CURVILINEAR MESH GENERATION IN 3D

Size: px
Start display at page:

Download "CURVILINEAR MESH GENERATION IN 3D"

Transcription

1 CURVILINEAR MESH GENERATION IN 3D Saikat Dey, Robert M. O'Bara 2 and Mark S. Shephard 2 SFA Inc. / Naval Research Laboratory, Largo, MD., U.S.A., dey@cosmic.nrl.navy.mil 2 Scientific Computation Research Center Rensselaer Polytechnic Institute, Troy, NY., U.S.A., obara@scorec.rpi.edu ABSTRACT Issues related to curvilinear mesh generation starting from a CAD model are addressed. Curvilinear mesh geometry representation in the context of p-version finite elements and its impact on the validity of curvilinear meshes is discussed. A set of meshing tools is described for generation and modification of curved meshes in three-dimensional space. An iterative algorithm for curved meshing of existing straight-edged meshes is described and example curvilinear meshes of complex geometric models are presented. Keywords: mesh generation, curvilinear mesh generation, computational geometry, p-version analysis. INTRODUCTION High-order (p-version) discretizations have been shown to offer, for properly designed meshes, exponential rates of convergence of solution error [-3]. The increased approximation power allows the use of coarse meshes in which relatively few elements are used to cover large portions of the computational domain. Preserving the theoretically high error convergence rate for problems over curved domains requires that a curvilinear mesh geometry representation be used during the finite element computations. Two issues that must be addressed are: Mesh Geometry representation, and Generation of valid curvilinear meshes. Geometry representation issues in the context of p-version finite element analysis have been discussed in references [4, 5]. This paper is concerned with the task of generating a valid curvilinear mesh in three-dimensional space that meets those requirements. The outline of the paper is as follows: Section 2 discusses curvilinear mesh geometry representation and its impact on geometric validity of the curvilinear mesh. Section 3 gives basic requirements for curvilinear meshing including possible approaches. Section 4 describes the tools required to generate a valid curvilinear mesh. Section 5 describes a specific algorithm for generating curvilinear meshes starting from a valid mesh with straight-sided geometry and presents example curvilinear meshes. The following notation will be used:. M i d i represents the i-th mesh topological entity of dimension d i with d i =0,,2,3 defining the mesh vertex, edge, face and region, respectively, 2. G i d i represents the i-th geometric model topological entity of dimension d i with d i =0,,2,3 defining the model vertex, edge, face and region, respectively, 3. a is used to denote the classification which is the unique association of a mesh entity with the geometric model entity on which it lays M i d i a G j d j. 2. GEOMETRY AND VALIDITY OF CURVILINEAR MESHES The mesh geometric mapping, x( ξ), is valid provided that it is invertible throughout the closure of the parametric domain of the element implying ( ) = J ξ x i ξ j e > 0 ξ Ω, () ξ is the parametric coordinate system of the finite element and Ω e defines its domain. Equation () states that for a valid curvilinear finite element, the bounding mesh edges (faces) must not intersect each other except at common vertices (edges). In addition, they must also satisfy the standard requirement that the intersection of the interiors of two different finite elements is the null set Ωi e Ω e j = i j (2)

2 Equation (2) implies that curved elements must not penetrate into other elements. In p-version finite elements, the required order of accuracy in either directly approximating the geometry or related geometric terms, which appear in element level integrals, is a function of p. References [4, 6] shows that to preserve the rate of convergence of the finite element interpolation error, the minimum order of mesh geometry approximation is p-. This has an impact on curvilinear mesh generation because the validity of the curvilinear mesh is dependent on the order of mesh geometry representation. To understand this issue, consider the meshes for the geometric model in Figure (a). Figure (b) represents a valid linear mesh; however, for the same topology, if mesh edge M a G is assigned the exact geometry of the model edge then the mesh is no longer valid as shown in Figure (c), whereas a quadratic representation shown in Figure (d) is valid. The main point here is that, in general an unacceptable order of geometric approximation of mesh entities classified on model boundary can lead to a reduction in convergence rate. In a p -adaptive computation, where mesh geometry is updated with a change in p, it would require that at each adaptive step the mesh is checked for geometric validity and corrected if necessary. This can add significantly to the computational cost. A computationally efficient approach would be to start with a curvilinear mesh that is valid and adequate for the highest p order expected in the entire adaptive run and not alter the geometry of the mesh as p changes. Reference [6] shows that adopting such an approach is efficient specially when modeler interactions for geometric data queries are expensive. For the purpose of describing the procedures presented in this paper, it is assumed that the order and type of mesh geometry representation is known a- priori and is fixed. 3. CURVILINEAR MESHING: APPROACHES AND REQUIREMENTS Given a mesh geometry representation scheme, the generation of a curvilinear mesh can be viewed in two ways:. Curvilinear meshing of CAD geometry, and 2. A-posteriori curving of linear meshes to the model geometry. Figure 2 depicts the two approaches. The direct approach works by first creating a valid curvilinear boundary discretization of the model followed by interior discretization such that there is no interference of the newly created interior mesh entities with the curved boundary mesh entities. In the second approach, mesh entities classified on curved model boundary entities are assigned appropriate curved geometry based on analysis requirements. Any local invalidities of the mesh arising out of interference between curved boundary mesh entities and interior mesh entities are eliminated by the local modification of the mesh. In the present example, interfering interior mesh entities have been curved to yield a valid mesh. (a) (c) G M M (b) M (d) Figure : Curvilinear mesh validity. model direct approach a-posteriori approach boundary meshing P 2 interior meshing straight-edge mesh curved (invalid) mesh a valid mesh Figure 2: Approaches to curvilinear meshing. Both approaches have advantages and disadvantages. The direct approach has the advantage of a-priori validity of the resulting mesh. One possible way to implement such a scheme would be the element-removal type approach where elements are created working into the model interior starting from the curved model boundary. The geometric checks to detect and prevent mesh entity interference are suitably modified to account for the curvilinear geometry of some mesh edges (faces). However, the cost of intersection checks with curvilinear geometry are considerably more complicated and expensive compared to those needed for linear geometry cases. The second approach has the advantage that it can reuse most of the existing straight-edged mesh in the interior of the domain since the changes involved in curving are localized to mesh entities classified on or in the

