Sparse Screening for Exact Data Reduction

Size: px
Start display at page:

Download "Sparse Screening for Exact Data Reduction"

Transcription

1 Sparse Screening for Exact Data Reduction Jieping Ye Arizona State University Joint work with Jie Wang and Jun Liu 1

2 wide data 2 tall data

3 How to do exact data reduction? The model learnt from the reduced data is identical to the model learnt from the full data: q Lasso for wide data (feature reduction) q SVM for tall data (sample reduction) 3

4 4 Center for Evolutionary Medicine and Informatics

5 Lasso/Basis Pursuit Center for Evolutionary Medicine and Informatics (Tibshirani, 1996, Chen, Donoho, and Saunders, 1999) x y A z + = n 1 n p p 1 n 1 Simultaneous feature selection and regression 5

6 Center for Evolutionary Medicine and Informatics Imaging Genetics (Thompson et al. 2013) 6

7 Sparse Reduced-Rank Regression 7 Vounou et al. (2010, 2012)

8 Structured Sparse Models Group Lasso Fused Lasso 8 Graph Lasso Tree Lasso

9 Center for Evolutionary Medicine and Informatics important modeling Sparsity has become an tool in genomics, genetics, signal and audio processing, image processing, neuroscience (theory of sparse coding), machine learning, statistics 9

10 Optimization Algorithms min loss(x) + λ penalty(x) Coordinate descent Subgradient descent Augmented Lagrangian Method Gradient descent Accelerated gradient descent 10

11 Lasso Fused Lasso Group Lasso Sparse Group Lasso Tree Structured Group Lasso Overlapping Group Lasso Sparse Inverse Covariance Estimation Trace Norm Minimization 11

12 More Efficiency? Very high dimensional data Non-smooth sparsity-induced norms Multiple runs in model selection A large number of runs in permutation test 12

13 How to make any existing Lasso solver much more efficient? 13

14 Data Reduction/Compression 1M 1K original data reduced data 14

15 Data Reduction Heuristic-based data reduction Sure screening, random projection/selection Resulting model is an approximation of the true model Propose data reduction methods Exact data reduction via sparse screening The model based on reduced data is identical to the one constructed from complete data 15

16 Sparse Screening 1M without screening 1M 1K same solution with screening 16

17 Large-Scale Sparse Screening

18 Screening Rule: Motivation

19 Large-Scale Sparse Screening (Cont d)

20 More on the Dual Formulation Solving the dual formulation is difficult Providing a good (not exact) estimate of the optimal dual solution is easier A good estimate of the optimal dual solution is sufficient for effective feature screening 20

21 Screening Rule 21

22 Sketch of Sparse Screening 22

23 How to Estimate the Region Θ? Non-expansiveness: J. Wang et al. NIPS 13; J. Liu et al. ICML 14

24 Results on MNIST along a sequence of 100 parameter values along the λ/λ max scale from 0.05 to 1. The data matrix is of size 784x50,000 24

25 Evaluation on MNIST solver SAFE DPP EDPP SDPP time (s) SDPP EDPP DPP SAFE Speedup

26 Evaluation on ADNI Problem: GWAS to MRI ROI prediction (ADNI) The size of the data matrix is 747 by Method ROI3 ROI8 ROI30 ROI69 ROI76 ROI83 Lasso Solver SR SR+Lasso EDDP EDDP+Lasso Running time (in seconds) of the Lasso solver, strong rule (Tibshriani et al, 2012), and EDPP. The parameter sequence contains 100 values along the log λ/λ max scale from 100 log 0.95 to log 0.95.

27 Sparse Screening Extensions Group Lasso J Wang, J Liu, J Ye. Efficient Mixed-Norm Regularization: Algorithms and Safe Screening Methods. arxiv preprint arxiv: Sparse Logistic Regression J Wang, J Zhou, P Wonka, J Ye. A Safe Screening Rule for Sparse Logistic Regression. arxiv preprint arxiv: Sparse Inverse Covariance Estimation S Huang, J Li, L Sun, J Liu, T Wu, K Chen, A Fleisher, E Reiman, J Ye. Learning brain connectivity of Alzheimer s disease by exploratory graphical models. NeuroImage 50, Witten, Friedman and Simon (2011), Mazumder and Hastie (2012) Multiple Graphical Lasso 27 S Yang, Z Pan, X Shen, P Wonka, J Ye. Fused Multiple Graphical Lasso. arxiv preprint arxiv:

28 Wide versus Tall Data wide data 28 tall data

29 Support Vector Machines SVM is a maximum margin classicier. denotes +1 denotes Margin

30 Support Vectors SVM is determined by the so- called support vectors. denotes +1 denotes - 1 Support Vectors are those data points that the margin pushes up against The non- support vectors are irrelevant to the classicier. Can we make use of this observation? 30

31 The Idea of Sample Screening Original Problem Screening Smaller Problem to Solve 31

32 Guidelines for Sample Screening 32 J. Wang, P. Wonka, and J. Ye. ICML 14.

33 Relaxed Guidelines 33

34 Sketch of SVM Screening 34

35 Synthetic Studies We use the rejection rates to measure the performance of the screening rules, the ratio of the number of data instances whose membership can be identicied by the rule to the total number of data instances. 35

36 Performance of DVI for SVM on Real Data Sets Comparison of SSNSV (Ogawa et al., ICML 13), ESSNSV and DVIs for SVM on three real data sets. IJCNN,, Speedup Wine,, Speedup Covertype,, Speedup Solver Total Solver Total Solver Total SSNSV 2.08 SSNSV 0.02 SSNSV 2.73 Solver + SSNSV Init Total Solver + SSNSV Init Total Solver + SSNSV Init Total Solver + ESSNS V ESSNSV 2.09 Init Total Solver + ESSNS V ESSNSV 0.03 Init Total Solver + ESSNS V ESSNSV 2.89 Init Total Solver + DVI DVI 0.99 Init Solver + DVI DVI 0.01 Init Solver + DVI DVI 1.27 Init Total Total Total

37 Experiments on Real Data Sets Comparison of SSNSV (Ogawa et al., ICML 13), ESSNSV and DVIs for LAD on three real data sets. Telescope,, Speedup Computer,, Speedup Telescope,, Speedup Solver Total Solver Total 5.85 Solver Total DVI 0.28 DVI 0.08 DVI 0.06 Solver + DVI Init Total Solver + DVI Init Total Solver + DVI Init. 0.1 Total

38 Summary Developed exact data reduction approaches Exact data reduction via feature screening Exact data reduction via sample screening The model based on reduced data is identical to the one constructed from complete data Results show screening leads to a significant speedup. Extend exact data reduction to other sparse learning formulations 38 Sparsity on features, samples, networks etc

39 Resource Tutorial webpages of our screening rules, which include sample codes, implementation instructions, illustration materials, etc. Seven lines implementation of EDPP rule 39 The list is growing quickly

40 40 Center for Evolutionary Medicine and Informatics

Mining Sparse Representations: Theory, Algorithms, and Applications

Mining Sparse Representations: Theory, Algorithms, and Applications Mining Sparse Representations: Theory, Algorithms, and Applications Jun Liu, Shuiwang Ji, and Jieping Ye Computer Science and Engineering The Biodesign Institute Arizona State University What is Sparsity?

More information

x 1 SpaceNet: Multivariate brain decoding and segmentation Elvis DOHMATOB (Joint work with: M. EICKENBERG, B. THIRION, & G. VAROQUAUX) 75 x y=20

x 1 SpaceNet: Multivariate brain decoding and segmentation Elvis DOHMATOB (Joint work with: M. EICKENBERG, B. THIRION, & G. VAROQUAUX) 75 x y=20 SpaceNet: Multivariate brain decoding and segmentation Elvis DOHMATOB (Joint work with: M. EICKENBERG, B. THIRION, & G. VAROQUAUX) L R 75 x 2 38 0 y=20-38 -75 x 1 1 Introducing the model 2 1 Brain decoding

More information

The picasso Package for High Dimensional Regularized Sparse Learning in R

The picasso Package for High Dimensional Regularized Sparse Learning in R The picasso Package for High Dimensional Regularized Sparse Learning in R X. Li, J. Ge, T. Zhang, M. Wang, H. Liu, and T. Zhao Abstract We introduce an R package named picasso, which implements a unified

More information

An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation

An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation Xingguo Li Tuo Zhao Xiaoming Yuan Han Liu Abstract This paper describes an R package named flare, which implements

