SYSTEMS OF NONLINEAR EQUATIONS

Size: px
Start display at page:

Download "SYSTEMS OF NONLINEAR EQUATIONS"

Transcription

1 SYSTEMS OF NONLINEAR EQUATIONS Widely used in the mathematical modeling of real world phenomena. We introduce some numerical methods for their solution. For better intuition, we examine systems of two nonlinear equations and numerical methods for their solution. We then generalize to systems of an arbitrary order. The Problem: Consider solving a system of two nonlinear equations f (x, y) = 0 g(x, y) = 0 (1)

2 Example Consider solving the system f (x, y) x 2 + 4y 2 9 = 0 g(x, y) 18y 14x = 0 (2) z y x 0 2 Figure : Graph of z = x 2 + 4y 2 9, along with z = 0 on that surface

3 To visualize the points (x, y) that satisfy simultaneously both equations in (1), look at the intersection of the zero curves of the functions f and g. The next figure illustrates this. The zero curves intersect at four points, each of which corresponds to a solution of the system (2). For example, there is a solution near (1, 1). 18y 14x 2 +45=0 3 y x 1 2 x 2 +4y 2 9=0 3 Figure : Graphs of f (x, y) = 0 and g(x, y) = 0

4 TANGENT PLANE APPROXIMATION The graph of z = f (x, y) is a surface in xyz-space. For (x, y) (x 0, y 0 ), we approximate f (x, y) by a plane that is tangent to the surface at the point (x 0, y 0, f (x 0, y 0 )). The equation of this plane is z = p(x, y) with p(x, y) f (x 0, y 0 ) + (x x 0 )f x (x 0, y 0 ) + (y y 0 )f y (x 0, y 0 ), (3) f x (x, y) = f (x, y), f y (x, y) = x f (x, y), y the partial derivatives of f with respect to x and y, respectively. If (x, y) (x 0, y 0 ), then f (x, y) p(x, y) For functions of two variables, p(x, y) is the linear Taylor polynomial approximation to f (x, y).

5 NEWTON S METHOD Let α = (ξ, η) denote a solution of the system f (x, y) = 0 g(x, y) = 0 Let (x 0, y 0 ) (ξ, η) be an initial guess at the solution. Approximate the surface z = f (x, y) with the tangent plane at (x 0, y 0, f (x 0, y 0 )). If f (x 0, y 0 ) is sufficiently close to zero, then the zero curve of p(x, y) will be an approximation of the zero curve of f (x, y) for those points (x, y) near (x 0, y 0 ). Because the graph of z = p(x, y) is a plane, its zero curve is simply a straight line.

6 Example Consider f (x, y) x 2 + 4y 2 9. Then f x (x, y) = 2x, f y (x, y) = 8y. At (x 0, y 0 ) = (1, 1), f (x 0, y 0 ) = 4, f x (x 0, y 0 ) = 2, f y (x 0, y 0 ) = 8 At (1, 1, 4) the tangent plane to the surface z = f (x, y) is z = p(x, y) 4 + 2(x 1) 8(y + 1) y 1 2 x 1 (x 0,y 0 ) f(x,y)=0 p(x,y)=0 2 Figure : Zero curves of f (x, y) and p(x, y) for (x, y) near (x 0, y 0 )

7 The tangent plane to the surface z = g(x, y) at (x 0, y 0, g(x 0, y 0 )) has the equation z = q(x, y) with q(x, y) g(x 0, y 0 ) + (x x 0 )g x (x 0, y 0 ) + (y y 0 )g y (x 0, y 0 ) Recall that the solution α = (ξ, η) to f (x, y) = 0 g(x, y) = 0 is the intersection of the zero curves of z = f (x, y) and z = g(x, y). Approximate these zero curves by those of the tangent planes z = p(x, y) and z = q(x, y). The intersection of these latter zero curves gives an approximate solution to the above nonlinear system. Denote by (x 1, y 1 ) the solution to p(x, y) = 0 q(x, y) = 0