3 vicinity of curved model boundaries. It can also make use of versions of existing local mesh modification tools in correcting any geometric invalidities that arise as a result of the curving of the boundary mesh entities. Although the approaches may appear significantly different, they are related and, in fact, a complete algorithm based on the second approach requires a localized version of the first approach to be able to mesh arbitrary cavities bounded by curvilinear mesh entities [7]. Implementation of either requires certain basic capabilities. The next section describes the basic capabities that are needed for generating curved meshes. 4. BASIC TOOLS FOR CURVILINEAR MESHING should either be removed or assigned a curved shape such that the interference is eliminated. M 2 M Figure 3: Interference detection for proposed new entity (dashed lines). 4. Curved Mesh Geometry Representation All mesh edges and faces that are classified on curved model boundaries must be curved to the boundary. In addition, mesh edges and faces classified in the model interior or on planar model boundaries may also be curved to ensure validity or improve curved element quality. From the analysis standpoint, a mapping function x( ξ ) and its derivative x must be available for pointwise ξ evaluation during element level integrals. From a mesh generation standpoint, they are needed to ensure geometric validity and quality of the curvilinear mesh based on a suitable distortion measure. x( ξ ) can be constructed by:. Blending schemes that conform exactly to the model geometry [6], or 2. Approximation and/or interpolation schemes. 4.2 Interference Detection Detection and elimination of interferences that violate equation () or (2) is a key capability needed for mesh generation. When directly generating curvilinear meshes, it is possible that the newly created mesh entities will intersect other mesh entities as shown in Figure 3. When curving an existing linear mesh, it is necessary to detect and eliminate any intersections of curved boundary mesh entities with other mesh entities such as those shown in Figure 4. The most straightforward approach to determine interference between curved mesh entities is to do an explicit intersection. For example, in the case shown in Figure 3, proposed mesh face M 2 intersects existing mesh edge M. Similarly, in Figure 4, curved mesh edge M intersects the interior mesh edge M 2. One advantage of doing the intersection checks to identify interference is that is also indicates the mesh entities that need to be either deleted or modified to eliminate the interference and hence ensure geometric validity. In the present case, for instance, the mesh edges M and M 2 Figure 4: Interference detection for proposed new entity (dashed lines). 4.3 Distortion Measure The quality of the shape of a curvilinear element can be measured in terms of an appropriate distortion metric. One useful measure is given by the variation of J( ξ) within the domain of the element min J( ξ) I = (3) max J( ξ) Since J( ξ) in general can be a complex expression, I is evaluated based on a fixed number of discrete locations within the element domain. One such metric bounded between [0,] is given by I = min J( ξi ) N p i N N p p J( ), = ξ, 2,..., (4) i = where N p is the number of discrete points used. i 5. CURVILINEAR MESHING STARTING FROM STRAIGHT-EDGED MESHES Starting from a valid straight-edged mesh, the main steps of this approach are described by:. Curving mesh entities classified on curved model entities, 2. Detection and elimination of interference between mesh edges on the model faces, and 3. Detection and elimination of interference between mesh entities in the model interior. M 2 M

4 Curving boundary mesh entities classified on model entities with periodic geometry requires special attention. The extent of mesh entity interference that results from curving boundary mesh entities is dependent on the input linear mesh and the local model geometry. The following sections give a description of the tools used to detect and correct mesh entity interference and outline an iterative algorithm to create curved meshes from existing straight-edged meshes. 5. Curving Boundary Mesh Entities To assign curved shapes to the boundary mesh entities one must make correct use of the parametric space on the underlying model entity. Consider Figure 5 for example, where M a G needs to be assigned a quadratic Lagrange geometry which requires determination of the edge mid-point which lies on G. If ζ ( ) and ζ ( 2) are the parametric coordinates of M 0 and M 2 0, respectively, where ζ defines the parametric coordinates of G, then one way of obtaining the mid-point location is to evaluate the map x ζ parametric mid-point given by ( ) at the x ζ ( ) ζ ( 2 + ) (5) 2 If x( ζ) is periodic and M i span the periodic boundary as shown in Figure 6(a), then simple application of (5) would not account for the jump ζ across the periodic boundary and lead to an incorrect mapping of the mid-point as shown in Figure 6(b). The correct mapping shown in Figure 6(c) is obtained by either incrementing end vertex parameters by one period or by decreasing the start vertex parameters by one period and then applying (5). M M 0 M 0 2 Figure 5: Mid-point location on model edge. G π 2 0 M G M 5.2 Local Interference Detection Using Jacobians Invalid mesh geometries resulting from interference of curved mesh entities with other mesh entities may be detected at the element level by exploiting specific properties of the Jacobian. This is much cheaper that using explicit interection checks, however, it detects interference only between those mesh entities that belong to the closure on a given element. To determine interfering mesh entities one needs to check the dependence of J, evaluated on or along bounding mesh entities, on the geometry of the bounding mesh entities. This knowledge along with discrete locations where J is invalid indicates the bounding mesh entities that need to be modified or eliminated. A minimal set of discrete locations for evaluation of J is based on the degree of the polynomial used to represent the curved geometry. For example in the case of using quadratic functions, the minimum set of points would consist of the vertices, a point along the edges (usually the mid-point), face points (centroid) and an interior point (centroid). For x( ζ) constructed by blending shapes of bounding edges and faces which can be of arbitrary complexity, J at these points is determined by the shape of all the bounding entities and hence, if J is invalid at any location then all the bounding mesh entities become candidates for modifications. However, for other geometry mappings, J at certain locations may be independent of the shape of specific bounding mesh entities, which can be exploited to reduce the pool of candidate mesh entities that must be modified. As an example, for a tetrahedron with quadratic Lagrangian interpolation of the 0 points as shown in Figure 7, the following properties can be easily verified:. J( ξ) at a vertex is independent of the shape of edges and faces that are not bounded by the vertex; for example, J( ξ) at M 0 is independent of the shape of M j, j=2,5,6, 2. J( ξ) on an edge is independent of the shape of the edge not bounded by any of its end vertices; for example, J( ξ) on M is independent of the shape of M 6, 3. J ξ ( ) in the interior of any face or the region is dependent on the shape of all the bounding entities. M (a) (b) (c) Figure 6: Dealing with periodic parameterization.

