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences P.O.B. 127, Budapest H-164, Hungary. gerbner@renyi.hu arxiv:190.01002v1

More information

The Largest Pure Partial Planes of Order 6 Have Size 25

The Largest Pure Partial Planes of Order 6 Have Size 25 The Largest Pure Partial Planes of Order 6 Have Size 5 Yibo Gao arxiv:1611.00084v1 [math.co] 31 Oct 016 Abstract In this paper, we prove that the largest pure partial plane of order 6 has size 5. At the

More information

λ -Harmonious Graph Colouring

λ -Harmonious Graph Colouring λ -Harmonious Graph Colouring Lauren DeDieu McMaster University Southwestern Ontario Graduate Mathematics Conference June 4th, 201 What is a graph? What is vertex colouring? 1 1 1 2 2 Figure : Proper Colouring.

More information

Computer Science 280 Fall 2002 Homework 10 Solutions

Computer Science 280 Fall 2002 Homework 10 Solutions Computer Science 280 Fall 2002 Homework 10 Solutions Part A 1. How many nonisomorphic subgraphs does W 4 have? W 4 is the wheel graph obtained by adding a central vertex and 4 additional "spoke" edges

More information

K 4,4 e Has No Finite Planar Cover

K 4,4 e Has No Finite Planar Cover K 4,4 e Has No Finite Planar Cover Petr Hliněný Dept. of Applied Mathematics, Charles University, Malostr. nám. 25, 118 00 Praha 1, Czech republic (E-mail: hlineny@kam.ms.mff.cuni.cz) February 9, 2005

More information

Perfect Matchings in Claw-free Cubic Graphs

Perfect Matchings in Claw-free Cubic Graphs Perfect Matchings in Claw-free Cubic Graphs Sang-il Oum Department of Mathematical Sciences KAIST, Daejeon, 305-701, Republic of Korea sangil@kaist.edu Submitted: Nov 9, 2009; Accepted: Mar 7, 2011; Published:

More information

11.1. Definitions. 11. Domination in Graphs

11.1. Definitions. 11. Domination in Graphs 11. Domination in Graphs Some definitions Minimal dominating sets Bounds for the domination number. The independent domination number Other domination parameters. 11.1. Definitions A vertex v in a graph

More information

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path.

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path. 3 Matchings Hall s Theorem Matching: A matching in G is a subset M E(G) so that no edge in M is a loop, and no two edges in M are incident with a common vertex. A matching M is maximal if there is no matching

More information

On Galvin orientations of line graphs and list-edge-colouring

On Galvin orientations of line graphs and list-edge-colouring On Galvin orientations of line graphs and list-edge-colouring arxiv:1508.0180v1 [math.co] 7 Aug 015 Jessica Mconald Abstract The notion of a Galvin orientation of a line graph is introduced, generalizing

More information

Cartesian Products of Graphs and Metric Spaces

Cartesian Products of Graphs and Metric Spaces Europ. J. Combinatorics (2000) 21, 847 851 Article No. 10.1006/eujc.2000.0401 Available online at http://www.idealibrary.com on Cartesian Products of Graphs and Metric Spaces S. AVGUSTINOVICH AND D. FON-DER-FLAASS

More information

Note on list star edge-coloring of subcubic graphs

Note on list star edge-coloring of subcubic graphs Note on list star edge-coloring of subcubic graphs Borut Lužar, Martina Mockovčiaková, Roman Soták October 5, 018 arxiv:1709.0393v1 [math.co] 11 Sep 017 Abstract A star edge-coloring of a graph is a proper

More information

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2, List of Theorems Mat 416, Introduction to Graph Theory 1. Ramsey s Theorem for graphs 8.3.11. Theorem 1 The numbers R(p, q) exist and for p, q 2, R(p, q) R(p 1, q) + R(p, q 1). If both summands on the

More information

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour.

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour. Some Upper Bounds for Signed Star Domination Number of Graphs S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour Abstract Let G be a graph with the vertex set V (G) and edge set E(G). A function

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/11cs8 Homework problem sessions are in CSB 601, 6:1-7:1pm on Oct. (Wednesday), Oct. 1 (Wednesday), and on Oct. 19 (Wednesday);

More information

Colored Saturation Parameters for Rainbow Subgraphs

Colored Saturation Parameters for Rainbow Subgraphs Colored Saturation Parameters for Rainbow Subgraphs Michael D. Barrus 1, Michael Ferrara, Jennifer Vandenbussche 3, and Paul S. Wenger 4 June 13, 016 Abstract Inspired by a 1987 result of Hanson and Toft

More information

In this lecture, we ll look at applications of duality to three problems:

In this lecture, we ll look at applications of duality to three problems: Lecture 7 Duality Applications (Part II) In this lecture, we ll look at applications of duality to three problems: 1. Finding maximum spanning trees (MST). We know that Kruskal s algorithm finds this,

More information

Perfect matchings in O(nlogn) time in regular bipartite graph

Perfect matchings in O(nlogn) time in regular bipartite graph Perfect matchings in O(nlogn) time in regular bipartite graphs Research project for computational optimization Presented by:qing Li April 26, 2011 Outline i.. ii.. iii.. iv.. What is d regular bipartite

More information

List Colouring Squares of Planar Graphs

List Colouring Squares of Planar Graphs Electronic Notes in Discrete Mathematics 9 (007) 515 519 www.elsevier.com/locate/endm List Colouring Squares of Planar Graphs Frédéric Havet a,1, Jan van den Heuvel b,1, Colin McDiarmid c,1, and Bruce

More information

Lecture 4: Primal Dual Matching Algorithm and Non-Bipartite Matching. 1 Primal/Dual Algorithm for weighted matchings in Bipartite Graphs