8 Example Return to the equations f (x, y) x 2 + 4y 2 9 = 0 g(x, y) 18y 14x = 0 with (x 0, y 0 ) = (1, 1). y 1 2 x g(x,y)=0 1 (x 0,y 0 ) q(x,y)=0 f(x,y)=0 p(x,y)=0 (x 1,y 1 ) 2 Figure : Use of zero curves of tangent plane approximations

9 Calculating (x 1, y 1 ). To find the intersection of the zero curves of the tangent planes, we must solve the linear system f (x 0, y 0 ) + (x x 0 )f x (x 0, y 0 ) + (y y 0 )f y (x 0, y 0 ) = 0 g(x 0, y 0 ) + (x x 0 )g x (x 0, y 0 ) + (y y 0 )g y (x 0, y 0 ) = 0 The solution is denoted by (x 1, y 1 ). In matrix form, [ ] [ ] [ ] fx (x 0, y 0 ) f y (x 0, y 0 ) x x0 f (x0, y = 0 ) g x (x 0, y 0 ) g y (x 0, y 0 ) y y 0 g(x 0, y 0 ) It is actually computed as follows. Define δ x and δ y to be the solution of the linear system [ ] [ ] [ ] fx (x 0, y 0 ) f y (x 0, y 0 ) δx f (x0, y = 0 ) g x (x 0, y 0 ) g y (x 0, y 0 ) δ y g(x 0, y 0 ) [ ] [ ] [ ] x1 x0 δx = + y 1 Usually the point (x 1, y 1 ) is closer to the solution α than is the original point (x 0, y 0 ). y 0 δ y

10 Continue this process, using (x 1, y 1 ) as a new initial guess. Obtain an improved estimate (x 2, y 2 ). This iteration process is continued until a solution with sufficient accuracy is obtained. The general iteration is given by [ ] [ ] [ ] fx (x k, y k ) f y (x k, y k ) δx,k f (xk, y k ) = g x (x k, y k ) g y (x k, y k ) δ y,k g(x k, y k ) ] ] ] (4) [ xk+1 y k+1 = [ xk y k + [ δx,k δ y,k This is Newton s method for solving f (x, y) = 0 g(x, y) = 0, k = 0, 1,... Many numerical methods for solving nonlinear systems are variations on Newton s method.

11 Example Consider again the system f (x, y) x 2 + 4y 2 9 = 0 g(x, y) 18y 14x = 0 Newton s method (4) becomes [ ] [ ] [ 2xk 8y k δx,k xk 2 = + 4y k 2 9 ] 28x k 18 δ y,k 18y k 14xk ] ] ] (5) [ xk+1 y k+1 = [ xk y k + [ δx,k δ y,k Choose (x 0, y 0 ) = (1, 1). The resulting Newton iterates are given in Table 1, along with Error = α (x k, y k ) max{ ξ x k, η y k }

12 Table : Newton iterates for the system (5) k x k y k Error E E E E E E 16 The final iterate is accurate to the precision of the computer arithmetic.

13 AN ALTERNATIVE NOTATION We introduce a more general notation for the preceding work. The problem to be solved is F 1 (x 1, x 2 ) = 0 F 2 (x 1, x 2 ) = 0 Introduce [ ] [ ] F 1 F 1 x1 F1 (x 1, x 2 ) x =, F (x) =, F (x) = x 1 x 2 x 2 F 2 (x 1, x 2 ) F 2 F 2 x 1 x 2 F (x) is called the Frechet derivative of F (x). It is a generalization to higher dimensions of the ordinary derivative of a function of one variable. The system (6) can now be written as (6) F (x) = 0 (7) A solution of this equation will be denoted by α.

14 Newton s method becomes for k = 0, 1,.... F (x (k) )δ (k) = F (x (k) ) x (k+1) = x (k) + δ (k) (8) A shorter and mathematically equivalent form: for k = 0, 1,.... [ 1 x (k+1) = x (k) F (x )] (k) F (x (k) ) (9) This last formula is often used in discussing and analyzing Newton s method for nonlinear systems. But (8) is used for practical computations, since it is usually less expensive to solve a linear system than to find the inverse of the coefficient matrix. Note the analogy of (9) with Newton s method for a single equation.