5 M 0 M 3 7 M 4 3 M 8 5 M M 2 0 M 6 M 5 Figure 7: Quadratic tetrahedron M 0 2 M 0 4 These properties are combined with the result of the discrete J( ξ) evaluations at the vertices and along each edge to arrive at the following rules to identify candidate mesh entities that elimination or modification to remove invalidity J( ξ) 0 in the mapping:. if J ξ ( ) 0 at a vertex then only edges connected to that vertex are candidates for modification / elimination; for example, if J ξ 0 at, M 0, then only M j, j=,3,4, should be considered for modification. 2. if J ξ 0 on an edge then only those edges that are bounded by at least one of its end vertices are candidates for modification/elimination; for example, if J ξ 0 on, M then only M j, j=2,3,4,5, should be considered for modification. 3. if J ξ If J ξ 0 at face/region interior, then all edges become candidates for modification. 0 at multiple locations then the list of candidates is defined by the union of the candidate lists from each rule Globally Checking the Validity of a Curved Region The above approach checks the validity of a curved mesh region by sampling the Jacobian at discrete locations. It makes no assumptions as to the geometric basis functions used to represent the curved mesh geometry, and is generally applicable. However there are basis functions, such as the Bezier basis, which have certain properties [8-0] which may be useful in globally checking the validity of curved regions. For example, in the case of a Bezier representation of a hexahedron, consider the following properties: The function is contained within the convex hull of the defining control points. The derivative of a Bezier function is also a Bezier function. The product of two Bezier functions is also a Bezier function. Given a mesh region represented as a Bezier function R(x), and R ξ i as the first partial of R with respects to x i, the following: ( Rξ Rξ ) Rξ 2 represents a differential box product. If this function were strictly positive for all valid x then the region itself would be valid for any set of integration points. If the properties of Bezier functions are applied to (6), it can be shown that the differential box product can also be represented as a Bezier function. As a result, the convex hull of its defining points bound the box product function. Therefore, if all the control points of (6) are positive, then the differential box product must also be positive. In this case the curved region would be valid for any valid x. 5.3 Local Retriangulations and Edge Deletion This section describes the local retriangulation (edge and face swapping) and edge deletion procedures as applied to the elimination of the interfering mesh entities Edge Swapping The edge swapping procedure has been effectively used in optimizing meshes []. Its ability to locally reconnect a given set of vertices such that an edge is eliminated from the new configuration is used to eliminate specific edges that are interfering with curved boundary mesh entities. Figure 8 illustrates such a situation where edge M, which interferes with curved face M 2, is swapped to eliminate the interference. In addition to the constraints that must be satisfied for edge swapping in straight-edged mesh [], a swap is only acceptable if it does not add any new interferences in the reconnected mesh. This is needed to avoid an infinite swapping loop between two configurations, both of which have entity interferences. M M 2 M 2 Figure 8: Edge swapping to remove interference. 3 (6)

6 5.3.2 Face Swapping Face swapping involves local reconnection of a given set of mesh vertices such that a specific mesh face is eliminated from the resulting mesh []. This property is used to eliminate interior mesh faces that interfere with curved mesh entities. For example, Figure 9 depicts the elimination of mesh face M 2 that intersects curved mesh edge M In addition to the constraints that must be satisfied for face swapping in straight-edged mesh [], a swap is only acceptable if it does not add any new interferences in the reconnected mesh. This is needed to avoid an infinite swapping loop between two configurations both having entity interferences. M M 2 M Figure 9: Face swapping to remove interference Edge Deletion Edge deletion by vertex collapsing is used to eliminate interference as shown in Figure 0 provided that no new are interferences created in the resulting mesh. In general for efficiency, the curved shapes of interior edges and faces should be lowest order that will yield a shape that eliminates the interference. To simplify the presentation, details of the curving are described based on a quadratic Lagrangian interpolation Curving Mesh Edges on Model Face Mesh edges on model faces that interfere with curved mesh edges classified on model edges and cannot be eliminated by any of the other modification tools are curved such that the interference is eliminated. For example, refer to Figure, 2 2 where M 2 a G i intersects M a G i when it is curved. The intersection is eliminated by assigning M 2 a curved representation where the parameters controlling the shape are appropriately determined. For example, if M 2 is assigned a quadratic Lagrangian geometry, then the problem is reduced to determining the location of the mid-point of M 2 such that the curved shapes of M 2 and M do not intersect. To achieve this the following criteria is used: the normal of the curvilinear geometry at A should be consistent with that of the linear geometry of the face; more precisely ( t2 t) t4 t3 ( ) > ε (7) where, t and t 3 are the tangent vectors of the linear and curved representation of M, respectively, similarly, t 2 and t 4 are the tangent vectors of the linear and curved representation of M 2, respectively, and ε is a tolerance that depends upon allowable distortion. E M 2 ms t 2 t 3 t 4 Figure 0: Edge deletion to remove interference. 5.4 Curving Mesh Entities If local reconnection and edge deletion procedures are not applicable due to topological or geometric constraints then interfering mesh entities that are linear can be assigned appropriate curved geometry such that they do not interfere with curved boundary entities. This is done at two levels: 2 i j 2 where Gl Gj, and k l Curving M a G that interfere with curved M a G d i dl l i Curving M a G 3, d I =, 2, that interfere with curved M d k k j d l l a G, d l =, 2 where G G 3. j D M Figure : Edge curving on model face. t Equation (7) is based on the observation that the intersection of M 2, and M lead to an inversion of the linear face normal. For a quadratic Lagrange curve, the change in the tangent vector is related to the change in position of the midpoint as follows A t4 = t2 + 4m s (8) where, s is the direction of the displacement and m is the distance moved. Substituting (8) into (7) leads to

