Sparse and large-scale learning with heterogeneous data

Size: px
Start display at page:

Download "Sparse and large-scale learning with heterogeneous data"

Transcription

1 Sparse and large-scale learning with heterogeneous data February 15, 2007 Gert Lanckriet IEEE-SDCIS

2 In this talk Statistical machine learning Techniques: roots in classical statistics Machine Learning Blends statistics, computer science, signal processing, optimization to deal with specific challenges to address real-world problems with statistical techniques Challenges: Massive scale of data sets On-line issues Diversity of information sources describing data Interpretability / cost : sparsity (e.g., feature selection)

3 Example: web-related applications Data point = web page Sources of information about the webpage: Content: Text Images Structure Sounds Relation to other webpages: links network Users (log data): click behavior origin

4 Example: web-related applications Data point = web page Sources of information about the webpage: Content: Text Images Structure Sounds Relation to other webpages: links network Users (log data): click behavior origin Information in diverse (heterogeneous) formats

5 Example: Web-related Applications Data point = web page Sources of information about the webpage: Content: Text Images Structure Sounds Relation to other webpages: links network Users (log data): click behavior Massive! origin Information in diverse (heterogeneous) formats

6 Example: Music Annotation Audio features Review Heterogeneous descriptions of same song

7 Example: Music Annotation Audio features Review Joint model?

8 Example: Music Annotation Joint model Annotate new songs Retrieve songs from a database given a description (e.g., to automatically generate play lists) Sparsity: k most relevant words per song

9 Example: bioinformatics mrna expression data hydrophobicity data protein-protein interaction data sequence data (gene, protein) upstream region data (TF binding sites)

10 Example: bioinformatics mrna expression data Sparsity: interpretation hydrophobicity data protein-protein interaction data sequence data (gene, protein) upstream region data (TF binding sites)

11 This talk Classification problems with heterogeneous information sources Sparse principal component analysis

12 Overview Kernel methods Classification problems Kernel methods with heterogeneous information Classification with heterogeneous information (SDP) Application in computational biology An efficient algorithm

13 Overview Kernel methods Classification problems Kernel methods with heterogeneous information Classification with heterogeneous information (SDP) Application in computational biology An efficient algorithm

14 Kernel-based learning x 1 Data Embed data Linear algorithm x n SVM, MPM, PCA, CCA, FDA if data described by numerical vectors: embedding ~ (non-linear) transformation non-linear versions of linear algorithms

15 Kernel-based learning x 1 Data Embed data Linear algorithm x n SVM, MPM, PCA, CCA, FDA embedding can be defined for non-vector data

16 Kernel-based learning Embed data IMPLICITLY: Inner product measures similarity j i K Property: Any symmetric positive definite matrix specifies a kernel matrix & every kernel matrix is symmetric positive definite

17 Kernel-based learning Data Embed data x 1 x n

18 Kernel-based learning x 1 Data Embed data Linear algorithm K x n SVM, MPM, PCA, CCA, FDA Kernel design Kernel algorithm

19 Kernel methods Unifying learning framework connections to statistics, convex optimization, functional analysis different data analysis problems can be formulated within this framework Classification Clustering Regression Dimensionality reduction Many successful applications

20 Kernel methods Unifying learning framework connections to statistics, convex optimization, functional analysis different data analysis problems can be formulated within this framework Many successful applications hand-writing recognition text classification analysis of micro-array data face detection time series prediction

21 Binary classification y 1 = -1 y 2 = +1 Training data: {(x i,y i )} i=1...n x i : description i th object y i : {-1,+1} - label HEART URINE DNA BLOOD SCAN HEART URINE DNA BLOOD SCAN x 1 x 2 Problem: design a classification rule such that, given a new x, it predicts y with minimal probability of error

22 Binary classification Find hyperplane that separates the two classes HEART URINE DNA BLOOD SCAN x 2 HEART URINE DNA BLOOD SCAN x 1 Classification Rule:

23 Maximal margin classification Maximize margin: Position hyperplane between two classes Such that 2-norm distance to closest point from each class is maximized

24 Maximal margin classification If not linearly separable: Allow some errors Try to maximize margin for data points with no error