15 THE GENERAL NEWTON METHOD Consider the system of n nonlinear equations F 1 (x 1,..., x n ) = 0. F n (x 1,..., x n ) = 0 (10) Define x = x 1. x n, F (x) = F 1 (x 1,..., x n ). F n (x 1,..., x n ), F (x) = F 1 x 1. F n x 1 F 1 x n. F n x n The nonlinear system (10) can be written as F (x) = 0 Its solution is denoted by α R n.

16 Newton s method is F (x (k) )δ (k) = F (x (k) ) x (k+1) = x (k) + δ (k), k = 0, 1,... (11) Alternatively, as before, [ 1 x (k+1) = x (k) F (x )] (k) F (x (k) ), k = 0, 1,... (12) This formula is often used in theoretical discussions of Newton s method for nonlinear systems. But (11) is used for practical computations, since it is usually less expensive to solve a linear system than to find the inverse of the coefficient matrix. CONVERGENCE. Under suitable hypotheses, it can be shown that there is a c > 0 for which α x (k+1) α c x (k) 2, k = 0, 1,... α x (k) max α i x (k) 1 i n Newton s method is quadratically convergent. i

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn Today s class Roots of equation Finish up incremental search Open methods 1 False Position Method Although the interval [a,b] where the root becomes iteratively closer with the false position method, unlike

More information

SPM Add Math Form 5 Chapter 3 Integration

SPM Add Math Form 5 Chapter 3 Integration SPM Add Math Form Chapter Integration INDEFINITE INTEGRAL CHAPTER : INTEGRATION Integration as the reverse process of differentiation ) y if dy = x. Given that d Integral of ax n x + c = x, where c is

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 2.1 Derivatives and Rates of Change In this chapter we study a special type of limit, called a derivative, that occurs when we want to find a slope of a tangent line, or a velocity, or any instantaneous

More information

February 23 Math 2335 sec 51 Spring 2016

February 23 Math 2335 sec 51 Spring 2016 February 23 Math 2335 sec 51 Spring 2016 Section 4.1: Polynomial Interpolation Interpolation is the process of finding a curve or evaluating a function whose curve passes through a known set of points.

More information

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10 MATH 573 LECTURE NOTES 77 13.8. Predictor-corrector methods. We consider the Adams methods, obtained from the formula xn+1 xn+1 y(x n+1 y(x n ) = y (x)dx = f(x,y(x))dx x n x n by replacing f by an interpolating

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

Excel and the solution of linear and non-linear simultaneous equations. Part 1

Excel and the solution of linear and non-linear simultaneous equations. Part 1 Comp Math/IT 2007-08 g.bowtell@city.ac.uk www.staff.city.ac.uk/g.bowtell 1 Worksheet 3 Weeks beginning 5 th November and 12 th November 2007 Excel and the solution of linear and non-linear simultaneous

More information

The derivative of a function at one point. 1. Secant lines and tangents. 2. The tangent problem

The derivative of a function at one point. 1. Secant lines and tangents. 2. The tangent problem 1. Secant lines and tangents The derivative of a function at one point A secant line (or just secant ) is a line passing through two points of a curve. As the two points are brought together (or, more

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Math 326A Exercise 4. Due Wednesday, October 24, 2012.

Math 326A Exercise 4. Due Wednesday, October 24, 2012. Math 36A Exercise 4. Due Wednesday, October 4, 01. Implicit Function Theorem: Suppose that F(x, y, z) has continuous partial derivatives, and that the gradient P F is nonzero at a point P. Consider the

More information

Functions. Edexcel GCE. Core Mathematics C3

Functions. Edexcel GCE. Core Mathematics C3 Edexcel GCE Core Mathematics C Functions Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4 Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations Textbook: Section 14.4 Warm-Up: Graph the Cone & the Paraboloid paraboloid f (x, y) = x 2 + y 2 cone g(x, y) = x 2 + y 2 Do you notice

More information

Math 326A Exercise 4. Due Wednesday, October 24, 2012.

