Small Sample Robust Fit Criteria in Latent Growth Models with Incomplete Data. Dan McNeish & Jeff Harring University of Maryland

Size: px
Start display at page:

Download "Small Sample Robust Fit Criteria in Latent Growth Models with Incomplete Data. Dan McNeish & Jeff Harring University of Maryland"

Transcription

1 Small Sample Robust Fit Criteria in Latent Growth Models with Incomplete Data Dan McNeish & Jeff Harring University of Maryland

2 Growth Models With Small Samples An expanding literature has addressed the issue of small samples with mixed effects models (MEMs) Main issue is biased estimates and underestimated standard errors REML estimation and the Kenward-Roger correction have been shown to provide unbiased estimates for sample sizes as low as 6 with MEMs 2

3 Growth Models With Small Samples II Despite the popularity of LGMs in behavioral sciences along with the high prevalence of small samples, very little research on small sample LGMs exists No REML estimation No Kenward-Roger correction Often uses FIML which has well-known finite sample bias Little research on fit indices Little research on missing data 3

4 4

5 5

6 Model Fit with Small Samples The ability to obtain global model fit information is one advantage of modeling in the LGM framework compared to the MEM framework With smaller samples though, the minimum-fit function chi-square test is known to be artificially inflated Well fitting models will be rejected much too often The various indices that are based upon this χ 2 test will also be adversely affected 3 approaches to accommodate small samples have been advanced 6

7 Bartlett Correction T B 1 (2v4 f 5) 6( n 1) T ML V = number of observed variables f = number of factors n = total sample size T ML = minimum fit function chi-square statistic 7

8 Yuan Correction T Y 1 (2v2 f 7) 6( n 1) Very similar to Bartlett correction but applies a less harsh penalty V = number of observed variables f = number of factors n = total sample size T ML = minimum fit function chi-square statistic T ML 8

9 Swain Correction T S v(2v 3v 1) q(2q 3q 1) (12 n) df T ML 1 4 v( v 1) 8df 1) q 2 V = number of observed variables n = total sample size T ML = minimum fit function chi-square statistic 9

10 T B 1 (2v4 f 5) 6( n 1) T ML T Y 1 (2v2 f 7) 6( n 1) T ML T S v(2v 3v 1) q(2q 3q 1) (12 n) df T ML 10

11 Issue with Small Sample Corrections With Missing Data Each of the 3 small sample corrections include sample size somewhere in the correction formula With FIML, what sample size should be in not always straightforward FIML makes full use of all observed values, but does not impute values 100 people may not give you 100 people s worth of information 11

12 Issue with Small Sample Corrections With Missing Data II The information contained in a complete observation with FIML is not equivalent to the information in an observation with missing data Weighing all observations equally assumes that there is more information than is actually present This will lead to under-corrections of the small sample formula 12

13 Analogous Situation with Multiple Imputation Inferential tests from analysis with multiple imputation encounter similar difficulties with appropriate degrees of freedom Degrees of freedom based on total sample size is not appropriate because many values are imputed Assumes that more information is present than there is in actuality Rubin & Schenker (1986) address this by calculating df as dfrs 1 FMI ( m 1) 2 13

14 Proposed Missing Data Scaling Factor FIML and MI don t not overlap exactly, but Rubin-Schenker degrees of freedom will serve as a basis for our proposed method Goal is to come up with a multiplicative factor M that can be applied to the total sample in the Bartlett, Swain, and Yuan corrections such that n M ( n Total ) As a result, the small sample corrections will no longer undercorrect dfrs 1 FMI ( m 1) 2 14

15 Specifically, Proposed Missing Data Scaling Factor II (1) as missingess 0, M 1 (2) and 0 < M 1 Leaving FMI in the denominator violates (1), so we will move it into the numerator Also, FMI is often considered a most relevant in the context of MI, so we will use the closely related (but not identical) and more easily calculable percentage of complete values for M dfrs 1 FMI ( m 1) 2 15

16 Proposed Missing Data Scaling Factor III As a result, we will multiply the total sample size by the square of the percentage complete observations n 2 (% Complete Observations) ntotal For example, if a data matrix has 4 measurements on 25 people and 20 of the measurements were missing (regardless of how they were distributed), 2 n (80 / 100) Preserves the asymptotic properties because as n becomes very large and/or as missing data goes to 0, the missing data factor has less and less influence dfrs 1 FMI ( m 1) 2 16

17 Bartlett Correction with Missing Data Scaling factor T BM (2v4 f 5) 1 6[ M ( n ) 1] Total T ML Where M (% CompleteObservations) 2 T B 1 (2v4 f 5) T 6( n 1) ML 17