25 Maximal margin classification: training algorithm max margin min error correctly classified error slack

26 Maximal margin classification Training: convex optimization problem (QP) Dual problem:

27 Maximal margin classification Training: convex optimization problem (QP) Dual problem: Optimality condition:

28 Maximal margin classification Training: Classification rule: classify new data point x:

29 Maximal margin classification Training: Classification rule: classify new data point x:

30 Kernel-based classification x 1 Data Embed data Linear classification algorithm x n K Support vector machine (SVM) Kernel design Kernel algorithm

31 Overview Kernel methods Classification problems Kernel methods with heterogeneous information Classification with heterogeneous information (SDP) Applications in computational biology An efficient algorithm

32 Kernel methods with heterogeneous info Data points: proteins Information sources: j i K

33 Kernel methods with heterogeneous info Data points: proteins Information sources: K

34 Kernel methods with heterogeneous data Proposed approach First focus on every single source j of information individually Extract relevant information from source j into K j Design algorithm to learn the optimal K, by mixing any number of kernel matrices K j, for a given learning problem

35 Kernel methods with heterogeneous data 1 2 K

36 Kernel methods with heterogeneous data 1 Proposed approach First focus on every single source k of information individually Extract relevant information from source j into K j Focus on kernel design for specific types of information 2 Design algorithm that learns the optimal K, by mixing any number of kernel matrices K j, for a given learning problem Homogeneous, standardized input Flexibility Can ignore information irrelevant for learning task

37 Kernel design: strings Data points: proteins Described by variable-length, discrete strings (amino acid sequences) protein 1 protein 2 >ICYA_MANSE GDIFYPGYCPDVKPVNDFDLSAFAGAWHEIAKLPLENENQGKCTIAEYKY DGKKASVYNSFVSNGVKEYMEGDLEIAPDAKYTKQGKYVMTFKFGQRVVN LVPWVLATDYKNYAINYMENSHPDKKAHSIHAWILSKSKVLEGNTKEVVD NVLKTFSHLIDASKFISNDFSEAACQYSTTYSLTGPDRH >LACB_BOVIN MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASDISLLDA QSAPLRVYVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTKIPAVFKI DALNENKVLVLDTDYKKYLLFCMENSAEPEQSLACQCLVRTPEVDDEALE KFDKALKALPMHIRLSFNPTQLEEQCHI Kernel design: derive valid similarity measure, based on non-vector information

38 Kernel design: strings >ICYA_MANSE GDIFYPGYCPDVKPVNDFDLSAFAGAWHEIAKLPLENENQGKCTIAEYKY DGKKALVLDTDVSNGVKEYMENSLEIAPDAKYTKQGKYVMTFKFGQRVVN LVPWVLATDYKNYAINYNCDYHPDKKAHSIHAWILSKSKVLEGNTKEVVD NVLKTFSHLIDASKFISNDFSEAACQYSTTYSLTGPDRH >LACB_BOVIN MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASDISLLDA QSAPLRVYVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTKIPAVFKI DALNENKVLVLDTDYKKYLLFCMENSAEPEQSLACQCLVKYVNTFKEALE KFDKALKALPMHIRLSFNPTQLEEQCHI more similar String kernels >ICYA_JAKSE GDIFYPGYCPDVKPVNDFDLSAFAGAWHEIAKLPLENENQGKCTIAEYKY DGKKASVYNSFVSNGVKEYMEGDLEIAPDAKYTKQGKYVMTFKFGQRVVN LVPWVLATDYKNYAINYNCDYHPDKKAHSIHAWILSKSKVLEGNTKEVVD NVLKTFSHLIDASKFISNDFSEAACQYSTTYSLTGPDRH >LACB_BOVIN MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASDISLLDA QSAPLRVYVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTKIPAVFKI DALNENKVLVLDTDYKKYLDYCMENSAEPEQSLACQCLVRTPEVDDEALE KFDKALKALPMHIRLSFNPTQLEEQCHI less similar

39 Kernel design: graph Data points: vertices Information: connectivity described by graph Diffusion kernel: establishes similarities between vertices of a graph, based on the connectivity information based upon a random walk efficiently accounts for all paths connecting two vertices, weighted by path lengths