More information

Lecture 19: November 5

Lecture 19: November 5 0-725/36-725: Convex Optimization Fall 205 Lecturer: Ryan Tibshirani Lecture 9: November 5 Scribes: Hyun Ah Song Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python J. Ge, X. Li, H. Jiang, H. Liu, T. Zhang, M. Wang and T. Zhao Abstract We describe a new library named picasso, which

More information

An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation

An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation Xingguo Li Tuo Zhao Xiaoming Yuan Han Liu Abstract This paper describes an R package named flare, which implements

More information

Sparsity Based Regularization

Sparsity Based Regularization 9.520: Statistical Learning Theory and Applications March 8th, 200 Sparsity Based Regularization Lecturer: Lorenzo Rosasco Scribe: Ioannis Gkioulekas Introduction In previous lectures, we saw how regularization

More information

Robust Principal Component Analysis (RPCA)

Robust Principal Component Analysis (RPCA) Robust Principal Component Analysis (RPCA) & Matrix decomposition: into low-rank and sparse components Zhenfang Hu 2010.4.1 reference [1] Chandrasekharan, V., Sanghavi, S., Parillo, P., Wilsky, A.: Ranksparsity

More information

The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R

The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R Journal of Machine Learning Research 6 (205) 553-557 Submitted /2; Revised 3/4; Published 3/5 The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R Xingguo Li Department

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

Sparse & Functional Principal Components Analysis

Sparse & Functional Principal Components Analysis Sparse & Functional Principal Components Analysis Genevera I. Allen Department of Statistics and Electrical and Computer Engineering, Rice University, Department of Pediatrics-Neurology, Baylor College

More information

A Multilevel Acceleration for l 1 -regularized Logistic Regression

A Multilevel Acceleration for l 1 -regularized Logistic Regression A Multilevel Acceleration for l 1 -regularized Logistic Regression Javier S. Turek Intel Labs 2111 NE 25th Ave. Hillsboro, OR 97124 javier.turek@intel.com Eran Treister Earth and Ocean Sciences University

More information

Parallel Lasso Screening for Big Data Optimization

Parallel Lasso Screening for Big Data Optimization Parallel Lasso Screening for Big Data Optimization Qingyang Li Arizona State Univ Tempe, AZ 85287 qingyangli@asuedu Paul M Thompson Univ of Southern California Los Angeles, CA 989 pthomp@uscedu Shuang

More information

Composite Self-concordant Minimization

Composite Self-concordant Minimization Composite Self-concordant Minimization Volkan Cevher Laboratory for Information and Inference Systems-LIONS Ecole Polytechnique Federale de Lausanne (EPFL) volkan.cevher@epfl.ch Paris 6 Dec 11, 2013 joint

More information

Voxel selection algorithms for fmri

Voxel selection algorithms for fmri Voxel selection algorithms for fmri Henryk Blasinski December 14, 2012 1 Introduction Functional Magnetic Resonance Imaging (fmri) is a technique to measure and image the Blood- Oxygen Level Dependent

More information

Feature Grouping and Selection Over an Undirected Graph

Feature Grouping and Selection Over an Undirected Graph Feature Grouping and Selection Over an Undirected Graph Sen Yang, Lei Yuan,, Ying-Cheng Lai 3, Xiaotong Shen 4, Peter Wonka, Jieping Ye, Computer Science and Engineering, 3 Electrical Engineering, Center

More information

L1 REGULARIZED STAP ALGORITHM WITH A GENERALIZED SIDELOBE CANCELER ARCHITECTURE FOR AIRBORNE RADAR

L1 REGULARIZED STAP ALGORITHM WITH A GENERALIZED SIDELOBE CANCELER ARCHITECTURE FOR AIRBORNE RADAR L1 REGULARIZED STAP ALGORITHM WITH A GENERALIZED SIDELOBE CANCELER ARCHITECTURE FOR AIRBORNE RADAR Zhaocheng Yang, Rodrigo C. de Lamare and Xiang Li Communications Research Group Department of Electronics

More information

Limitations of Matrix Completion via Trace Norm Minimization

Limitations of Matrix Completion via Trace Norm Minimization Limitations of Matrix Completion via Trace Norm Minimization ABSTRACT Xiaoxiao Shi Computer Science Department University of Illinois at Chicago xiaoxiao@cs.uic.edu In recent years, compressive sensing