18 Bartlett Correction with Missing Data Scaling factor T Where BM M 1 (2v4 f 5) 6[ M( n ) 1] Total T ML Seems painfully simple, but, as shown shortly, it makes a very big difference (% CompleteObservations ) 2 T B 1 (2v4 f 5) 6( n 1) T ML 18

19 4 sample size conditions (20,30,50,100) Simulation Conditions 2 repeated measures conditions (4,8) 3 % missing data conditions (0%, 10%, 20%) 2 missing data pattern conditions (arbitrary, monotone) 2 model conditions (Linear, latent basis) 19

20 Results- No Missing Data T ML can clearly be seen to have inflated rejection rates All three corrections return the rejection rates very close to the nominal rate when no data are missing Values for n is not problematic here 20

21 Results- 10% Missing Data With even a small amount of missing data, the n-based corrections no longer perform very well Using the missing data scaling factor in the corrections is able to yield reject rates much closer to the nominal rate, particularly with Bartlett 21

22 Results- 20% Missing Data As percentage of missing data grows, using n in the sample size correction formula doesn t correct enough Assumes more information is present 22

23 RMSEA Results- 20% Missing Data Inflated T ML values also affect fit indices Missing data corrections can similarly be applied to account for missing data with small samples Most salient at smallest sample sizes 23

24 Discussion The standard ML chi-square and standard fit indices are inflated with small samples, leading to over-rejection of models that truly fit well Bartlett, Swain, and Yuan corrections perform quite well when the no data are missing Has been previously found (e.g., Herzog & Boomsma 2009; Nevitt & Hancock, 2004) However, as the percentage of missing data increases, using FIML, the appropriate value for n in these corrections becomes unclear 24

25 Discussion II The focus of this study was solely on obtaining appropriate rejection rates, additional work would be needed to address the power of the proposed method Normality can also be problematic with small samples. The corrections mentioned here have been applied to the Satorra- Bentler chi square and a missing data scaling factor may be useful in this context as well. 25

26 Thank You! For questions, comments, or a copy of the full paper, dmcneish@umd.edu harring@umd.edu 26

Missing Data Missing Data Methods in ML Multiple Imputation

Missing Data Missing Data Methods in ML Multiple Imputation Missing Data Missing Data Methods in ML Multiple Imputation PRE 905: Multivariate Analysis Lecture 11: April 22, 2014 PRE 905: Lecture 11 Missing Data Methods Today s Lecture The basics of missing data:

More information

PSY 9556B (Jan8) Design Issues and Missing Data Continued Examples of Simulations for Projects

PSY 9556B (Jan8) Design Issues and Missing Data Continued Examples of Simulations for Projects PSY 9556B (Jan8) Design Issues and Missing Data Continued Examples of Simulations for Projects Let s create a data for a variable measured repeatedly over five occasions We could create raw data (for each

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup Random Variables: Y i =(Y i1,...,y ip ) 0 =(Y i,obs, Y i,miss ) 0 R i =(R i1,...,r ip ) 0 ( 1

More information

Multiple Imputation with Mplus

Multiple Imputation with Mplus Multiple Imputation with Mplus Tihomir Asparouhov and Bengt Muthén Version 2 September 29, 2010 1 1 Introduction Conducting multiple imputation (MI) can sometimes be quite intricate. In this note we provide

More information

Supplementary Notes on Multiple Imputation. Stephen du Toit and Gerhard Mels Scientific Software International

Supplementary Notes on Multiple Imputation. Stephen du Toit and Gerhard Mels Scientific Software International Supplementary Notes on Multiple Imputation. Stephen du Toit and Gerhard Mels Scientific Software International Part A: Comparison with FIML in the case of normal data. Stephen du Toit Multivariate data

More information

Ronald H. Heck 1 EDEP 606 (F2015): Multivariate Methods rev. November 16, 2015 The University of Hawai i at Mānoa

Ronald H. Heck 1 EDEP 606 (F2015): Multivariate Methods rev. November 16, 2015 The University of Hawai i at Mānoa Ronald H. Heck 1 In this handout, we will address a number of issues regarding missing data. It is often the case that the weakest point of a study is the quality of the data that can be brought to bear

More information

Introduction to Mixed Models: Multivariate Regression

Introduction to Mixed Models: Multivariate Regression Introduction to Mixed Models: Multivariate Regression EPSY 905: Multivariate Analysis Spring 2016 Lecture #9 March 30, 2016 EPSY 905: Multivariate Regression via Path Analysis Today s Lecture Multivariate

More information

MAC-CPTM Situations Project. Situation 04: Representing Standard Deviation* (* formerly Bull s Eye )