7 ( ) ( ) ε m = ( t t ) t t 4( t t ) s t s is defined in the parametric space of the model face by the direction of displacement of the mid-point of the edge classified on the model edge as shown in Figure 2. v (9) direction is identical to normal at A for the face bounded by M 2 and M 3. C B E s M 3 M 2 D A u D M ms E t t 3 A Figure 2: Direction of mid-point relocation. t 2 t 4 Figure 3: Interior edge curving Curving Mesh Edges in Model Region If a curved mesh region has an invalid J( ξ) at a vertex then the mesh edges connected to the vertex and classified interior to the model region become candidates for curving using a quadratic Lagrangian shape interpolation. For example, 3 consider Figure 3, J( ξ) < 0 and edge M a G i. At A the box-product of the edge vectors has a negative sign implying that the element is locally inverted ( t2 t) t3 < 0 (0) where, t, t 2, t 3, are the tangent vectors along M 2, M 3, and M, respectively. The solution in this case lies in finding a relocation direction s and distance m for mid-point E on M such that the new tangent vector t 4 of the curved representation of M 2 satisfies ( t2 t) t4 > ε () Using the relation t4 = t3 + 4m s in () leads to ε m = ( t t ) t 4( t t ) s (2) Given a suitable ε, the aim is to find the minimum relocation that will satisfy (2); therefore, the relocation distance is chosen to be s ( t t2 ) so that the denominator is maximized. Geometrically, it means that the relocation Curving Mesh Faces in Model Region When dealing with polynomial orders greater than quadratic, degrees of freedom are also associated with mesh faces as well as mesh edges. Initial investigation has shown that a common problem that can occur when using interpolating basis functions, such as Lagrange, is a mesh region becoming invalid due to the fact that the control points of a mesh face have not be adjusted properly. Since an interpolating basis function forces the surface to go through all the control points, points associated with interior faces will generally have to be repositioned when any of it s bounding edges are curved as shown in Figure 4. The top image in Figure 4 shows an invalid mesh region resulting from curving edges classified on the model boundary. In this case cubic Lagrangian basis functions were used to represent the curved geometry. The bottom image shows the same region after repositioning the control point associated with the top mesh face. The approach used was to base the new position of the mesh face s control point on the centroids of triangles formed by an edge s interior control points and the vertex opposite to the edge. The average of the centroids then form the new location of the face s control point.

8 M 2 M M 2 (a) (b) M 0 M 0 (c) (d) Figure 5: Local remeshing with boundary point insertion. Figure 4: Correcting invalid regions by relocating control points associated with mesh faces 5.5 Local Curvilinear Remeshing Local remeshing is required when, due to topological constraints or poor point distribution, edge deletion, edge/face swapping, entity curving or vertex relocation fail to remove the interference. One such situation is described in Figure 5(a) where edge M interferes with curved edge M 2. The main steps of this procedure can be described as: () top-down removal of one or more layer(s) of mesh entities connected to the interfering mesh entity except those that are classified on model boundary as shown in Figure 5(b), (2) insertion of appropriate number of points on curved boundary, for example, M 0 in Figure 5(c), and (3) growing valid entities starting from the curvilinear boundary to fill the cavity as shown in Figure 5(d). The main issues that must be resolved in the application of this procedure are:. Extent of mesh removal, and 2. When and where to add additional boundary (interior) vertices. The portion of the mesh directly connected to the interfering mesh entities defines one straightforward choice for the extent of mesh removal. The need to add new vertices either to the boundary of the cavity or its interior is determined by the adequacy of the existing point distribution with respect to the local geometry of the model boundary. This is due to the fact that interference of curved mesh entities with neighboring mesh entities is caused by the deviation of the curved geometry from it linear approximation which in turn is determined by the curvature of the model boundary. In Figure 6, for example, the deviation of M due to curving is denoted by δ. Since the amount of deviation determines the interference with neighboring edges M 2 and M 3, the adequacy of the point distribution on the model boundary, represented by the edge length l can be assessed by:. Finding an approximation to the maximum allowable δ with no interference, and using it to determine 2. Minimum l based on local curvature. G M 2 M M 3 δ = α l l Figure 6: Allowable deviation. Writing δ = αl, the first task reduces to finding α such that J < 0 Starting with the best possible linear element with unit edge length, one of the edges is curved as a quadratic Lagrange by displacing the midpoint in the perpendicular direction by α. This situation represents the best possible starting mesh along with the best possible curving and the aim is to find the limit of α that makes the resulting curved 3 2 α

9 map invalid. After some algebraic manipulation, one can write ( ) J = r + s ( ( )) α (3) 2 In general, one needs to solve equation (3) for α such that J 0 within the closure of the domain of the element given by r + s ; however, for the quadratic case, it suffices to solve at the corners or 2 which leads to the requirement α 3 4 (4) The next step is to determine the minimum l based on the 3 local curvature such that α is at most. Using the 4 relationship [7, 2] where, R = max κ, κ ( 2 ) 8Rα l = + 4α 2 (5) denotes the minimum radius of curvature and κ and κ 2 are the principal curvatures of the surface, with equation (4) leads to ( ) 8R 3 4 l (6) If l is assumed to represent the local mesh size h, then equation (6) is used to determine if the boundary of the local mesh cavity classified on the model boundary needs refinement by splitting those edges that violate this criterion. invalid. Invalid regions are then processed using the same set of mesh modification tools. G M M 2 Figure 7: Allowable deviation. M 2 6 CURVILINEAR MESHES This section shows the results of applying the techniques discussed in previous sections to curve straight-sided meshes. Both geometric models were defined using the Parasolid modeling environment by Shape Data. The meshes were curved using quadratic Lagrange interpolation functions. Since both models contain periodic model surfaces, special attention was giving when determining mid point locations of boundary mesh edges, see Section Algorithm Description The following local mesh modification tools are used to alter the interfering mesh entities and hence eliminate the invalidity:. Local retriangulations defined by edge and/or face swaps, 2. Edge deletion by merging end vertices, 3. Curving mesh entities classified in the interior of a model face and region, and 4. Local curvilinear remeshing of mesh cavity produced by deletion of mesh entities in the vicinity of the interfering mesh entities. Interference between mesh entities classified on model faces are removed first because it is necessary to have a valid curvilinear surface mesh to ensure a valid curvilinear volume mesh. This issue is illustrated in Figure 7 where the curvilinear mesh region is invalid due to intersection of M and M 2 on the closure of. G 2 Unless the intersection is eliminated, any curvilinear mesh region that is connected to M 2 will always be invalid. Once the surface mesh has been properly curved, each mesh region is then checked for being Figure 8: Initial straight-sided mesh of a pipe assembly