More information

An efficient face recognition algorithm based on multi-kernel regularization learning

An efficient face recognition algorithm based on multi-kernel regularization learning Acta Technica 61, No. 4A/2016, 75 84 c 2017 Institute of Thermomechanics CAS, v.v.i. An efficient face recognition algorithm based on multi-kernel regularization learning Bi Rongrong 1 Abstract. A novel

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

GRAPH LEARNING UNDER SPARSITY PRIORS. Hermina Petric Maretic, Dorina Thanou and Pascal Frossard

GRAPH LEARNING UNDER SPARSITY PRIORS. Hermina Petric Maretic, Dorina Thanou and Pascal Frossard GRAPH LEARNING UNDER SPARSITY PRIORS Hermina Petric Maretic, Dorina Thanou and Pascal Frossard Signal Processing Laboratory (LTS4), EPFL, Switzerland ABSTRACT Graph signals offer a very generic and natural

More information

Sparsity and image processing

Sparsity and image processing Sparsity and image processing Aurélie Boisbunon INRIA-SAM, AYIN March 6, Why sparsity? Main advantages Dimensionality reduction Fast computation Better interpretability Image processing pattern recognition

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

Transfer Learning Algorithms for Image Classification

Transfer Learning Algorithms for Image Classification Transfer Learning Algorithms for Image Classification Ariadna Quattoni MIT, CSAIL Advisors: Michael Collins Trevor Darrell 1 Motivation Goal: We want to be able to build classifiers for thousands of visual

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers Customizable software solver package Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein April 27, 2016 1 / 28 Background The Dual Problem Consider

More information

Change-Point Estimation of High-Dimensional Streaming Data via Sketching

Change-Point Estimation of High-Dimensional Streaming Data via Sketching Change-Point Estimation of High-Dimensional Streaming Data via Sketching Yuejie Chi and Yihong Wu Electrical and Computer Engineering, The Ohio State University, Columbus, OH Electrical and Computer Engineering,

More information

Multi-Task Learning: Theory, Algorithms, and Applications

Multi-Task Learning: Theory, Algorithms, and Applications Multi-Task Learning: Theory, Algorithms, and Applications Jiayu Zhou 1,2, Jianhui Chen 3, Jieping Ye 1,2 1 Computer Science and Engineering, Arizona State University, AZ 2 Center for Evolutionary Medicine

More information

SpicyMKL Efficient multiple kernel learning method using dual augmented Lagrangian

SpicyMKL Efficient multiple kernel learning method using dual augmented Lagrangian SpicyMKL Efficient multiple kernel learning method using dual augmented Lagrangian Taiji Suzuki Ryota Tomioka The University of Tokyo Graduate School of Information Science and Technology Department of

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R

The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R Journal of Machine Learning Research (2013) Submitted ; Published The fastclime Package for Linear Programming and Large-Scale Precision Matrix Estimation in R Haotian Pang Han Liu Robert Vanderbei Princeton

More information

Lecture 27, April 24, Reading: See class website. Nonparametric regression and kernel smoothing. Structured sparse additive models (GroupSpAM)

Lecture 27, April 24, Reading: See class website. Nonparametric regression and kernel smoothing. Structured sparse additive models (GroupSpAM) School of Computer Science Probabilistic Graphical Models Structured Sparse Additive Models Junming Yin and Eric Xing Lecture 7, April 4, 013 Reading: See class website 1 Outline Nonparametric regression

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

User s Manual. Version 1.1

User s Manual. Version 1.1 User s Manual Version 1.1 1 MALSAR: Multi-tAsk Learning via StructurAl Regularization Version 1.1 Jiayu Zhou, Jianhui Chen, Jieping Ye Computer Science & Engineering Center for Evolutionary Medicine and

More information

Variable Selection 6.783, Biomedical Decision Support

Variable Selection 6.783, Biomedical Decision Support 6.783, Biomedical Decision Support (lrosasco@mit.edu) Department of Brain and Cognitive Science- MIT November 2, 2009 About this class Why selecting variables Approaches to variable selection Sparsity-based

More information

Regularized Tensor Factorizations & Higher-Order Principal Components Analysis

Regularized Tensor Factorizations & Higher-Order Principal Components Analysis Regularized Tensor Factorizations & Higher-Order Principal Components Analysis Genevera I. Allen Department of Statistics, Rice University, Department of Pediatrics-Neurology, Baylor College of Medicine,