MAC-CPTM Situations Project. Situation 04: Representing Standard Deviation* (* formerly Bull s Eye ) MAC-CPTM Situations Project Situation 04: Representing Standard Deviation* (* formerly Bull s Eye ) Prepared at Pennsylvania State University Mid-Atlantic Center for Mathematics Teaching and Learning 18

More information

Statistical Analysis Using Combined Data Sources: Discussion JPSM Distinguished Lecture University of Maryland

Statistical Analysis Using Combined Data Sources: Discussion JPSM Distinguished Lecture University of Maryland Statistical Analysis Using Combined Data Sources: Discussion 2011 JPSM Distinguished Lecture University of Maryland 1 1 University of Michigan School of Public Health April 2011 Complete (Ideal) vs. Observed

More information

Interior Penalty Functions. Barrier Functions A Problem and a Solution

Interior Penalty Functions. Barrier Functions A Problem and a Solution Interior Penalty Functions Barrier Functions A Problem and a Solution Initial Steps A second type of penalty function begins with an initial point inside the feasible region, which is why these procedures

More information

Missing Data: What Are You Missing?

Missing Data: What Are You Missing? Missing Data: What Are You Missing? Craig D. Newgard, MD, MPH Jason S. Haukoos, MD, MS Roger J. Lewis, MD, PhD Society for Academic Emergency Medicine Annual Meeting San Francisco, CA May 006 INTRODUCTION

More information

Study Guide. Module 1. Key Terms

Study Guide. Module 1. Key Terms Study Guide Module 1 Key Terms general linear model dummy variable multiple regression model ANOVA model ANCOVA model confounding variable squared multiple correlation adjusted squared multiple correlation

More information

Descriptive Statistics, Standard Deviation and Standard Error

Descriptive Statistics, Standard Deviation and Standard Error AP Biology Calculations: Descriptive Statistics, Standard Deviation and Standard Error SBI4UP The Scientific Method & Experimental Design Scientific method is used to explore observations and answer questions.

More information

Using Mplus Monte Carlo Simulations In Practice: A Note On Non-Normal Missing Data In Latent Variable Models

Using Mplus Monte Carlo Simulations In Practice: A Note On Non-Normal Missing Data In Latent Variable Models Using Mplus Monte Carlo Simulations In Practice: A Note On Non-Normal Missing Data In Latent Variable Models Bengt Muth en University of California, Los Angeles Tihomir Asparouhov Muth en & Muth en Mplus

More information

CHAPTER 11 EXAMPLES: MISSING DATA MODELING AND BAYESIAN ANALYSIS

CHAPTER 11 EXAMPLES: MISSING DATA MODELING AND BAYESIAN ANALYSIS Examples: Missing Data Modeling And Bayesian Analysis CHAPTER 11 EXAMPLES: MISSING DATA MODELING AND BAYESIAN ANALYSIS Mplus provides estimation of models with missing data using both frequentist and Bayesian

More information

Comparison of computational methods for high dimensional item factor analysis

Comparison of computational methods for high dimensional item factor analysis Comparison of computational methods for high dimensional item factor analysis Tihomir Asparouhov and Bengt Muthén November 14, 2012 Abstract In this article we conduct a simulation study to compare several

More information

MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES

MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES UNIVERSITY OF GLASGOW MODEL SELECTION AND MODEL AVERAGING IN THE PRESENCE OF MISSING VALUES by KHUNESWARI GOPAL PILLAY A thesis submitted in partial fulfillment for the degree of Doctor of Philosophy in

More information

lavaan: an R package for structural equation modeling

lavaan: an R package for structural equation modeling lavaan: an R package for structural equation modeling Yves Rosseel Department of Data Analysis Belgium Modern Modeling Methods Conference May 22, 2012 University of Connecticut Yves Rosseel lavaan: an

More information

Florida State University Libraries

Florida State University Libraries Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2013 Use of Item Parceling in Structural Equation Modeling with Missing Data Fatih Orcan Follow this

More information

Missing Data. Where did it go?

Missing Data. Where did it go? Missing Data Where did it go? 1 Learning Objectives High-level discussion of some techniques Identify type of missingness Single vs Multiple Imputation My favourite technique 2 Problem Uh data are missing

More information

Stat 500 lab notes c Philip M. Dixon, Week 10: Autocorrelated errors

Stat 500 lab notes c Philip M. Dixon, Week 10: Autocorrelated errors Week 10: Autocorrelated errors This week, I have done one possible analysis and provided lots of output for you to consider. Case study: predicting body fat Body fat is an important health measure, but

More information

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620 Affine and 3D Transformations Professor: Kavita Bala 1 Announcements Updated schedule on course web page 2 Prelim days finalized and posted Oct 11, Nov 29 No final exam, final project will

More information

Reducing the Effects of Careless Responses on Item Calibration in Item Response Theory