40 Kernel methods with heterogeneous data 1 2? K

41 Learning the kernel matrix? K? Any symmetric positive definite matrix specifies a kernel matrix Positive semidefinite matrices form a convex cone Define cost function to assess the quality of a kernel matrix Restrict to convex cost functions Learn K from the convex cone of positive-semidefinite semidefinite matrices according to a convex quality measure

42 Learning the kernel matrix? K? Learn K from the convex cone of positive-semidefinite semidefinite matrices according to a convex quality measure Semidefinite Programming (SDP): deals with optimizing convex cost functions over the convex cone of positive semidefinite matrices (or a convex subset of it)

43 Classification with multiple kernels? K? Learn K from the convex cone of positive-semidefinite semidefinite matrices (or( a convex subset) according to a convex quality measure Integrate constructed kernels Large margin classifier (SVM)

44 Classification with multiple kernels? K? Learn K from the convex cone of positive-semidefinite semidefinite matrices (or( a convex subset) according to a convex quality measure Integrate constructed kernels Large margin classifier (SVM) learn a linear combination

45 Classification with multiple kernels? K? Learn K from the convex cone of positive-semidefinite semidefinite matrices (or( a convex subset) according to a convex quality measure Integrate constructed kernels Large margin classifier (SVM) learn a linear combination maximize the margin

46 Classification with multiple kernels Integrate constructed kernels Large margin classifier (SVM) learn a linear mix maximize the margin SDP (standard form)

47 Yeast Membrane Protein Prediction Membrane proteins: anchor in various cellular membranes serve important communicative functions across the membrane important drug targets About 30% of the proteins are membrane proteins

48 Yeast Membrane Protein Prediction Protein sequences: SW scores Protein sequences: BLAST scores E-values of Pfam domains Protein-protein interactions Diffusion mrna expression profiles Gaussian Hydropathy profile

49 Yeast Membrane Protein Prediction Protein sequences: SW scores Protein sequences: BLAST scores E-values of Pfam domains Protein-protein interactions K mrna expression profiles Hydropathy profile

50 Yeast Membrane Protein Prediction

51 Yeast Protein Function Prediction Five different types of data: Pfam domains genetic interactions (CYGD) physical interactions (CYGD) protein-protein interaction (TAP) mrna expression profiles Compare our approach to approach using Markov Random Fields (Deng et al.) using the five types of data also reporting improved accuracy compared to using any single data type

52 Yeast Protein Function Prediction MRF SDP/SVM (binary) SDP/SVM (enriched)

53 Overview Kernel methods Classification problems Kernel methods with heterogeneous information Classification with heterogeneous information (SDP) Applications in computational biology An efficient algorithm

54 Efficient algorithm Convex (SDP) formulation for classification with heterogeneous sources of information Empirical scaling with respect to m and n : General-purpose interior point method (Mosek): m 1.6 n 4.1 Dedicated algorithm: m 1.1 n 1.4 Convex formulation: not the end of the story Dedicated, efficient algorithm is needed, to solve most real-life problems

55 This talk Classification problems with heterogeneous information sources Sparse principal component analysis

56 Principal Component Analysis (PCA) Classic tool in multivariate data analysis Goal: find low-dimensional model that explains most variance (information) in the data Example: 1-dimensional subspace in 2D Algorithm: eigenvalue decomposition of covariance matrix A

57 PCA Eigenvectors define subspace Eigenvalues ~ variance Applications: Finance Image & text processing Computational biology

58 PCA Advantages: Explains maximal variance for lowest dimensional subspace optimal Easy and efficient to compute Disadvantage: Eigenvectors are usually not sparse: linear combination of all variables

59 Eigenvectors are usually not sparse : linear combination of all variables Lack of interpretation (no feature selection) Can be related to cost PCA

60 Eigenvectors are usually not sparse : linear combination of all variables Lack of interpretation (no feature selection) Can be related to cost Examples: Finance: PCA sparse factors often mean less assets in the portfolio less fixed transaction costs Gene expression data: each variable ~ gene (biological meaningful unit) sparse factors ~ small subset of genes explains variance feature selection Image processing: sparse factors ~ specific objects