10 Figure 9: Resulting curved mesh of pipe assembly Figure 2: Resulting curved mesh of Figure CONCLUSIONS Figure 20: Initial straight-sided mesh of a Parasolid part. With properly designed meshes, high-order (p-version) discretizations have been shown to produce exponential convergence rates of solution error. This paper has presented issues related to creating curvilinear meshes suitable for p- version finite element analysis. These issues have included the representation of curved mesh geometry as well as defining what constitutes a valid curvilinear mesh. Basic requirements for curvilinear meshing were then discussed as well as presenting two general approaches for curvilinear mesh generation: Direct generation of curvilinear meshes of CAD geometry A-posteriori curving of straight-sided meshes with respects to the model geometry. This was followed by a discussion of meshing tools required to generate valid curvilinear meshes and included detecting interference between curved mesh entities and defining distortion measures using Jacobians. The use of local mesh modification tools to aid in correcting invalid curved mesh regions was then presented. These operations included face and edge swapping, edge deletion, and curving mesh entities. Finally, curvilinear meshes that were the result of applying these techniques to straight-sided meshes were presented. These meshes were curved using quadratic Lagrange interpolation functions.

11 REFERENCES. Babuska, I. and B.Q. Guo, The h-p version of the finite element method for domains with curved boundaries. SIAM J. Numer. Anal., (4): p Babuska, I. and B.Q. Guo, Approximation properties of the h-p version of the finite element method. Comp. Meth. Appl. Mech. Engng., : p Oden, J.T., Optimal h-p finite element methods. Comp. Meth. Appl. Mech. Engng., : p Dey, S., Geometry-based three dimensional hp finite element modelling and computations, Phd Thesis in Civil Engineering, Rensselaer Polytechnic Institute, Scientific Computation Research Center, RPI, Troy, NY Shephard, M.S., S. Dey, and J.E. Flaherty, A straight forward structure to construct shape functions for variable p-order meshes. Comp. Meth. Appl. Mech. Engng., : p Dey, S., M.S. Shephard, and F.J. E., Geometry representation issues associated with p-version finite element computations. Comp. Meth. Appl. Mech. Engng., : p Shephard, M.S., S. Dey, and M.K. Georges, Automatic Meshing of Curved Three-Dimensional Domains: Curving Finite Elements and Curvature-Based Refinement, in Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, I. Babuska, et al., Editors. 995, Springer-Verlag. p Farouki, R.T. and V.T. Rajan, Algorithms for polynomials in Berstein form. Comput. Aid. Geom. Des., : p Farin, G.E., Curves and Surfaces for Computer Aided Geometric Design - A Practical Guide, 3rd Edition. 993, Boston: Academic Press. 0. Piegl, L. and W. Tiller, The NURBS Book - 2nd Edition. 997, Berlin: Springer-Verlag.. l'isle, E.B.d. and P.L. George, Optimization of tetrahedral meshes. Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations., : p Dey, S., Curvature sensitive refinements in 3D automatic mesh generation., Master's Thesis in Civil Engineering, Rensselaer Polytechnic Institute, Scientific Computation Research Center, RPI, Troy, NY

Curved mesh correction and adaptation tool to improve COMPASS electromagnetic analyses

Curved mesh correction and adaptation tool to improve COMPASS electromagnetic analyses SLAC-PUB-4744 Curved mesh correction and adaptation tool to improve COMPASS electromagnetic analyses Xiaojuan Luo, Mark Shephard, Lie-Quan Lee 2, Cho Ng 2 and Lixin Ge 2 Rensselaer Polytechnic Institute,

More information

DEVELOPMENTS OF PARALLEL CURVED MESHING FOR HIGH-ORDER FINITE ELEMENT SIMULATIONS

DEVELOPMENTS OF PARALLEL CURVED MESHING FOR HIGH-ORDER FINITE ELEMENT SIMULATIONS DEVELOPMENTS OF PARALLEL CURVED MESHING FOR HIGH-ORDER FINITE ELEMENT SIMULATIONS By Qiukai Lu A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment of the

More information

Parallel Curved Mesh Adaptation for Large Scale High-order Finite Element Simulations

Parallel Curved Mesh Adaptation for Large Scale High-order Finite Element Simulations Parallel Curved Mesh Adaptation for Large Scale High-order Finite Element Simulations Qiukai Lu 1, Mark S. Shephard 1, Saurabh Tendulkar 2 and Mark W. Beall 2 1 Scientific Computation Research Center,

More information

Element Quality Metrics for Higher-Order Bernstein Bézier Elements

Element Quality Metrics for Higher-Order Bernstein Bézier Elements Element Quality Metrics for Higher-Order Bernstein Bézier Elements Luke Engvall and John A. Evans Abstract In this note, we review the interpolation theory for curvilinear finite elements originally derived

More information

Surface Mesh Generation

Surface Mesh Generation Surface Mesh Generation J.-F. Remacle Université catholique de Louvain September 22, 2011 0 3D Model For the description of the mesh generation process, let us consider the CAD model of a propeller presented

More information

Adaptive numerical methods

Adaptive numerical methods METRO MEtallurgical TRaining On-line Adaptive numerical methods Arkadiusz Nagórka CzUT Education and Culture Introduction Common steps of finite element computations consists of preprocessing - definition