Reducing the Effects of Careless Responses on Item Calibration in Item Response Theory Reducing the Effects of Careless Responses on Item Calibration in Item Response Theory Jeffrey M. Patton, Ying Cheng, & Ke-Hai Yuan University of Notre Dame http://irtnd.wikispaces.com Qi Diao CTB/McGraw-Hill

More information

Mean Tests & X 2 Parametric vs Nonparametric Errors Selection of a Statistical Test SW242

Mean Tests & X 2 Parametric vs Nonparametric Errors Selection of a Statistical Test SW242 Mean Tests & X 2 Parametric vs Nonparametric Errors Selection of a Statistical Test SW242 Creation & Description of a Data Set * 4 Levels of Measurement * Nominal, ordinal, interval, ratio * Variable Types

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION Introduction CHAPTER 1 INTRODUCTION Mplus is a statistical modeling program that provides researchers with a flexible tool to analyze their data. Mplus offers researchers a wide choice of models, estimators,

More information

Serial Correlation and Heteroscedasticity in Time series Regressions. Econometric (EC3090) - Week 11 Agustín Bénétrix

Serial Correlation and Heteroscedasticity in Time series Regressions. Econometric (EC3090) - Week 11 Agustín Bénétrix Serial Correlation and Heteroscedasticity in Time series Regressions Econometric (EC3090) - Week 11 Agustín Bénétrix 1 Properties of OLS with serially correlated errors OLS still unbiased and consistent

More information

Are We Really Doing What We think We are doing? A Note on Finite-Sample Estimates of Two-Way Cluster-Robust Standard Errors

Are We Really Doing What We think We are doing? A Note on Finite-Sample Estimates of Two-Way Cluster-Robust Standard Errors Are We Really Doing What We think We are doing? A Note on Finite-Sample Estimates of Two-Way Cluster-Robust Standard Errors Mark (Shuai) Ma Kogod School of Business American University Email: Shuaim@american.edu

More information

Engineering Mechanics Prof. Siva Kumar Department of Civil Engineering Indian Institute of Technology, Madras Statics - 4.3

Engineering Mechanics Prof. Siva Kumar Department of Civil Engineering Indian Institute of Technology, Madras Statics - 4.3 Engineering Mechanics Prof. Siva Kumar Department of Civil Engineering Indian Institute of Technology, Madras Statics - 4.3 In this case let s say delta B and delta C are the kinematically consistent displacements.

More information

Modular Arithmetic. is just the set of remainders we can get when we divide integers by n

Modular Arithmetic. is just the set of remainders we can get when we divide integers by n 20181004 Modular Arithmetic We are accustomed to performing arithmetic on infinite sets of numbers. But sometimes we need to perform arithmetic on a finite set, and we need it to make sense and be consistent

More information

Techniques for Evaluating Limits. Techniques for Evaluating Limits. Techniques for Evaluating Limits

Techniques for Evaluating Limits. Techniques for Evaluating Limits. Techniques for Evaluating Limits PreCalc CH 12.2.notebook In the beginning of this chapter we evaluated limits of rational functions and saw that the indeterminate form gave us problems. There is a technique that can overcome this difficulty

More information

Random Walks and Cover Times. Project Report. Aravind Ranganathan. ECES 728 Internet Studies and Web Algorithms

Random Walks and Cover Times. Project Report. Aravind Ranganathan. ECES 728 Internet Studies and Web Algorithms Random Walks and Cover Times Project Report Aravind Ranganathan ECES 728 Internet Studies and Web Algorithms 1. Objectives: We consider random walk based broadcast-like operation in random networks. First,

More information

One way ANOVA when the data are not normally distributed (The Kruskal-Wallis test).

One way ANOVA when the data are not normally distributed (The Kruskal-Wallis test). One way ANOVA when the data are not normally distributed (The Kruskal-Wallis test). Suppose you have a one way design, and want to do an ANOVA, but discover that your data are seriously not normal? Just

More information

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for

More information

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018

Performance Estimation and Regularization. Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Performance Estimation and Regularization Kasthuri Kannan, PhD. Machine Learning, Spring 2018 Bias- Variance Tradeoff Fundamental to machine learning approaches Bias- Variance Tradeoff Error due to Bias:

More information

Unit 5: Estimating with Confidence

Unit 5: Estimating with Confidence Unit 5: Estimating with Confidence Section 8.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Unit 5 Estimating with Confidence 8.1 8.2 8.3 Confidence Intervals: The Basics Estimating

More information

Dual-Frame Sample Sizes (RDD and Cell) for Future Minnesota Health Access Surveys