61 Sparse Principal Component Analysis First principal component (eigenvector):

62 Sparse Principal Component Analysis First principal component (eigenvector): Enforce sparsity: more constrained, less optimal

63 Sparse Principal Component Analysis non-convex: hard!

64 Sparse Principal Component Analysis non-convex: hard!

65 Sparse Principal Component Analysis non-convex: hard! SDP Relaxation

66 Sparse Principal Component Analysis non-convex: hard! SDP Relaxation 1-norm Relaxation

67 Sparse Principal Component Analysis non-convex: hard! SDP Relaxation 1-norm Relaxation SDP!

68 Example

69 Example: sparse second factor Much sparser, explained variance decreases a bit

70 Example: sparse PCA for gene expression data - Axes on LEFT depend on MANY genes - Axes on RIGHT depend on FEW genes (interpretable!) - Clustering is still clearly present

71 Efficient algorithm General-purpose SDP toolboxes: SEDUMI, SDPT3, Special-purpose algorihtm needed for larger problems: first order method for non-smooth optimization

72 Conclusions Classification with SVMs (kernel methods) Computational and statistical framework to integrate data from heterogeneous information sources Sparse formulation for PCA: feature selection Semidefinite (convex) programming Applications: bioinformatics (and others) Efficient, dedicated algorithms for large-scale problems

Introduction to Kernels (part II)Application to sequences p.1

Introduction to Kernels (part II)Application to sequences p.1 Introduction to Kernels (part II) Application to sequences Liva Ralaivola liva@ics.uci.edu School of Information and Computer Science Institute for Genomics and Bioinformatics Introduction to Kernels (part

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Mathematical Themes in Economics, Machine Learning, and Bioinformatics

Mathematical Themes in Economics, Machine Learning, and Bioinformatics Western Kentucky University From the SelectedWorks of Matt Bogard 2010 Mathematical Themes in Economics, Machine Learning, and Bioinformatics Matt Bogard, Western Kentucky University Available at: https://works.bepress.com/matt_bogard/7/

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines CS 536: Machine Learning Littman (Wu, TA) Administration Slides borrowed from Martin Law (from the web). 1 Outline History of support vector machines (SVM) Two classes,

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Multiple Kernel Machines Using Localized Kernels

Multiple Kernel Machines Using Localized Kernels Multiple Kernel Machines Using Localized Kernels Mehmet Gönen and Ethem Alpaydın Department of Computer Engineering Boğaziçi University TR-3434, Bebek, İstanbul, Turkey gonen@boun.edu.tr alpaydin@boun.edu.tr

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Application of Support Vector Machine In Bioinformatics

Application of Support Vector Machine In Bioinformatics Application of Support Vector Machine In Bioinformatics V. K. Jayaraman Scientific and Engineering Computing Group CDAC, Pune jayaramanv@cdac.in Arun Gupta Computational Biology Group AbhyudayaTech, Indore

More information

Kernel Principal Component Analysis: Applications and Implementation

Kernel Principal Component Analysis: Applications and Implementation Kernel Principal Component Analysis: Applications and Daniel Olsson Royal Institute of Technology Stockholm, Sweden Examiner: Prof. Ulf Jönsson Supervisor: Prof. Pando Georgiev Master s Thesis Presentation

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Data preprocessing Functional Programming and Intelligent Algorithms

Data preprocessing Functional Programming and Intelligent Algorithms Data preprocessing Functional Programming and Intelligent Algorithms Que Tran Høgskolen i Ålesund 20th March 2017 1 Why data preprocessing? Real-world data tend to be dirty incomplete: lacking attribute

More information

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017 Data Analysis 3 Support Vector Machines Jan Platoš October 30, 2017 Department of Computer Science Faculty of Electrical Engineering and Computer Science VŠB - Technical University of Ostrava Table of

More information

MUSI-6201 Computational Music Analysis

MUSI-6201 Computational Music Analysis MUSI-6201 Computational Music Analysis Part 4.3: Feature Post-Processing alexander lerch November 4, 2015 instantaneous features overview text book Chapter 3: Instantaneous Features (pp. 63 69) sources:

More information

Machine Learning: Think Big and Parallel

Machine Learning: Think Big and Parallel Day 1 Inderjit S. Dhillon Dept of Computer Science UT Austin CS395T: Topics in Multicore Programming Oct 1, 2013 Outline Scikit-learn: Machine Learning in Python Supervised Learning day1 Regression: Least

More information

SVM Classification in -Arrays

SVM Classification in -Arrays SVM Classification in -Arrays SVM classification and validation of cancer tissue samples using microarray expression data Furey et al, 2000 Special Topics in Bioinformatics, SS10 A. Regl, 7055213 What

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Quiz Section Week 8 May 17, Machine learning and Support Vector Machines

Quiz Section Week 8 May 17, Machine learning and Support Vector Machines Quiz Section Week 8 May 17, 2016 Machine learning and Support Vector Machines Another definition of supervised machine learning Given N training examples (objects) {(x 1,y 1 ), (x 2,y 2 ),, (x N,y N )}

More information

Supervised and Localized Dimensionality Reduction from Multiple Feature Representations or Kernels

Supervised and Localized Dimensionality Reduction from Multiple Feature Representations or Kernels Supervised and Localized Dimensionality Reduction from Multiple Feature Representations or Kernels Mehmet Gönen 1, gonen@cis.hut.fi Ethem Alpaydın alpaydin@boun.edu.tr 1 Helsinki Institute for Information

More information

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from LECTURE 5: DUAL PROBLEMS AND KERNELS * Most of the slides in this lecture are from http://www.robots.ox.ac.uk/~az/lectures/ml Optimization Loss function Loss functions SVM review PRIMAL-DUAL PROBLEM Max-min

More information

Supervised vs unsupervised clustering

Supervised vs unsupervised clustering Classification Supervised vs unsupervised clustering Cluster analysis: Classes are not known a- priori. Classification: Classes are defined a-priori Sometimes called supervised clustering Extract useful

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Lecture 7: Support Vector Machine

Lecture 7: Support Vector Machine Lecture 7: Support Vector Machine Hien Van Nguyen University of Houston 9/28/2017 Separating hyperplane Red and green dots can be separated by a separating hyperplane Two classes are separable, i.e., each

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES SUPPORT VECTOR MACHINES Today Reading AIMA 18.9 Goals (Naïve Bayes classifiers) Support vector machines 1 Support Vector Machines (SVMs) SVMs are probably the most popular off-the-shelf classifier! Software

More information

Sparsity Based Regularization

Sparsity Based Regularization 9.520: Statistical Learning Theory and Applications March 8th, 200 Sparsity Based Regularization Lecturer: Lorenzo Rosasco Scribe: Ioannis Gkioulekas Introduction In previous lectures, we saw how regularization

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Supervised vs. Unsupervised Learning. Supervised vs. Unsupervised Learning. Supervised vs. Unsupervised Learning. Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning. Supervised vs. Unsupervised Learning. Supervised vs. Unsupervised Learning. Supervised vs. Unsupervised Learning Overview T7 - SVM and s Christian Vögeli cvoegeli@inf.ethz.ch Supervised/ s Support Vector Machines Kernels Based on slides by P. Orbanz & J. Keuchel Task: Apply some machine learning method to data from

More information

Support Vector. Machines. Algorithms, and Extensions. Optimization Based Theory, Naiyang Deng YingjieTian. Chunhua Zhang.

Support Vector. Machines. Algorithms, and Extensions. Optimization Based Theory, Naiyang Deng YingjieTian. Chunhua Zhang. Support Vector Machines Optimization Based Theory, Algorithms, and Extensions Naiyang Deng YingjieTian Chunhua Zhang CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators HW due on Thursday Face Recognition: Dimensionality Reduction Biometrics CSE 190 Lecture 11 CSE190, Winter 010 CSE190, Winter 010 Perceptron Revisited: Linear Separators Binary classification can be viewed

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Eric Xing Lecture 14, February 29, 2016 Reading: W & J Book Chapters Eric Xing @