More information

Manipulating the Boundary Mesh

Manipulating the Boundary Mesh Chapter 7. Manipulating the Boundary Mesh The first step in producing an unstructured grid is to define the shape of the domain boundaries. Using a preprocessor (GAMBIT or a third-party CAD package) you

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics On a nested refinement of anisotropic tetrahedral grids under Hessian metrics Shangyou Zhang Abstract Anisotropic grids, having drastically different grid sizes in different directions, are efficient and

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Curves and Surfaces. Chapter 7. Curves. ACIS supports these general types of curves:

Curves and Surfaces. Chapter 7. Curves. ACIS supports these general types of curves: Chapter 7. Curves and Surfaces This chapter discusses the types of curves and surfaces supported in ACIS and the classes used to implement them. Curves ACIS supports these general types of curves: Analytic

More information

The ITAPS Mesh Interface

The ITAPS Mesh Interface The ITAPS Mesh Interface Carl Ollivier-Gooch Advanced Numerical Simulation Laboratory, University of British Columbia Needs and Challenges for Unstructured Mesh Usage Application PDE Discretization Mesh

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

A New Class of Quasi-Cubic Trigonometric Bezier Curve and Surfaces

A New Class of Quasi-Cubic Trigonometric Bezier Curve and Surfaces A New Class of Quasi-Cubic Trigonometric Bezier Curve and Surfaces Mridula Dube 1, Urvashi Mishra 2 1 Department of Mathematics and Computer Science, R.D. University, Jabalpur, Madhya Pradesh, India 2

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

UNTANGLING AND OPTIMIZATION OF UNSTRUCTURED HEXAHEDRAL MESHES

UNTANGLING AND OPTIMIZATION OF UNSTRUCTURED HEXAHEDRAL MESHES UNTANLIN AND OPTIMIZATION OF UNSTRUCTURED HEXAHEDRAL MESHES K. Kovalev (*), M. Delanaye (**), Ch. Hirsch (*) kvk@stro.vub.ac.be (*) Vrije Universiteit Brussel, Pleinlaan,, 1050 Brussels (**) NUMECA Int.,

More information

Advanced geometry tools for CEM

Advanced geometry tools for CEM Advanced geometry tools for CEM Introduction Modern aircraft designs are extremely complex CAD models. For example, a BAE Systems aircraft assembly consists of over 30,000 individual components. Since

More information

3D anisotropic mesh adaptation by mesh modification

3D anisotropic mesh adaptation by mesh modification Comput. Methods Appl. Mech. Engrg. 94 (25) 495 495 www.elsevier.com/locate/cma 3D anisotropic mesh adaptation by mesh modification Xiangrong Li a, *, Mark S. Shephard a, Mark W. Beall b a Scientific Computation

More information

implicit surfaces, approximate implicitization, B-splines, A- patches, surface fitting

implicit surfaces, approximate implicitization, B-splines, A- patches, surface fitting 24. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE ZBYNĚK ŠÍR FITTING OF PIECEWISE POLYNOMIAL IMPLICIT SURFACES Abstrakt In our contribution we discuss the possibility of an efficient fitting of piecewise

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

Level-set and ALE Based Topology Optimization Using Nonlinear Programming

Level-set and ALE Based Topology Optimization Using Nonlinear Programming 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level-set and ALE Based Topology Optimization Using Nonlinear Programming Shintaro Yamasaki

More information

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY 13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY Lecture 23 Dr. W. Cho Prof. N. M. Patrikalakis Copyright c 2003 Massachusetts Institute of Technology Contents 23 F.E. and B.E. Meshing Algorithms 2

More information

Knot Insertion and Reparametrization of Interval B-spline Curves

Knot Insertion and Reparametrization of Interval B-spline Curves International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:14 No:05 1 Knot Insertion and Reparametrization of Interval B-spline Curves O. Ismail, Senior Member, IEEE Abstract

More information

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017)

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017) Homework Assignment Sheet I (Due 20-Oct-2017) Assignment 1 Let n N and A be a finite set of cardinality n = A. By definition, a permutation of A is a bijective function from A to A. Prove that there exist

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

Surface Meshing with Metric Gradation Control

Surface Meshing with Metric Gradation Control Paper 33 Surface Meshing with Metric Gradation Control Civil-Comp Press, 2012 Proceedings of the Eighth International Conference on Engineering Computational Technology, B.H.V. Topping, (Editor), Civil-Comp

More information

3D NURBS-ENHANCED FINITE ELEMENT METHOD

3D NURBS-ENHANCED FINITE ELEMENT METHOD 7th Workshop on Numerical Methods in Applied Science and Engineering (NMASE 8) Vall de Núria, 9 a 11 de enero de 28 c LaCàN, www.lacan-upc.es 3D NURBS-ENHANCED FINITE ELEMENT METHOD R. Sevilla, S. Fernández-Méndez

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Toward Simulation-Based Design

Toward Simulation-Based Design Toward Simulation-Based Design Mark S. Shephard Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12810 Mark W. Beall, Robert M. O Bara, Bruce E. Webster Simmetrix, Inc.,

More information

Topological Issues in Hexahedral Meshing

Topological Issues in Hexahedral Meshing Topological Issues in Hexahedral Meshing David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science Outline I. What is meshing? Problem statement Types of mesh Quality issues

More information

A new 8-node quadrilateral spline finite element

A new 8-node quadrilateral spline finite element Journal of Computational and Applied Mathematics 195 (2006) 54 65 www.elsevier.com/locate/cam A new 8-node quadrilateral spline finite element Chong-Jun Li, Ren-Hong Wang Institute of Mathematical Sciences,

More information

CS3621 Midterm Solution (Fall 2005) 150 points

CS3621 Midterm Solution (Fall 2005) 150 points CS362 Midterm Solution Fall 25. Geometric Transformation CS362 Midterm Solution (Fall 25) 5 points (a) [5 points] Find the 2D transformation matrix for the reflection about the y-axis transformation (i.e.,

More information

Bezier Curves. An Introduction. Detlef Reimers

Bezier Curves. An Introduction. Detlef Reimers Bezier Curves An Introduction Detlef Reimers detlefreimers@gmx.de http://detlefreimers.de September 1, 2011 Chapter 1 Bezier Curve Basics 1.1 Linear Interpolation This section will give you a basic introduction