Dual-Frame Sample Sizes (RDD and Cell) for Future Minnesota Health Access Surveys Dual-Frame Sample Sizes (RDD and Cell) for Future Minnesota Health Access Surveys Steven Pedlow 1, Kanru Xia 1, Michael Davern 1 1 NORC/University of Chicago, 55 E. Monroe Suite 2000, Chicago, IL 60603

More information

Floating Point January 24, 2008

Floating Point January 24, 2008 15-213 The course that gives CMU its Zip! Floating Point January 24, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties class04.ppt 15-213, S 08 Floating

More information

SEM 1: Confirmatory Factor Analysis

SEM 1: Confirmatory Factor Analysis SEM 1: Confirmatory Factor Analysis Week 2 - Fitting CFA models Sacha Epskamp 10-04-2017 General factor analysis framework: in which: y i = Λη i + ε i y N(0, Σ) η N(0, Ψ) ε N(0, Θ), y i is a p-length vector

More information

function at the given point. Thus, for our previous example we would find that lim f(x) = 0

function at the given point. Thus, for our previous example we would find that lim f(x) = 0 Limits In order to introduce the notion of the it, we will consider the following situation. Suppose you are given a function, defined on some interval, except at a single point in the interval. What,

More information

CHAPTER 18 OUTPUT, SAVEDATA, AND PLOT COMMANDS

CHAPTER 18 OUTPUT, SAVEDATA, AND PLOT COMMANDS OUTPUT, SAVEDATA, And PLOT Commands CHAPTER 18 OUTPUT, SAVEDATA, AND PLOT COMMANDS THE OUTPUT COMMAND OUTPUT: In this chapter, the OUTPUT, SAVEDATA, and PLOT commands are discussed. The OUTPUT command

More information

Binary IFA-IRT Models in Mplus version 7.11

Binary IFA-IRT Models in Mplus version 7.11 Binary IFA-IRT Models in Mplus version 7.11 Example data: 635 older adults (age 80-100) self-reporting on 7 items assessing the Instrumental Activities of Daily Living (IADL) as follows: 1. Housework (cleaning

More information

QQ normality plots Harvey Motulsky, GraphPad Software Inc. July 2013

QQ normality plots Harvey Motulsky, GraphPad Software Inc. July 2013 QQ normality plots Harvey Motulsky, GraphPad Software Inc. July 213 Introduction Many statistical tests assume that data (or residuals) are sampled from a Gaussian distribution. Normality tests are often

More information

(Refer Slide Time: 05:25)

(Refer Slide Time: 05:25) Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering IIT Delhi Lecture 30 Applications of DFS in Directed Graphs Today we are going to look at more applications

More information

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea Chapter 3 Bootstrap 3.1 Introduction The estimation of parameters in probability distributions is a basic problem in statistics that one tends to encounter already during the very first course on the subject.

More information

Dual-Frame Weights (Landline and Cell) for the 2009 Minnesota Health Access Survey

Dual-Frame Weights (Landline and Cell) for the 2009 Minnesota Health Access Survey Dual-Frame Weights (Landline and Cell) for the 2009 Minnesota Health Access Survey Kanru Xia 1, Steven Pedlow 1, Michael Davern 1 1 NORC/University of Chicago, 55 E. Monroe Suite 2000, Chicago, IL 60603

More information

Goal of the course: The goal is to learn to design and analyze an algorithm. More specifically, you will learn:

Goal of the course: The goal is to learn to design and analyze an algorithm. More specifically, you will learn: CS341 Algorithms 1. Introduction Goal of the course: The goal is to learn to design and analyze an algorithm. More specifically, you will learn: Well-known algorithms; Skills to analyze the correctness

More information

Handling Data with Three Types of Missing Values:

Handling Data with Three Types of Missing Values: Handling Data with Three Types of Missing Values: A Simulation Study Jennifer Boyko Advisor: Ofer Harel Department of Statistics University of Connecticut Storrs, CT May 21, 2013 Jennifer Boyko Handling

More information

Pattern Recognition ( , RIT) Exercise 1 Solution

Pattern Recognition ( , RIT) Exercise 1 Solution Pattern Recognition (4005-759, 20092 RIT) Exercise 1 Solution Instructor: Prof. Richard Zanibbi The following exercises are to help you review for the upcoming midterm examination on Thursday of Week 5

More information

Nonparametric Regression

Nonparametric Regression Nonparametric Regression John Fox Department of Sociology McMaster University 1280 Main Street West Hamilton, Ontario Canada L8S 4M4 jfox@mcmaster.ca February 2004 Abstract Nonparametric regression analysis

More information

D-Optimal Designs. Chapter 888. Introduction. D-Optimal Design Overview

D-Optimal Designs. Chapter 888. Introduction. D-Optimal Design Overview Chapter 888 Introduction This procedure generates D-optimal designs for multi-factor experiments with both quantitative and qualitative factors. The factors can have a mixed number of levels. For example,