More information

More Data, Less Work: Runtime as a decreasing function of data set size. Nati Srebro. Toyota Technological Institute Chicago

More Data, Less Work: Runtime as a decreasing function of data set size. Nati Srebro. Toyota Technological Institute Chicago More Data, Less Work: Runtime as a decreasing function of data set size Nati Srebro Toyota Technological Institute Chicago Outline we are here SVM speculations, other problems Clustering wild speculations,

More information

Adaptive Dropout Training for SVMs

Adaptive Dropout Training for SVMs Department of Computer Science and Technology Adaptive Dropout Training for SVMs Jun Zhu Joint with Ning Chen, Jingwei Zhuo, Jianfei Chen, Bo Zhang Tsinghua University ShanghaiTech Symposium on Data Science,

More information

Sparse and large-scale learning with heterogeneous data

Sparse and large-scale learning with heterogeneous data Sparse and large-scale learning with heterogeneous data February 15, 2007 Gert Lanckriet (gert@ece.ucsd.edu) IEEE-SDCIS In this talk Statistical machine learning Techniques: roots in classical statistics

More information

CS 224W Final Report: Community Detection for Distributed Optimization

CS 224W Final Report: Community Detection for Distributed Optimization CS 224W Final Report: Community Detection for Distributed Optimization Tri Dao trid@stanford.edu Rolland He rhe@stanford.edu Zhivko Zhechev zzhechev@stanford.edu 1 Introduction Distributed optimization

More information

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Volkan Cevher Laboratory for Information and Inference Systems LIONS / EPFL http://lions.epfl.ch & Idiap Research Institute joint

More information

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python Journal of Machine Learning Research 1 (2000) 1-48 Submitted 4/00; Published 10/00 Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python Jason Ge jiange@princeton.edu Xingguo

More information

SUMMARY THEORY. L q Norm Reflectivity Inversion

SUMMARY THEORY. L q Norm Reflectivity Inversion Optimal L q Norm Regularization for Sparse Reflectivity Inversion Fangyu Li, University of Oklahoma & University of Georgia; Rui Xie, University of Georgia; WenZhan Song, University of Georgia & Intelligent

More information

Conflict Graphs for Parallel Stochastic Gradient Descent

Conflict Graphs for Parallel Stochastic Gradient Descent Conflict Graphs for Parallel Stochastic Gradient Descent Darshan Thaker*, Guneet Singh Dhillon* Abstract We present various methods for inducing a conflict graph in order to effectively parallelize Pegasos.

More information

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund Optimization Plugin for RapidMiner Technical Report Venkatesh Umaashankar Sangkyun Lee 04/2012 technische universität dortmund Part of the work on this technical report has been supported by Deutsche Forschungsgemeinschaft

More information

Gradient LASSO algoithm

Gradient LASSO algoithm Gradient LASSO algoithm Yongdai Kim Seoul National University, Korea jointly with Yuwon Kim University of Minnesota, USA and Jinseog Kim Statistical Research Center for Complex Systems, Korea Contents

More information

An efficient algorithm for sparse PCA

An efficient algorithm for sparse PCA An efficient algorithm for sparse PCA Yunlong He Georgia Institute of Technology School of Mathematics heyunlong@gatech.edu Renato D.C. Monteiro Georgia Institute of Technology School of Industrial & System

More information

I How does the formulation (5) serve the purpose of the composite parameterization

I How does the formulation (5) serve the purpose of the composite parameterization Supplemental Material to Identifying Alzheimer s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis I How does the formulation (5)

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Convex and Distributed Optimization. Thomas Ropars

Convex and Distributed Optimization. Thomas Ropars >>> Presentation of this master2 course Convex and Distributed Optimization Franck Iutzeler Jérôme Malick Thomas Ropars Dmitry Grishchenko from LJK, the applied maths and computer science laboratory and

More information

Comparison of Optimization Methods for L1-regularized Logistic Regression

Comparison of Optimization Methods for L1-regularized Logistic Regression Comparison of Optimization Methods for L1-regularized Logistic Regression Aleksandar Jovanovich Department of Computer Science and Information Systems Youngstown State University Youngstown, OH 44555 aleksjovanovich@gmail.com