More information

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18 CSE 417T: Introduction to Machine Learning Lecture 22: The Kernel Trick Henry Chai 11/15/18 Linearly Inseparable Data What can we do if the data is not linearly separable? Accept some non-zero in-sample

More information

9/29/13. Outline Data mining tasks. Clustering algorithms. Applications of clustering in biology

9/29/13. Outline Data mining tasks. Clustering algorithms. Applications of clustering in biology 9/9/ I9 Introduction to Bioinformatics, Clustering algorithms Yuzhen Ye (yye@indiana.edu) School of Informatics & Computing, IUB Outline Data mining tasks Predictive tasks vs descriptive tasks Example

More information

A (somewhat) Unified Approach to Semisupervised and Unsupervised Learning

A (somewhat) Unified Approach to Semisupervised and Unsupervised Learning A (somewhat) Unified Approach to Semisupervised and Unsupervised Learning Ben Recht Center for the Mathematics of Information Caltech April 11, 2007 Joint work with Ali Rahimi (Intel Research) Overview

More information

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank

Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 6 of Data Mining by I. H. Witten and E. Frank Implementation: Real machine learning schemes Decision trees Classification

More information

Machine Learning Lecture 9

Machine Learning Lecture 9 Course Outline Machine Learning Lecture 9 Fundamentals ( weeks) Bayes Decision Theory Probability Density Estimation Nonlinear SVMs 19.05.013 Discriminative Approaches (5 weeks) Linear Discriminant Functions

More information

Machine Learning Lecture 9

Machine Learning Lecture 9 Course Outline Machine Learning Lecture 9 Fundamentals ( weeks) Bayes Decision Theory Probability Density Estimation Nonlinear SVMs 30.05.016 Discriminative Approaches (5 weeks) Linear Discriminant Functions

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

Statistical Methods and Optimization in Data Mining

Statistical Methods and Optimization in Data Mining Statistical Methods and Optimization in Data Mining Eloísa Macedo 1, Adelaide Freitas 2 1 University of Aveiro, Aveiro, Portugal; macedo@ua.pt 2 University of Aveiro, Aveiro, Portugal; adelaide@ua.pt The

More information

Data Mining in Bioinformatics Day 1: Classification

Data Mining in Bioinformatics Day 1: Classification Data Mining in Bioinformatics Day 1: Classification Karsten Borgwardt February 18 to March 1, 2013 Machine Learning & Computational Biology Research Group Max Planck Institute Tübingen and Eberhard Karls

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Presented by Hu Han Jan. 30 2014 For CSE 902 by Prof. Anil K. Jain: Selected

More information

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING SECOND EDITION IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING ith Algorithms for ENVI/IDL Morton J. Canty с*' Q\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC

More information

Artificial Neural Networks (Feedforward Nets)

Artificial Neural Networks (Feedforward Nets) Artificial Neural Networks (Feedforward Nets) y w 03-1 w 13 y 1 w 23 y 2 w 01 w 21 w 22 w 02-1 w 11 w 12-1 x 1 x 2 6.034 - Spring 1 Single Perceptron Unit y w 0 w 1 w n w 2 w 3 x 0 =1 x 1 x 2 x 3... x

More information

Data mining with Support Vector Machine

Data mining with Support Vector Machine Data mining with Support Vector Machine Ms. Arti Patle IES, IPS Academy Indore (M.P.) artipatle@gmail.com Mr. Deepak Singh Chouhan IES, IPS Academy Indore (M.P.) deepak.schouhan@yahoo.com Abstract: Machine

More information

DM6 Support Vector Machines

DM6 Support Vector Machines DM6 Support Vector Machines Outline Large margin linear classifier Linear separable Nonlinear separable Creating nonlinear classifiers: kernel trick Discussion on SVM Conclusion SVM: LARGE MARGIN LINEAR

More information

SDLS: a Matlab package for solving conic least-squares problems

SDLS: a Matlab package for solving conic least-squares problems SDLS: a Matlab package for solving conic least-squares problems Didier Henrion 1,2 Jérôme Malick 3 June 28, 2007 Abstract This document is an introduction to the Matlab package SDLS (Semi-Definite Least-Squares)

More information

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Do Something..