More information

CMPSCI 187: Programming With Data Structures. Lecture 5: Analysis of Algorithms Overview 16 September 2011

CMPSCI 187: Programming With Data Structures. Lecture 5: Analysis of Algorithms Overview 16 September 2011 CMPSCI 187: Programming With Data Structures Lecture 5: Analysis of Algorithms Overview 16 September 2011 Analysis of Algorithms Overview What is Analysis of Algorithms? L&C s Dishwashing Example Being

More information

Chapter 1 Section 1 Lesson: Solving Linear Equations

Chapter 1 Section 1 Lesson: Solving Linear Equations Introduction Linear equations are the simplest types of equations to solve. In a linear equation, all variables are to the first power only. All linear equations in one variable can be reduced to the form

More information

Section 4.2 Graphs of Exponential Functions

Section 4.2 Graphs of Exponential Functions 238 Chapter 4 Section 4.2 Graphs of Eponential Functions Like with linear functions, the graph of an eponential function is determined by the values for the parameters in the function s formula. To get

More information

A Course in Machine Learning

A Course in Machine Learning A Course in Machine Learning Hal Daumé III 13 UNSUPERVISED LEARNING If you have access to labeled training data, you know what to do. This is the supervised setting, in which you have a teacher telling

More information

5.5 Complex Fractions

5.5 Complex Fractions 5.5 Complex Fractions At this point, right after we cover all the basic operations, we would usually turn our attention to solving equations. However, there is one other type of rational expression that

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining Fundamentals of learning (continued) and the k-nearest neighbours classifier Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart.

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 4: Floating Point Required Reading Assignment: Chapter 2 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron Assignments for This Week: Lab 1 18-600

More information

Horn Formulae. CS124 Course Notes 8 Spring 2018

Horn Formulae. CS124 Course Notes 8 Spring 2018 CS124 Course Notes 8 Spring 2018 In today s lecture we will be looking a bit more closely at the Greedy approach to designing algorithms. As we will see, sometimes it works, and sometimes even when it

More information

Analysis of Imputation Methods for Missing Data. in AR(1) Longitudinal Dataset

Analysis of Imputation Methods for Missing Data. in AR(1) Longitudinal Dataset Int. Journal of Math. Analysis, Vol. 5, 2011, no. 45, 2217-2227 Analysis of Imputation Methods for Missing Data in AR(1) Longitudinal Dataset Michikazu Nakai Innovation Center for Medical Redox Navigation,

More information

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers.

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers. class04.ppt 15-213 The course that gives CMU its Zip! Topics Floating Point Jan 22, 2004 IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Floating Point Puzzles For

More information

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2016

CPSC 340: Machine Learning and Data Mining. Regularization Fall 2016 CPSC 340: Machine Learning and Data Mining Regularization Fall 2016 Assignment 2: Admin 2 late days to hand it in Friday, 3 for Monday. Assignment 3 is out. Due next Wednesday (so we can release solutions

More information

1

1 Zeros&asymptotes Example 1 In an early version of this activity I began with a sequence of simple examples (parabolas and cubics) working gradually up to the main idea. But now I think the best strategy

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Floating Point Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture are based

More information

Chapter 2: Complexity Analysis

Chapter 2: Complexity Analysis Chapter 2: Complexity Analysis Objectives Looking ahead in this chapter, we ll consider: Computational and Asymptotic Complexity Big-O Notation Properties of the Big-O Notation Ω and Θ Notations Possible

More information

Estimation of Item Response Models

Estimation of Item Response Models Estimation of Item Response Models Lecture #5 ICPSR Item Response Theory Workshop Lecture #5: 1of 39 The Big Picture of Estimation ESTIMATOR = Maximum Likelihood; Mplus Any questions? answers Lecture #5:

More information

UNIVERSITY OF TORONTO Faculty of Applied Science and Engineering. ROB501H1 F: Computer Vision for Robotics. Midterm Examination.