More information

Learning with infinitely many features

Learning with infinitely many features Learning with infinitely many features R. Flamary, Joint work with A. Rakotomamonjy F. Yger, M. Volpi, M. Dalla Mura, D. Tuia Laboratoire Lagrange, Université de Nice Sophia Antipolis December 2012 Example

More information

Tensor Sparse PCA and Face Recognition: A Novel Approach

Tensor Sparse PCA and Face Recognition: A Novel Approach Tensor Sparse PCA and Face Recognition: A Novel Approach Loc Tran Laboratoire CHArt EA4004 EPHE-PSL University, France tran0398@umn.edu Linh Tran Ho Chi Minh University of Technology, Vietnam linhtran.ut@gmail.com

More information

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li

Learning to Match. Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li Learning to Match Jun Xu, Zhengdong Lu, Tianqi Chen, Hang Li 1. Introduction The main tasks in many applications can be formalized as matching between heterogeneous objects, including search, recommendation,

More information

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 01.

NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 01. NIH Public Access Author Manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 01. Published in final edited form as: Med Image Comput Comput Assist Interv.

More information

Gradient Boosted Feature Selection. Zhixiang (Eddie) Xu, Gao Huang, Kilian Q. Weinberger, Alice X. Zheng

Gradient Boosted Feature Selection. Zhixiang (Eddie) Xu, Gao Huang, Kilian Q. Weinberger, Alice X. Zheng Gradient Boosted Feature Selection Zhixiang (Eddie) Xu, Gao Huang, Kilian Q. Weinberger, Alice X. Zheng 1 Goals of feature selection Reliably extract relevant features Identify non-linear feature dependency

More information

Sparse Methods for Biomedical Data

Sparse Methods for Biomedical Data Sparse Methods for Biomedical Data Jieping Ye Arizona State University Tempe, AZ 85287 jieping.ye@asu.edu Jun Liu Siemens Corporate Research Princeton, NJ 08540 jun-liu@siemens.com ABSTRACT Following recent

More information

scikit-learn (Machine Learning in Python)

scikit-learn (Machine Learning in Python) scikit-learn (Machine Learning in Python) (PB13007115) 2016-07-12 (PB13007115) scikit-learn (Machine Learning in Python) 2016-07-12 1 / 29 Outline 1 Introduction 2 scikit-learn examples 3 Captcha recognize

More information

Optimization for Machine Learning

Optimization for Machine Learning with a focus on proximal gradient descent algorithm Department of Computer Science and Engineering Outline 1 History & Trends 2 Proximal Gradient Descent 3 Three Applications A Brief History A. Convex

More information

6 Model selection and kernels

6 Model selection and kernels 6. Bias-Variance Dilemma Esercizio 6. While you fit a Linear Model to your data set. You are thinking about changing the Linear Model to a Quadratic one (i.e., a Linear Model with quadratic features φ(x)

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

An efficient algorithm for rank-1 sparse PCA

An efficient algorithm for rank-1 sparse PCA An efficient algorithm for rank- sparse PCA Yunlong He Georgia Institute of Technology School of Mathematics heyunlong@gatech.edu Renato Monteiro Georgia Institute of Technology School of Industrial &

More information

Convex optimization algorithms for sparse and low-rank representations

Convex optimization algorithms for sparse and low-rank representations Convex optimization algorithms for sparse and low-rank representations Lieven Vandenberghe, Hsiao-Han Chao (UCLA) ECC 2013 Tutorial Session Sparse and low-rank representation methods in control, estimation,

More information

Dantzig selector homotopy with dynamic measurements

Dantzig selector homotopy with dynamic measurements Dantzig selector homotopy with dynamic measurements M. Salman Asif a and Justin Romberg a a School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA, 30332 ABSTRACT The

More information

Efficient Euclidean Projections in Linear Time

Efficient Euclidean Projections in Linear Time Jun Liu J.LIU@ASU.EDU Jieping Ye JIEPING.YE@ASU.EDU Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287, USA Abstract We consider the problem of computing the Euclidean

More information

SPARSE COMPONENT ANALYSIS FOR BLIND SOURCE SEPARATION WITH LESS SENSORS THAN SOURCES. Yuanqing Li, Andrzej Cichocki and Shun-ichi Amari