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Dimensionality Reduction, including by Feature Selection.

Dimensionality Reduction, including by Feature Selection. Dimensionality Reduction, including by Feature Selection www.cs.wisc.edu/~dpage/cs760 Goals for the lecture you should understand the following concepts filtering-based feature selection information gain

More information

SVMs for Structured Output. Andrea Vedaldi

SVMs for Structured Output. Andrea Vedaldi SVMs for Structured Output Andrea Vedaldi SVM struct Tsochantaridis Hofmann Joachims Altun 04 Extending SVMs 3 Extending SVMs SVM = parametric function arbitrary input binary output 3 Extending SVMs SVM

More information

LOGISTIC REGRESSION FOR MULTIPLE CLASSES

LOGISTIC REGRESSION FOR MULTIPLE CLASSES Peter Orbanz Applied Data Mining Not examinable. 111 LOGISTIC REGRESSION FOR MULTIPLE CLASSES Bernoulli and multinomial distributions The mulitnomial distribution of N draws from K categories with parameter

More information

12 Classification using Support Vector Machines

12 Classification using Support Vector Machines 160 Bioinformatics I, WS 14/15, D. Huson, January 28, 2015 12 Classification using Support Vector Machines This lecture is based on the following sources, which are all recommended reading: F. Markowetz.

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

CLASSIFICATION AND CHANGE DETECTION

CLASSIFICATION AND CHANGE DETECTION IMAGE ANALYSIS, CLASSIFICATION AND CHANGE DETECTION IN REMOTE SENSING With Algorithms for ENVI/IDL and Python THIRD EDITION Morton J. Canty CRC Press Taylor & Francis Group Boca Raton London NewYork CRC

More information

Support Vector Machine Learning for Interdependent and Structured Output Spaces

Support Vector Machine Learning for Interdependent and Structured Output Spaces Support Vector Machine Learning for Interdependent and Structured Output Spaces I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, ICML, 2004. And also I. Tsochantaridis, T. Joachims, T. Hofmann,

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

SGN (4 cr) Chapter 10

SGN (4 cr) Chapter 10 SGN-41006 (4 cr) Chapter 10 Feature Selection and Extraction Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology February 18, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Advanced Applied Multivariate Analysis

Advanced Applied Multivariate Analysis Advanced Applied Multivariate Analysis STAT, Fall 3 Sungkyu Jung Department of Statistics University of Pittsburgh E-mail: sungkyu@pitt.edu http://www.stat.pitt.edu/sungkyu/ / 3 General Information Course

More information

Using Analytic QP and Sparseness to Speed Training of Support Vector Machines

Using Analytic QP and Sparseness to Speed Training of Support Vector Machines Using Analytic QP and Sparseness to Speed Training of Support Vector Machines John C. Platt Microsoft Research 1 Microsoft Way Redmond, WA 9805 jplatt@microsoft.com Abstract Training a Support Vector Machine

More information

Lecture 9: Support Vector Machines

Lecture 9: Support Vector Machines Lecture 9: Support Vector Machines William Webber (william@williamwebber.com) COMP90042, 2014, Semester 1, Lecture 8 What we ll learn in this lecture Support Vector Machines (SVMs) a highly robust and

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Distance Weighted Discrimination Method for Parkinson s for Automatic Classification of Rehabilitative Speech Treatment for Parkinson s Patients

Distance Weighted Discrimination Method for Parkinson s for Automatic Classification of Rehabilitative Speech Treatment for Parkinson s Patients Operations Research II Project Distance Weighted Discrimination Method for Parkinson s for Automatic Classification of Rehabilitative Speech Treatment for Parkinson s Patients Nicol Lo 1. Introduction

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Matlab project Independent component analysis

Matlab project Independent component analysis Matlab project Independent component analysis Michel Journée Dept. of Electrical Engineering and Computer Science University of Liège, Belgium m.journee@ulg.ac.be September 2008 What is Independent Component

More information

Support vector machine prediction of signal peptide cleavage site using a new class of kernels for strings