UNIVERSITY OF TORONTO Faculty of Applied Science and Engineering. ROB501H1 F: Computer Vision for Robotics. Midterm Examination. UNIVERSITY OF TORONTO Faculty of Applied Science and Engineering ROB501H1 F: Computer Vision for Robotics October 26, 2016 Student Name: Student Number: Instructions: 1. Attempt all questions. 2. The value

More information

Feature selection. LING 572 Fei Xia

Feature selection. LING 572 Fei Xia Feature selection LING 572 Fei Xia 1 Creating attribute-value table x 1 x 2 f 1 f 2 f K y Choose features: Define feature templates Instantiate the feature templates Dimensionality reduction: feature selection

More information

Giving credit where credit is due

Giving credit where credit is due JDEP 284H Foundations of Computer Systems Floating Point Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created by Drs. Bryant

More information

Lecture 26: Missing data

Lecture 26: Missing data Lecture 26: Missing data Reading: ESL 9.6 STATS 202: Data mining and analysis December 1, 2017 1 / 10 Missing data is everywhere Survey data: nonresponse. 2 / 10 Missing data is everywhere Survey data:

More information

Höllische Programmiersprachen Hauptseminar im Wintersemester 2014/2015 Determinism and reliability in the context of parallel programming

Höllische Programmiersprachen Hauptseminar im Wintersemester 2014/2015 Determinism and reliability in the context of parallel programming Höllische Programmiersprachen Hauptseminar im Wintersemester 2014/2015 Determinism and reliability in the context of parallel programming Raphael Arias Technische Universität München 19.1.2015 Abstract

More information

Search: Advanced Topics and Conclusion

Search: Advanced Topics and Conclusion Search: Advanced Topics and Conclusion CPSC 322 Lecture 8 January 20, 2006 Textbook 2.6 Search: Advanced Topics and Conclusion CPSC 322 Lecture 8, Slide 1 Lecture Overview Recap Branch & Bound A Tricks

More information

Semi-Supervised Clustering with Partial Background Information

Semi-Supervised Clustering with Partial Background Information Semi-Supervised Clustering with Partial Background Information Jing Gao Pang-Ning Tan Haibin Cheng Abstract Incorporating background knowledge into unsupervised clustering algorithms has been the subject

More information

Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi

Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture - 8 Consistency and Redundancy in Project networks In today s lecture

More information

Soft shadows. Steve Marschner Cornell University CS 569 Spring 2008, 21 February

Soft shadows. Steve Marschner Cornell University CS 569 Spring 2008, 21 February Soft shadows Steve Marschner Cornell University CS 569 Spring 2008, 21 February Soft shadows are what we normally see in the real world. If you are near a bare halogen bulb, a stage spotlight, or other

More information

Equating. Lecture #10 ICPSR Item Response Theory Workshop

Equating. Lecture #10 ICPSR Item Response Theory Workshop Equating Lecture #10 ICPSR Item Response Theory Workshop Lecture #10: 1of 81 Lecture Overview Test Score Equating Using IRT How do we get the results from separate calibrations onto the same scale, so

More information

Tutorial #1: Using Latent GOLD choice to Estimate Discrete Choice Models

Tutorial #1: Using Latent GOLD choice to Estimate Discrete Choice Models Tutorial #1: Using Latent GOLD choice to Estimate Discrete Choice Models In this tutorial, we analyze data from a simple choice-based conjoint (CBC) experiment designed to estimate market shares (choice

More information

Fitting D.A. Forsyth, CS 543

Fitting D.A. Forsyth, CS 543 Fitting D.A. Forsyth, CS 543 Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on

More information

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon Carnegie Mellon Floating Point 15-213/18-213/14-513/15-513: Introduction to Computer Systems 4 th Lecture, Sept. 6, 2018 Today: Floating Point Background: Fractional binary numbers IEEE floating point

More information

Averages and Variation

Averages and Variation Averages and Variation 3 Copyright Cengage Learning. All rights reserved. 3.1-1 Section 3.1 Measures of Central Tendency: Mode, Median, and Mean Copyright Cengage Learning. All rights reserved. 3.1-2 Focus

More information

WebSEM: Structural Equation Modeling Online

WebSEM: Structural Equation Modeling Online WebSEM: Structural Equation Modeling Online Zhiyong Zhang and Ke-Hai Yuan August 27, 2012 118 Haggar Hall, Department of Psychology, University of Notre Dame 1 Thanks The development of the path diagram

More information

The SAS Denomininator Degrees of Freedom Option

The SAS Denomininator Degrees of Freedom Option The SAS Denomininator Degrees of Freedom Option David Allen University of Kentucky April 12, 2016 1 SAS Degrees of Freedom Options This discussion pertains to SAS proc mixed or proc glimmix when used for

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

3 SOLVING PROBLEMS BY SEARCHING

3 SOLVING PROBLEMS BY SEARCHING 48 3 SOLVING PROBLEMS BY SEARCHING A goal-based agent aims at solving problems by performing actions that lead to desirable states Let us first consider the uninformed situation in which the agent is not

More information

Annotated multitree output

Annotated multitree output Annotated multitree output A simplified version of the two high-threshold (2HT) model, applied to two experimental conditions, is used as an example to illustrate the output provided by multitree (version