SPARSE COMPONENT ANALYSIS FOR BLIND SOURCE SEPARATION WITH LESS SENSORS THAN SOURCES. Yuanqing Li, Andrzej Cichocki and Shun-ichi Amari SPARSE COMPONENT ANALYSIS FOR BLIND SOURCE SEPARATION WITH LESS SENSORS THAN SOURCES Yuanqing Li, Andrzej Cichocki and Shun-ichi Amari Laboratory for Advanced Brain Signal Processing Laboratory for Mathematical

More information

CS 179 Lecture 16. Logistic Regression & Parallel SGD

CS 179 Lecture 16. Logistic Regression & Parallel SGD CS 179 Lecture 16 Logistic Regression & Parallel SGD 1 Outline logistic regression (stochastic) gradient descent parallelizing SGD for neural nets (with emphasis on Google s distributed neural net implementation)

More information

SGN (4 cr) Chapter 10

SGN (4 cr) Chapter 10 SGN-41006 (4 cr) Chapter 10 Feature Selection and Extraction Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology February 18, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006

More information

IMA Preprint Series # 2281

IMA Preprint Series # 2281 DICTIONARY LEARNING AND SPARSE CODING FOR UNSUPERVISED CLUSTERING By Pablo Sprechmann and Guillermo Sapiro IMA Preprint Series # 2281 ( September 2009 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY

More information

An augmented ADMM algorithm with application to the generalized lasso problem

An augmented ADMM algorithm with application to the generalized lasso problem An augmented ADMM algorithm with application to the generalized lasso problem Yunzhang Zhu Department of Statistics, The Ohio State University October 28, 2015 Abstract In this article, we present a fast

More information

Package ADMM. May 29, 2018

Package ADMM. May 29, 2018 Type Package Package ADMM May 29, 2018 Title Algorithms using Alternating Direction Method of Multipliers Version 0.3.0 Provides algorithms to solve popular optimization problems in statistics such as

More information

A General Greedy Approximation Algorithm with Applications

A General Greedy Approximation Algorithm with Applications A General Greedy Approximation Algorithm with Applications Tong Zhang IBM T.J. Watson Research Center Yorktown Heights, NY 10598 tzhang@watson.ibm.com Abstract Greedy approximation algorithms have been

More information

Network Lasso: Clustering and Optimization in Large Graphs

Network Lasso: Clustering and Optimization in Large Graphs Network Lasso: Clustering and Optimization in Large Graphs David Hallac, Jure Leskovec, Stephen Boyd Stanford University September 28, 2015 Convex optimization Convex optimization is everywhere Introduction

More information

Modified Iterative Method for Recovery of Sparse Multiple Measurement Problems

Modified Iterative Method for Recovery of Sparse Multiple Measurement Problems Journal of Electrical Engineering 6 (2018) 124-128 doi: 10.17265/2328-2223/2018.02.009 D DAVID PUBLISHING Modified Iterative Method for Recovery of Sparse Multiple Measurement Problems Sina Mortazavi and

More information

Interpreting predictive models in terms of anatomically labelled regions

Interpreting predictive models in terms of anatomically labelled regions Interpreting predictive models in terms of anatomically labelled regions Data Feature extraction/selection Model specification Accuracy and significance Model interpretation 2 Data Feature extraction/selection

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

Fast or furious? - User analysis of SF Express Inc

Fast or furious? - User analysis of SF Express Inc CS 229 PROJECT, DEC. 2017 1 Fast or furious? - User analysis of SF Express Inc Gege Wen@gegewen, Yiyuan Zhang@yiyuan12, Kezhen Zhao@zkz I. MOTIVATION The motivation of this project is to predict the likelihood

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers With Adaptive Step Size Selection Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein October 8, 2015 1 / 30 Introduction Presentation Outline 1 Convex

More information

Detecting Burnscar from Hyperspectral Imagery via Sparse Representation with Low-Rank Interference

Detecting Burnscar from Hyperspectral Imagery via Sparse Representation with Low-Rank Interference Detecting Burnscar from Hyperspectral Imagery via Sparse Representation with Low-Rank Interference Minh Dao 1, Xiang Xiang 1, Bulent Ayhan 2, Chiman Kwan 2, Trac D. Tran 1 Johns Hopkins Univeristy, 3400