More information

Constrained Boundary Recovery for Three Dimensional Delaunay Triangulations

Constrained Boundary Recovery for Three Dimensional Delaunay Triangulations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2004; 00:01 [Version: 2000/01/19 v2.0] Constrained Boundary Recovery for Three Dimensional Delaunay Triangulations

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

PARALLEL CURVED MESHING FOR HIGH-ORDER FINITE ELEMENT SIMULATIONS

PARALLEL CURVED MESHING FOR HIGH-ORDER FINITE ELEMENT SIMULATIONS PARALLEL CURVED MESHING FOR HIGH-ORDER FINITE ELEMENT SIMULATIONS By Qiukai Lu A Dissertation Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment of the Requirements

More information

Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon

Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon Tamal Pramanick 1,a) 1 Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati

More information

Adaptive Tessellation for Trimmed NURBS Surface

Adaptive Tessellation for Trimmed NURBS Surface Adaptive Tessellation for Trimmed NURBS Surface Ma YingLiang and Terry Hewitt 2 Manchester Visualization Centre, University of Manchester, Manchester, M3 9PL, U.K. may@cs.man.ac.uk 2 W.T.Hewitt@man.ac.uk

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

Preferred directions for resolving the non-uniqueness of Delaunay triangulations

Preferred directions for resolving the non-uniqueness of Delaunay triangulations Preferred directions for resolving the non-uniqueness of Delaunay triangulations Christopher Dyken and Michael S. Floater Abstract: This note proposes a simple rule to determine a unique triangulation

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane?

This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? Intersecting Circles This blog addresses the question: how do we determine the intersection of two circles in the Cartesian plane? This is a problem that a programmer might have to solve, for example,

More information

Cross-Parameterization and Compatible Remeshing of 3D Models

Cross-Parameterization and Compatible Remeshing of 3D Models Cross-Parameterization and Compatible Remeshing of 3D Models Vladislav Kraevoy Alla Sheffer University of British Columbia Authors Vladislav Kraevoy Ph.D. Student Alla Sheffer Assistant Professor Outline

More information

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik. Matthias Zwicker Universität Bern Herbst 2016 Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

More information

Hexahedral Mesh Refinement Using an Error Sizing Function

Hexahedral Mesh Refinement Using an Error Sizing Function Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-06-01 Hexahedral Mesh Refinement Using an Error Sizing Function Gaurab Paudel Brigham Young University - Provo Follow this

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 18: Putting Lines Together: Polylines and Polygons Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Constrained modification of the cubic trigonometric Bézier curve with two shape parameters

Constrained modification of the cubic trigonometric Bézier curve with two shape parameters Annales Mathematicae et Informaticae 43 (014) pp. 145 156 http://ami.ektf.hu Constrained modification of the cubic trigonometric Bézier curve with two shape parameters Ede Troll University of Debrecen

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Dynamic Collision Detection

Dynamic Collision Detection Distance Computation Between Non-Convex Polyhedra June 17, 2002 Applications Dynamic Collision Detection Applications Dynamic Collision Detection Evaluating Safety Tolerances Applications Dynamic Collision

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

The Generation of Valid Curvilinear Meshes

The Generation of Valid Curvilinear Meshes The Generation of Valid Curvilinear Meshes Christophe Geuzaine 1, Amaury Johnen 1, Jonathan Lambrechts 2,3, Jean-François Remacle 2, Thomas Toulorge 2,3 1 Université de Liège, Dept. of Electrical Engineering

More information

A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes

A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes Sanjay Kumar Khattri Department of Mathematics, University of Bergen, Norway sanjay@mi.uib.no http://www.mi.uib.no/ sanjay Abstract. Mesh

More information

G 6i try. On the Number of Minimal 1-Steiner Trees* Discrete Comput Geom 12:29-34 (1994)

G 6i try. On the Number of Minimal 1-Steiner Trees* Discrete Comput Geom 12:29-34 (1994) Discrete Comput Geom 12:29-34 (1994) G 6i try 9 1994 Springer-Verlag New York Inc. On the Number of Minimal 1-Steiner Trees* B. Aronov, 1 M. Bern, 2 and D. Eppstein 3 Computer Science Department, Polytechnic

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 17: Breaking It Up: Triangles Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options

10.1 Overview. Section 10.1: Overview. Section 10.2: Procedure for Generating Prisms. Section 10.3: Prism Meshing Options Chapter 10. Generating Prisms This chapter describes the automatic and manual procedure for creating prisms in TGrid. It also discusses the solution to some common problems that you may face while creating

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Outline of the presentation

Outline of the presentation Surface Reconstruction Petra Surynková Charles University in Prague Faculty of Mathematics and Physics petra.surynkova@mff.cuni.cz Outline of the presentation My work up to now Surfaces of Building Practice

More information

Geometry Definition in the ADINA User Interface (AUI) Daniel Jose Payen, Ph.D. March 7, 2016

Geometry Definition in the ADINA User Interface (AUI) Daniel Jose Payen, Ph.D. March 7, 2016 Geometry Definition in the ADINA User Interface (AUI) Daniel Jose Payen, Ph.D. March 7, 2016 ADINA R&D, Inc., 2016 1 Topics Presented ADINA에서쓰이는 Geometry 종류 Simple (AUI) geometry ADINA-M geometry ADINA-M

More information

2) For any triangle edge not on the boundary, there is exactly one neighboring

2) For any triangle edge not on the boundary, there is exactly one neighboring Triangulating Trimmed NURBS Surfaces Chang Shu and Pierre Boulanger Abstract. This paper describes techniques for the piecewise linear approximation of trimmed NURBS surfaces. The problem, called surface

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Supporting Simulations to Guide Engineering Design

Supporting Simulations to Guide Engineering Design Supporting Simulations to Guide Engineering Design Mark S. Shephard Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12810 Mark W. Beall, Bruce E. Webster Simmetrix, Inc.,

More information

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Email: jrkumar@iitk.ac.in Curve representation 1. Wireframe models There are three types

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

1 Automatic Mesh Generation

1 Automatic Mesh Generation 1 AUTOMATIC MESH GENERATION 1 1 Automatic Mesh Generation 1.1 Mesh Definition Mesh M is a discrete representation of geometric model in terms of its geometry G, topology T, and associated attributes A.