Support vector machine prediction of signal peptide cleavage site using a new class of kernels for strings 1 Support vector machine prediction of signal peptide cleavage site using a new class of kernels for strings Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan 2 Outline 1. SVM and kernel

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

9. Support Vector Machines. The linearly separable case: hard-margin SVMs. The linearly separable case: hard-margin SVMs. Learning objectives

9. Support Vector Machines. The linearly separable case: hard-margin SVMs. The linearly separable case: hard-margin SVMs. Learning objectives Foundations of Machine Learning École Centrale Paris Fall 25 9. Support Vector Machines Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech Learning objectives chloe agathe.azencott@mines

More information

Tensor Sparse PCA and Face Recognition: A Novel Approach

Tensor Sparse PCA and Face Recognition: A Novel Approach Tensor Sparse PCA and Face Recognition: A Novel Approach Loc Tran Laboratoire CHArt EA4004 EPHE-PSL University, France tran0398@umn.edu Linh Tran Ho Chi Minh University of Technology, Vietnam linhtran.ut@gmail.com

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

Review of feature selection techniques in bioinformatics by Yvan Saeys, Iñaki Inza and Pedro Larrañaga.

Review of feature selection techniques in bioinformatics by Yvan Saeys, Iñaki Inza and Pedro Larrañaga. Americo Pereira, Jan Otto Review of feature selection techniques in bioinformatics by Yvan Saeys, Iñaki Inza and Pedro Larrañaga. ABSTRACT In this paper we want to explain what feature selection is and

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

Chakra Chennubhotla and David Koes

Chakra Chennubhotla and David Koes MSCBIO/CMPBIO 2065: Support Vector Machines Chakra Chennubhotla and David Koes Nov 15, 2017 Sources mmds.org chapter 12 Bishop s book Ch. 7 Notes from Toronto, Mark Schmidt (UBC) 2 SVM SVMs and Logistic

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

Discriminative Clustering for Image Co-segmentation

Discriminative Clustering for Image Co-segmentation Discriminative Clustering for Image Co-segmentation Armand Joulin Francis Bach Jean Ponce INRIA Ecole Normale Supérieure, Paris January 2010 Introduction Introduction Task: dividing simultaneously q images

More information

Discriminate Analysis

Discriminate Analysis Discriminate Analysis Outline Introduction Linear Discriminant Analysis Examples 1 Introduction What is Discriminant Analysis? Statistical technique to classify objects into mutually exclusive and exhaustive

More information

Automated Microarray Classification Based on P-SVM Gene Selection

Automated Microarray Classification Based on P-SVM Gene Selection Automated Microarray Classification Based on P-SVM Gene Selection Johannes Mohr 1,2,, Sambu Seo 1, and Klaus Obermayer 1 1 Berlin Institute of Technology Department of Electrical Engineering and Computer

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Support Vector Machines (SVM)

Support Vector Machines (SVM) Support Vector Machines a new classifier Attractive because (SVM) Has sound mathematical foundations Performs very well in diverse and difficult applications See paper placed on the class website Review

More information

Classification by Support Vector Machines

Classification by Support Vector Machines Classification by Support Vector Machines Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Practical DNA Microarray Analysis 2003 1 Overview I II III

More information

Discriminative Clustering for Image Co-segmentation

Discriminative Clustering for Image Co-segmentation Discriminative Clustering for Image Co-segmentation Armand Joulin 1,2 Francis Bach 1,2 Jean Ponce 2 1 INRIA 2 Ecole Normale Supérieure January 15, 2010 Introduction Introduction problem: dividing simultaneously

More information

Machine Learning in Biology

Machine Learning in Biology Università degli studi di Padova Machine Learning in Biology Luca Silvestrin (Dottorando, XXIII ciclo) Supervised learning Contents Class-conditional probability density Linear and quadratic discriminant

More information

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample CS 1675 Introduction to Machine Learning Lecture 18 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem:

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

SDLS: a Matlab package for solving conic least-squares problems

SDLS: a Matlab package for solving conic least-squares problems SDLS: a Matlab package for solving conic least-squares problems Didier Henrion, Jérôme Malick To cite this version: Didier Henrion, Jérôme Malick. SDLS: a Matlab package for solving conic least-squares

More information