Lecture 4: Primal Dual Matching Algorithm and Non-Bipartite Matching. 1 Primal/Dual Algorithm for weighted matchings in Bipartite Graphs CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 009) Lecture 4: Primal Dual Matching Algorithm and Non-Bipartite Matching Lecturer: Mohammad R. Salavatipour Date: Sept 15 and 17, 009

More information

THE SEMIENTIRE DOMINATING GRAPH

THE SEMIENTIRE DOMINATING GRAPH Advances in Domination Theory I, ed VR Kulli Vishwa International Publications (2012) 63-70 THE SEMIENTIRE DOMINATING GRAPH VRKulli Department of Mathematics Gulbarga University, Gulbarga - 585 106, India

More information

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph

The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph Applied Mathematics E-Notes, 15(2015), 261-275 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ The Edge Fixing Edge-To-Vertex Monophonic Number Of A Graph KrishnaPillai

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CS 5311 Lecture 19 Topological Sort Junzhou Huang, Ph.D. Department of Computer Science and ngineering CS5311 Design and Analysis of Algorithms 1 Topological Sort Want

More information

Assignment 1 Introduction to Graph Theory CO342

Assignment 1 Introduction to Graph Theory CO342 Assignment 1 Introduction to Graph Theory CO342 This assignment will be marked out of a total of thirty points, and is due on Thursday 18th May at 10am in class. Throughout the assignment, the graphs are

More information

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN TOMASZ LUCZAK AND FLORIAN PFENDER Abstract. We show that every 3-connected claw-free graph which contains no induced copy of P 11 is hamiltonian.

More information

Connection and separation in hypergraphs

Connection and separation in hypergraphs Theory and Applications of Graphs Volume 2 Issue 2 Article 5 2015 Connection and separation in hypergraphs Mohammad A. Bahmanian Illinois State University, mbahman@ilstu.edu Mateja Sajna University of

More information

Sharp lower bound for the total number of matchings of graphs with given number of cut edges

Sharp lower bound for the total number of matchings of graphs with given number of cut edges South Asian Journal of Mathematics 2014, Vol. 4 ( 2 ) : 107 118 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE Sharp lower bound for the total number of matchings of graphs with given number of cut

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Fork-forests in bi-colored complete bipartite graphs

Fork-forests in bi-colored complete bipartite graphs Fork-forests in bi-colored complete bipartite graphs Maria Axenovich, Marcus Krug, Georg Osang, and Ignaz Rutter January 1, 01 Abstract Motivated by the problem in [6], which studies the relative efficiency

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Rainbow game domination subdivision number of a graph

Rainbow game domination subdivision number of a graph Rainbow game domination subdivision number of a graph J. Amjadi Department of Mathematics Azarbaijan Shahid Madani University Tabriz, I.R. Iran j-amjadi@azaruniv.edu Abstract The rainbow game domination

More information

Line Graphs and Circulants

Line Graphs and Circulants Line Graphs and Circulants Jason Brown and Richard Hoshino Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada B3H 3J5 Abstract The line graph of G, denoted L(G),

More information

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs

A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs Nicolas Lichiardopol Attila Pór Jean-Sébastien Sereni Abstract In 1981, Bermond and Thomassen conjectured that every digraph

More information

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH S. Sethu Ramalingam * 1, I. Keerthi Asir 2 and S. Athisayanathan 3 *1,2 & 3 Department of Mathematics,

More information

Small Survey on Perfect Graphs

Small Survey on Perfect Graphs Small Survey on Perfect Graphs Michele Alberti ENS Lyon December 8, 2010 Abstract This is a small survey on the exciting world of Perfect Graphs. We will see when a graph is perfect and which are families

More information

Winning Positions in Simplicial Nim

Winning Positions in Simplicial Nim Winning Positions in Simplicial Nim David Horrocks Department of Mathematics and Statistics University of Prince Edward Island Charlottetown, Prince Edward Island, Canada, C1A 4P3 dhorrocks@upei.ca Submitted:

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Subhash Suri June 5, 2018 1 Figure of Merit: Performance Ratio Suppose we are working on an optimization problem in which each potential solution has a positive cost, and we want

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Strong edge coloring of subcubic graphs

Strong edge coloring of subcubic graphs Strong edge coloring of subcubic graphs Hervé Hocquard a, Petru Valicov a a LaBRI (Université Bordeaux 1), 351 cours de la Libération, 33405 Talence Cedex, France Abstract A strong edge colouring of a

More information

ADJACENCY POSETS OF PLANAR GRAPHS

ADJACENCY POSETS OF PLANAR GRAPHS ADJACENCY POSETS OF PLANAR GRAPHS STEFAN FELSNER, CHING MAN LI, AND WILLIAM T. TROTTER Abstract. In this paper, we show that the dimension of the adjacency poset of a planar graph is at most 8. From below,

More information

Restricted edge connectivity and restricted connectivity of graphs

Restricted edge connectivity and restricted connectivity of graphs Restricted edge connectivity and restricted connectivity of graphs Litao Guo School of Applied Mathematics Xiamen University of Technology Xiamen Fujian 361024 P.R.China ltguo2012@126.com Xiaofeng Guo

More information

Colored Saturation Parameters for Rainbow Subgraphs

Colored Saturation Parameters for Rainbow Subgraphs Colored Saturation Parameters for Rainbow Subgraphs Michael Barrus 1, Michael Ferrara, Jennifer Vandenbussche 3, and Paul S. Wenger 4 December 30, 014 Abstract Inspired by a 1987 result of Hanson and Toft

More information