Math 326A Exercise 4. Due Wednesday, October 24, 2012. Math 326A Exercise 4. Due Wednesday, October 24, 2012. Implicit Function Theorem: Suppose that F(x, y, z) has continuous partial derivatives, and that the gradient P F is nonzero at a point P. Consider

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Interpolation. TANA09 Lecture 7. Error analysis for linear interpolation. Linear Interpolation. Suppose we have a table x x 1 x 2...

Interpolation. TANA09 Lecture 7. Error analysis for linear interpolation. Linear Interpolation. Suppose we have a table x x 1 x 2... TANA9 Lecture 7 Interpolation Suppose we have a table x x x... x n+ Interpolation Introduction. Polynomials. Error estimates. Runge s phenomena. Application - Equation solving. Spline functions and interpolation.

More information

Natasha S. Sharma, PhD

Natasha S. Sharma, PhD Revisiting the function evaluation problem Most functions cannot be evaluated exactly: 2 x, e x, ln x, trigonometric functions since by using a computer we are limited to the use of elementary arithmetic

More information

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives.

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. Section 11.3 Partial Derivatives (1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. MATH 127 (Section 11.3) Partial Derivatives The University of Kansas

More information

Objectives. Materials

Objectives. Materials Activity 13 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). Quadratics Vertex Form 1. Part of the graph of the function y = d (x m) + p is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, ). (a) Write down the value of (i)

More information

Contents. Hilary Term. Summary of Numerical Analysis for this term. Sources of error in numerical calculation. Solving Problems

Contents. Hilary Term. Summary of Numerical Analysis for this term. Sources of error in numerical calculation. Solving Problems Contents Hilary Term 1 Root Finding 4 11 Bracketing and Bisection 5 111 Finding the root numerically 5 112 Pseudo BRACKET code 7 113 Drawbacks 8 114 Tips for success with Bracketing & Bisection 9 115 Virtues

More information

Maximizing an interpolating quadratic

Maximizing an interpolating quadratic Week 11: Monday, Apr 9 Maximizing an interpolating quadratic Suppose that a function f is evaluated on a reasonably fine, uniform mesh {x i } n i=0 with spacing h = x i+1 x i. How can we find any local

More information

Tangent Planes and Linear Approximations

Tangent Planes and Linear Approximations February 21, 2007 Tangent Planes Tangent Planes Let S be a surface with equation z = f (x, y). Tangent Planes Let S be a surface with equation z = f (x, y). Let P(x 0, y 0, z 0 ) be a point on S. Tangent

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Math Lab 6: Powerful Fun with Power Series Representations of Functions Due noon Thu. Jan. 11 in class *note new due time, location for winter quarter

Math Lab 6: Powerful Fun with Power Series Representations of Functions Due noon Thu. Jan. 11 in class *note new due time, location for winter quarter Matter & Motion Winter 2017 18 Name: Math Lab 6: Powerful Fun with Power Series Representations of Functions Due noon Thu. Jan. 11 in class *note new due time, location for winter quarter Goals: 1. Practice

More information

Thursday 14 June 2012 Morning

Thursday 14 June 2012 Morning Thursday 4 June 202 Morning A2 GCE MATHEMATICS 4726 Further Pure Mathematics 2 QUESTION PAPER *47325062* Candidates answer on the Printed Answer Book. OCR supplied materials: Printed Answer Book 4726 List

More information

Amphitheater School District End Of Year Algebra II Performance Assessment Review

Amphitheater School District End Of Year Algebra II Performance Assessment Review Amphitheater School District End Of Year Algebra II Performance Assessment Review This packet is intended to support student preparation and review for the Algebra II course concepts for the district common

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages.

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages. Math 126 Final Examination Autumn 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 9 problems on 10 pages. This exam is closed book. You

More information

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form:

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form: Name: Date: Period: Chapter 2: Polynomial and Rational Functions Topic 6: Rational Functions & Their Graphs Rational functions, like rational numbers, will involve a fraction. We will discuss rational

More information

A New Look at Multivariable Interpolation

A New Look at Multivariable Interpolation Page 1 A New Look at Multivariable Interpolation By Namir Shammas Introduction Interpolation using a single independent variable usually involves using legacy algorithm such as the Lagrangian Interpolation,

More information

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers.