More information

Case Study 1: Estimating Click Probabilities

Case Study 1: Estimating Click Probabilities Case Study 1: Estimating Click Probabilities SGD cont d AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade March 31, 2015 1 Support/Resources Office Hours Yao Lu:

More information

GPU Data Mining in Neuroimaging Genomics

GPU Data Mining in Neuroimaging Genomics GPU Data Mining in Neuroimaging Genomics Bob Zigon Beckman Coulter Indianapolis, Indiana May 10, 2017 1 / 20 Outline Background ANOVA for Voxels and SNPs VEGAS for Voxels and Genes High Speed GPU Monte-Carlo

More information

The convex geometry of inverse problems

The convex geometry of inverse problems The convex geometry of inverse problems Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Joint work with Venkat Chandrasekaran Pablo Parrilo Alan Willsky Linear Inverse Problems

More information

Extended Dictionary Learning : Convolutional and Multiple Feature Spaces

Extended Dictionary Learning : Convolutional and Multiple Feature Spaces Extended Dictionary Learning : Convolutional and Multiple Feature Spaces Konstantina Fotiadou, Greg Tsagkatakis & Panagiotis Tsakalides kfot@ics.forth.gr, greg@ics.forth.gr, tsakalid@ics.forth.gr ICS-

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

SVMs and Data Dependent Distance Metric

SVMs and Data Dependent Distance Metric SVMs and Data Dependent Distance Metric N. Zaidi, D. Squire Clayton School of Information Technology, Monash University, Clayton, VIC 38, Australia Email: {nayyar.zaidi,david.squire}@monash.edu Abstract

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

The Benefit of Tree Sparsity in Accelerated MRI

The Benefit of Tree Sparsity in Accelerated MRI The Benefit of Tree Sparsity in Accelerated MRI Chen Chen and Junzhou Huang Department of Computer Science and Engineering, The University of Texas at Arlington, TX, USA 76019 Abstract. The wavelet coefficients

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Localized Lasso for High-Dimensional Regression

Localized Lasso for High-Dimensional Regression Localized Lasso for High-Dimensional Regression Makoto Yamada Kyoto University, PRESTO JST myamada@kuicr.kyoto-u.ac.jp John Shawe-Taylor University College London j.shawe-taylor@ucl.ac.uk Koh Takeuchi,

More information

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey Chapter 4 : Optimization for Machine Learning Summary of Chapter 2 Chapter 2: Convex Optimization with Sparsity

More information

Linear models. Subhransu Maji. CMPSCI 689: Machine Learning. 24 February February 2015

Linear models. Subhransu Maji. CMPSCI 689: Machine Learning. 24 February February 2015 Linear models Subhransu Maji CMPSCI 689: Machine Learning 24 February 2015 26 February 2015 Overvie Linear models Perceptron: model and learning algorithm combined as one Is there a better ay to learn

More information

Robust Face Recognition via Sparse Representation

Robust Face Recognition via Sparse Representation Robust Face Recognition via Sparse Representation Panqu Wang Department of Electrical and Computer Engineering University of California, San Diego La Jolla, CA 92092 pawang@ucsd.edu Can Xu Department of

More information

Bipartite Edge Prediction via Transductive Learning over Product Graphs

Bipartite Edge Prediction via Transductive Learning over Product Graphs Bipartite Edge Prediction via Transductive Learning over Product Graphs Hanxiao Liu, Yiming Yang School of Computer Science, Carnegie Mellon University July 8, 2015 ICML 2015 Bipartite Edge Prediction

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Effectiveness of Sparse Features: An Application of Sparse PCA

Effectiveness of Sparse Features: An Application of Sparse PCA 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Adaptive Feature Selection via Boosting-like Sparsity Regularization

Adaptive Feature Selection via Boosting-like Sparsity Regularization Adaptive Feature Selection via Boosting-like Sparsity Regularization Libin Wang, Zhenan Sun, Tieniu Tan Center for Research on Intelligent Perception and Computing NLPR, Beijing, China Email: {lbwang,

More information

Multiresponse Sparse Regression with Application to Multidimensional Scaling

Multiresponse Sparse Regression with Application to Multidimensional Scaling Multiresponse Sparse Regression with Application to Multidimensional Scaling Timo Similä and Jarkko Tikka Helsinki University of Technology, Laboratory of Computer and Information Science P.O. Box 54,

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information