More information

Flank Millable Surface Design with Conical and Barrel Tools

Flank Millable Surface Design with Conical and Barrel Tools 461 Computer-Aided Design and Applications 2008 CAD Solutions, LLC http://www.cadanda.com Flank Millable Surface Design with Conical and Barrel Tools Chenggang Li 1, Sanjeev Bedi 2 and Stephen Mann 3 1

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Shape Control of Cubic H-Bézier Curve by Moving Control Point

Shape Control of Cubic H-Bézier Curve by Moving Control Point Journal of Information & Computational Science 4: 2 (2007) 871 878 Available at http://www.joics.com Shape Control of Cubic H-Bézier Curve by Moving Control Point Hongyan Zhao a,b, Guojin Wang a,b, a Department

More information

Research Article Data Visualization Using Rational Trigonometric Spline

Research Article Data Visualization Using Rational Trigonometric Spline Applied Mathematics Volume Article ID 97 pages http://dx.doi.org/.//97 Research Article Data Visualization Using Rational Trigonometric Spline Uzma Bashir and Jamaludin Md. Ali School of Mathematical Sciences

More information

CGT 581 G Geometric Modeling Curves

CGT 581 G Geometric Modeling Curves CGT 581 G Geometric Modeling Curves Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics Technology Curves What is a curve? Mathematical definition 1) The continuous image of an interval

More information

Properties of Blending Functions

Properties of Blending Functions Chapter 5 Properties of Blending Functions We have just studied how the Bernstein polynomials serve very nicely as blending functions. We have noted that a degree n Bézier curve always begins at P 0 and

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik. Matthias Zwicker. Herbst 2010 Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Mesh Generation Algorithms Part 2 Fathi El-Yafi Project and Software Development Manager Engineering Simulation 21-25 April 2008 1 Overview Adaptive Meshing: Remeshing Decimation Optimization

More information

NEXT-GENERATION SWEEP TOOL: A METHOD FOR GENERATING ALL-HEX MESHES ON TWO-AND-ONE-HALF DIMENSIONAL GEOMTRIES

NEXT-GENERATION SWEEP TOOL: A METHOD FOR GENERATING ALL-HEX MESHES ON TWO-AND-ONE-HALF DIMENSIONAL GEOMTRIES NEXT-GENERATION SWEEP TOOL: A METHOD FOR GENERATING ALL-HEX MESHES ON TWO-AND-ONE-HALF DIMENSIONAL GEOMTRIES PATRICK M. KNUPP PARALLEL COMPUTING SCIENCES DEPARTMENT SANDIA NATIONAL LABORATORIES M/S 0441,

More information

53 M 0 j èm 2 i è ;1 M 0 j èm 2 i è ;1 èm 2 i è ;0 èm 2 i è ;0 (a) (b) M 0 i M 0 i (c) (d) Figure 6.1: Invalid boundary layer elements due to invisibi

53 M 0 j èm 2 i è ;1 M 0 j èm 2 i è ;1 èm 2 i è ;0 èm 2 i è ;0 (a) (b) M 0 i M 0 i (c) (d) Figure 6.1: Invalid boundary layer elements due to invisibi CHAPTER 6 BOUNDARY LAYER MESHING - ENSURING ELEMENT VALIDITY Growth curves are created with maximum consideration for topological validity and topological compatibility with the model. However, only preliminary

More information

Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements

Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements G. P. Nikishkov University of Aizu, Aizu-Wakamatsu 965-8580, Japan niki@u-aizu.ac.jp http://www.u-aizu.ac.jp/ niki Abstract. This

More information

Adaptive and Smooth Surface Construction by Triangular A-Patches

Adaptive and Smooth Surface Construction by Triangular A-Patches Adaptive and Smooth Surface Construction by Triangular A-Patches Guoliang Xu Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, China Abstract

More information

3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis

3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis Adv. Theor. Appl. Mech., Vol. 1, 2008, no. 3, 131-139 3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis Yunhua Luo Department of Mechanical & Manufacturing Engineering, University of

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

ADAPTIVE FINITE ELEMENT

ADAPTIVE FINITE ELEMENT Finite Element Methods In Linear Structural Mechanics Univ. Prof. Dr. Techn. G. MESCHKE SHORT PRESENTATION IN ADAPTIVE FINITE ELEMENT Abdullah ALSAHLY By Shorash MIRO Computational Engineering Ruhr Universität

More information

A Data Dependent Triangulation for Vector Fields

A Data Dependent Triangulation for Vector Fields A Data Dependent Triangulation for Vector Fields Gerik Scheuermann Hans Hagen Institut for Computer Graphics and CAGD Department of Computer Science University of Kaiserslautern, Postfach 3049, D-67653

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li. Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Curves and Surfaces 1

Curves and Surfaces 1 Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

More information

APPLICATION OF ALGORITHMS FOR AUTOMATIC GENERATION OF HEXAHEDRAL FINITE ELEMENT MESHES

APPLICATION OF ALGORITHMS FOR AUTOMATIC GENERATION OF HEXAHEDRAL FINITE ELEMENT MESHES MESTRADO EM ENGENHARIA MECÂNICA November 2014 APPLICATION OF ALGORITHMS FOR AUTOMATIC GENERATION OF HEXAHEDRAL FINITE ELEMENT MESHES Luís Miguel Rodrigues Reis Abstract. The accuracy of a finite element

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Finite element algorithm with adaptive quadtree-octree mesh refinement

Finite element algorithm with adaptive quadtree-octree mesh refinement ANZIAM J. 46 (E) ppc15 C28, 2005 C15 Finite element algorithm with adaptive quadtree-octree mesh refinement G. P. Nikishkov (Received 18 October 2004; revised 24 January 2005) Abstract Certain difficulties

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information