1. Practice the use of the C ++ repetition constructs of for, while, and do-while. 2. Use computer-generated random numbers. 1 Purpose This lab illustrates the use of looping structures by introducing a class of programming problems called numerical algorithms. 1. Practice the use of the C ++ repetition constructs of for, while,

More information

Precomposing Equations

Precomposing Equations Precomposing Equations Let s precompose the function f(x) = x 3 2x + 9 with the function g(x) = 4 x. (Precompose f with g means that we ll look at f g. We would call g f postcomposing f with g.) f g(x)

More information

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case

Ellipsoid Algorithm :Algorithms in the Real World. Ellipsoid Algorithm. Reduction from general case Ellipsoid Algorithm 15-853:Algorithms in the Real World Linear and Integer Programming II Ellipsoid algorithm Interior point methods First polynomial-time algorithm for linear programming (Khachian 79)

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

Partial Derivatives (Online)

Partial Derivatives (Online) 7in x 10in Felder c04_online.tex V3 - January 21, 2015 9:44 A.M. Page 1 CHAPTER 4 Partial Derivatives (Online) 4.7 Tangent Plane Approximations and Power Series It is often helpful to use a linear approximation

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS 11 5 ARE TO BE DONE WITHOUT A CALCULATOR Name 2 CALCULATOR MAY BE USED FOR 1-10 ONLY Use the table to find the following. x -2 2 5-0 7 2 y 12 15 18

More information

1.1 Functions. Cartesian Coordinate System

1.1 Functions. Cartesian Coordinate System 1.1 Functions This section deals with the topic of functions, one of the most important topics in all of mathematics. Let s discuss the idea of the Cartesian coordinate system first. Cartesian Coordinate

More information

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2.

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2. Math 111 - Exam 2a 1) Take the derivatives of the following. DO NOT SIMPLIFY! a) y = ( + 1 2 x ) (sin(2x) - x- x 1 ) b) y= 2 x + 1 c) y = tan(sec2 x) 2) Find the following derivatives a) Find dy given

More information

1.5 Part - 2 Inverse Relations and Inverse Functions

1.5 Part - 2 Inverse Relations and Inverse Functions 1.5 Part - 2 Inverse Relations and Inverse Functions What happens when we reverse the coordinates of all the ordered pairs in a relation? We obviously get another relation, but does it have any similarities

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Maclaurin series. To create a simple version of this resource yourself using Geogebra:

Maclaurin series. To create a simple version of this resource yourself using Geogebra: Maclaurin series Maclaurin series (Geogebra) This resource is on the Integral website in the following sections: MEI FP2 Power series 1, AQA FP3 Series 1, Edexcel FP2 Maclaurin series 1, OCR FP2 Maclaurin

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations COURSE: NUMERICAL ANALYSIS LESSON: Methods for Solving Non-Linear Equations Lesson Developer: RAJNI ARORA COLLEGE/DEPARTMENT: Department of Mathematics, University of Delhi Page No. 1 Contents 1. LEARNING

More information

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}.

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}. September 8, 208 62B Math Test Chapter Name: Part : Objective Questions [ mark each, total 2 marks]. State whether each of the following statements is TRUE or FALSE a) The mapping rule (x, y) (-x, y) represents

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: - Systems of DEs (8.5) - The Phase Plane (8.6) - Solutions in the Phase Plane (8.7) In the Functions of Several Variables module: - Section 1: Introduction to Functions of Several

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

Math 126 Final Examination SPR CHECK that your exam contains 8 problems on 8 pages.

Math 126 Final Examination SPR CHECK that your exam contains 8 problems on 8 pages. Math 126 Final Examination SPR 2018 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 8 problems on 8 pages. This exam is closed book. You may

More information

14.4: Tangent Planes and Linear Approximations

14.4: Tangent Planes and Linear Approximations 14.4: Tangent Planes and Linear Approximations Marius Ionescu October 15, 2012 Marius Ionescu () 14.4: Tangent Planes and Linear Approximations October 15, 2012 1 / 13 Tangent Planes Marius Ionescu ()