More information

Chapter 6: Examples 6.A Introduction

Chapter 6: Examples 6.A Introduction Chapter 6: Examples 6.A Introduction In Chapter 4, several approaches to the dual model regression problem were described and Chapter 5 provided expressions enabling one to compute the MSE of the mean

More information

LISREL 10.1 RELEASE NOTES 2 1 BACKGROUND 2 2 MULTIPLE GROUP ANALYSES USING A SINGLE DATA FILE 2

LISREL 10.1 RELEASE NOTES 2 1 BACKGROUND 2 2 MULTIPLE GROUP ANALYSES USING A SINGLE DATA FILE 2 LISREL 10.1 RELEASE NOTES 2 1 BACKGROUND 2 2 MULTIPLE GROUP ANALYSES USING A SINGLE DATA FILE 2 3 MODELS FOR GROUPED- AND DISCRETE-TIME SURVIVAL DATA 5 4 MODELS FOR ORDINAL OUTCOMES AND THE PROPORTIONAL

More information

Answers Investigation 5

Answers Investigation 5 Applications. Heidi s conjecture is correct; any value of x will always equal. 2. B Evan s conjecture is correct; students might argue that it is the largest number in its row and column, so it will be

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 13: The bootstrap (v3) Ramesh Johari ramesh.johari@stanford.edu 1 / 30 Resampling 2 / 30 Sampling distribution of a statistic For this lecture: There is a population model

More information

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU.

SOS3003 Applied data analysis for social science Lecture note Erling Berge Department of sociology and political science NTNU. SOS3003 Applied data analysis for social science Lecture note 04-2009 Erling Berge Department of sociology and political science NTNU Erling Berge 2009 1 Missing data Literature Allison, Paul D 2002 Missing

More information

Limits at Infinity. as x, f (x)?

Limits at Infinity. as x, f (x)? Limits at Infinity as x, f (x)? as x, f (x)? Let s look at... Let s look at... Let s look at... Definition of a Horizontal Asymptote: If Then the line y = L is called a horizontal asymptote of the graph

More information

3 Fractional Ramsey Numbers

3 Fractional Ramsey Numbers 27 3 Fractional Ramsey Numbers Since the definition of Ramsey numbers makes use of the clique number of graphs, we may define fractional Ramsey numbers simply by substituting fractional clique number into

More information

- 1 - Fig. A5.1 Missing value analysis dialog box

- 1 - Fig. A5.1 Missing value analysis dialog box WEB APPENDIX Sarstedt, M. & Mooi, E. (2019). A concise guide to market research. The process, data, and methods using SPSS (3 rd ed.). Heidelberg: Springer. Missing Value Analysis and Multiple Imputation

More information

Hierarchical Generalized Linear Models

Hierarchical Generalized Linear Models Generalized Multilevel Linear Models Introduction to Multilevel Models Workshop University of Georgia: Institute for Interdisciplinary Research in Education and Human Development 07 Generalized Multilevel

More information

* (4.1) A more exact setting will be specified later. The side lengthsj are determined such that

* (4.1) A more exact setting will be specified later. The side lengthsj are determined such that D D Chapter 4 xtensions of the CUB MTOD e present several generalizations of the CUB MTOD In section 41 we analyze the query algorithm GOINGCUB The difference to the CUB MTOD occurs in the case when the

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

Variance Estimation in Presence of Imputation: an Application to an Istat Survey Data

Variance Estimation in Presence of Imputation: an Application to an Istat Survey Data Variance Estimation in Presence of Imputation: an Application to an Istat Survey Data Marco Di Zio, Stefano Falorsi, Ugo Guarnera, Orietta Luzi, Paolo Righi 1 Introduction Imputation is the commonly used

More information

Congruence Arithmetic

Congruence Arithmetic Module 4 Congruence Arithmetic Popper 4 Introduction to what is like Modulus choices Partitions by modulus Mod 5 Mod 7 Mod 30 Modular Arithmetic Addition Subtraction Multiplication INTEGERS! Mod 12 Cayley

More information

Floating Point : Introduction to Computer Systems 4 th Lecture, May 25, Instructor: Brian Railing. Carnegie Mellon

Floating Point : Introduction to Computer Systems 4 th Lecture, May 25, Instructor: Brian Railing. Carnegie Mellon Floating Point 15-213: Introduction to Computer Systems 4 th Lecture, May 25, 2018 Instructor: Brian Railing Today: Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition

More information

OLS Assumptions and Goodness of Fit

OLS Assumptions and Goodness of Fit OLS Assumptions and Goodness of Fit A little warm-up Assume I am a poor free-throw shooter. To win a contest I can choose to attempt one of the two following challenges: A. Make three out of four free

More information

CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul

CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul 1 CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul Introduction Our problem is crawling a static social graph (snapshot). Given

More information