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

Unit 1 Algebraic Functions and Graphs

Unit 1 Algebraic Functions and Graphs Algebra 2 Unit 1 Algebraic Functions and Graphs Name: Unit 1 Day 1: Function Notation Today we are: Using Function Notation We are successful when: We can Use function notation to evaluate a function This

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12

CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12 Tool 1: Standards for Mathematical ent: Interpreting Functions CCSSM Curriculum Analysis Project Tool 1 Interpreting Functions in Grades 9-12 Name of Reviewer School/District Date Name of Curriculum Materials:

More information

Slope of the Tangent Line. Estimating with a Secant Line

Slope of the Tangent Line. Estimating with a Secant Line Slope of the Tangent Line Given a function f find the slope of the line tangent to the graph of f, that is, to the curve, at the point P(a, f (a)). The graph of a function f and the tangent line at a point

More information

CS 559: Machine Learning Fundamentals and Applications 9 th Set of Notes

CS 559: Machine Learning Fundamentals and Applications 9 th Set of Notes 1 CS 559: Machine Learning Fundamentals and Applications 9 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

Core Mathematics 3 Functions

Core Mathematics 3 Functions http://kumarmaths.weebly.com/ Core Mathematics 3 Functions Core Maths 3 Functions Page 1 Functions C3 The specifications suggest that you should be able to do the following: Understand the definition of

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

5.5 Newton s Approximation Method

5.5 Newton s Approximation Method 498CHAPTER 5. USING DERIVATIVES TO ANALYZE FUNCTIONS; FURTHER APPLICATIONS 4 3 y = x 4 3 f(x) = x cosx y = cosx 3 3 x = cosx x cosx = 0 Figure 5.: Figure showing the existence of a solution of x = cos

More information

Homework: Study 6.1 # 1, 5, 7, 13, 25, 19; 3, 17, 27, 53

Homework: Study 6.1 # 1, 5, 7, 13, 25, 19; 3, 17, 27, 53 January, 7 Goals:. Remember that the area under a curve is the sum of the areas of an infinite number of rectangles. Understand the approach to finding the area between curves.. Be able to identify the

More information

, etc. Let s work with the last one. We can graph a few points determined by this equation.

, etc. Let s work with the last one. We can graph a few points determined by this equation. 1. Lines By a line, we simply mean a straight curve. We will always think of lines relative to the cartesian plane. Consider the equation 2x 3y 4 = 0. We can rewrite it in many different ways : 2x 3y =

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Definition 3.1 The partial derivatives of a function f(x, y) defined on an open domain containing (x, y) are denoted by f

Definition 3.1 The partial derivatives of a function f(x, y) defined on an open domain containing (x, y) are denoted by f Chapter 3 Draft October 3, 009 3. Partial Derivatives Overview: Partial derivatives are defined by differentiation in one variable, viewing all others as constant (frozen at some value). The reduction

More information

Surfaces and Integral Curves

Surfaces and Integral Curves MODULE 1: MATHEMATICAL PRELIMINARIES 16 Lecture 3 Surfaces and Integral Curves In Lecture 3, we recall some geometrical concepts that are essential for understanding the nature of solutions of partial

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

Graphing Rational Functions

Graphing Rational Functions Graphing Rational Functions Return to Table of Contents 109 Vocabulary Review x-intercept: The point where a graph intersects with the x-axis and the y-value is zero. y-intercept: The point where a graph

More information

Block-based Thiele-like blending rational interpolation

Block-based Thiele-like blending rational interpolation Journal of Computational and Applied Mathematics 195 (2006) 312 325 www.elsevier.com/locate/cam Block-based Thiele-like blending rational interpolation Qian-Jin Zhao a, Jieqing Tan b, a School of Computer

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Rafikul Alam Department of Mathematics IIT Guwahati Chain rule Theorem-A: Let x : R R n be differentiable at t 0 and f : R n R be differentiable

More information

Principles of Linear Algebra With Maple TM The Newton Raphson Method

Principles of Linear Algebra With Maple TM The Newton Raphson Method Principles of Linear Algebra With Maple TM The Newton Raphson Method Kenneth Shiskowski and Karl Frinkle c Draft date July 26, 2010 Contents 1 The Newton-Raphson Method for a Single Equation 1 1.1 The

More information

Real time Ray-Casting of Algebraic Surfaces

Real time Ray-Casting of Algebraic Surfaces Real time Ray-Casting of Algebraic Surfaces Martin Reimers Johan Seland Center of Mathematics for Applications University of Oslo Workshop on Computational Method for Algebraic Spline Surfaces Thursday

More information

This document describes how I implement the Newton method using Python and Fortran on the test function f(x) = (x 1) log 10 (x).

This document describes how I implement the Newton method using Python and Fortran on the test function f(x) = (x 1) log 10 (x). AMS 209 Foundations of Scientific Computing Homework 6 November 23, 2015 Cheng-Han Yu This document describes how I implement the Newton method using Python and Fortran on the test function f(x) = (x 1)

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 016, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics

DIGITAL TERRAIN MODELLING. Endre Katona University of Szeged Department of Informatics DIGITAL TERRAIN MODELLING Endre Katona University of Szeged Department of Informatics katona@inf.u-szeged.hu The problem: data sources data structures algorithms DTM = Digital Terrain Model Terrain function:

More information

Connected Minimal Acceleration Trigonometric Curves

Connected Minimal Acceleration Trigonometric Curves Connected Minimal Acceleration Trigonometric Curves Tony Barrera Barrera Kristiansen AB Anders Hast Creative Media Lab, University of Gävle Ewert Bengtsson Centre for Image Analysis Uppsala University

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Objective. m y 1 y = x 1 x 2

Objective. m y 1 y = x 1 x 2 Objective Use the CellSheet App to approximate the slope of a line tangent to a curve Activity 6 Introduction The Slope of the Tangent Line (Part 1) You have learned that the equation y = mx + b is a linear

More information

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle.

Sec 4.1 Coordinates and Scatter Plots. Coordinate Plane: Formed by two real number lines that intersect at a right angle. Algebra I Chapter 4 Notes Name Sec 4.1 Coordinates and Scatter Plots Coordinate Plane: Formed by two real number lines that intersect at a right angle. X-axis: The horizontal axis Y-axis: The vertical

More information

Gift Wrapping for Pretropisms

Gift Wrapping for Pretropisms Gift Wrapping for Pretropisms Jan Verschelde University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

HSC Mathematics - Extension 1. Workshop E2

HSC Mathematics - Extension 1. Workshop E2 HSC Mathematics - Extension Workshop E Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong Moss

More information

C3 Numerical methods

C3 Numerical methods Verulam School C3 Numerical methods 138 min 108 marks 1. (a) The diagram shows the curve y =. The region R, shaded in the diagram, is bounded by the curve and by the lines x = 1, x = 5 and y = 0. The region

More information

Math 126 Winter CHECK that your exam contains 8 problems.

Math 126 Winter CHECK that your exam contains 8 problems. Math 126 Winter 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 8 problems. This exam is closed book. You may use one 8 1 11 sheet of hand-written

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Chapter 3 Polynomial and Rational Functions Review sections as needed from Chapter 0, Basic Techniques, page 8. Refer to page 187 for an example of the work required on paper for all graded homework unless

More information

MATH 2650/ Intro to Scientific Computation - Fall Lab 1: Starting with MATLAB. Script Files

MATH 2650/ Intro to Scientific Computation - Fall Lab 1: Starting with MATLAB. Script Files MATH 2650/3670 - Intro to Scientific Computation - Fall 2017 Lab 1: Starting with MATLAB. Script Files Content - Overview of Course Objectives - Use of MATLAB windows; the Command Window - Arithmetic operations

More information

ORIE 6300 Mathematical Programming I November 13, Lecture 23. max b T y. x 0 s 0. s.t. A T y + s = c

ORIE 6300 Mathematical Programming I November 13, Lecture 23. max b T y. x 0 s 0. s.t. A T y + s = c ORIE 63 Mathematical Programming I November 13, 214 Lecturer: David P. Williamson Lecture 23 Scribe: Mukadder Sevi Baltaoglu 1 Interior Point Methods Consider the standard primal and dual linear programs:

More information