Calibration. Reality. Error. Measuring device. Model of Reality Fall 2001 Copyright R. H. Taylor 1999, 2001

Size: px
Start display at page:

Download "Calibration. Reality. Error. Measuring device. Model of Reality Fall 2001 Copyright R. H. Taylor 1999, 2001"

Transcription

1 Calibration Calibrate (vt) : 1. to determine the caliber of (as a thermometer tube); 2. to determine, rectify, or mark the gradations of (as a thermometer tube); 3. to standardize (as a measuring instrument) by determining the deviation from a standard so as to ascertain the proper correction factors; 4. ADJUST, TUNE

2 Calibration Reality Measuring device + - Error Model of Reality

3 Calibration Reality Actuation device + - Error Model of Reality

4 Basic Techniques Parameter Estimation Mapping the space

5 Parameter Estimation Compare observed system performance to reference standard ( ground truth ) Compute parameters of mathematical model that minimizes residual error. System Parameters + - Model of reality Reality Error Calibration process

6 Pointing device calibration p pivot p t (unknown) F = ( R, p ) i i i

7 Pointing device calibration p pivot p t (unknown) F = ( R, p ) i i i

8 Pointing device calibration p pivot p t F = ( R, p ) i i i

9 Pointing device calibration p pivot p t (unknown) Rp + p = p i t i pivot F = ( R, p ) i i i

10 Pointing device calibration p pivot p t (unknown) p t R I p p j pivot j F = ( R, p ) i i i

11 Linear Parameter Estimation p = f( q) where q= [ q,... q nom 1 n T ] are parameters * p = f( q+ q) L fi f( q) + ( q) q NM j f( q) + J ( q) q f O L QP NM q q 1 n O QP

12 Linear Parameter Estimation Given f(q), and a set of observations p k * corresponding to nominal parameter values q k *, solve the least squares problem L NM O QP L NM * f ( q ) q p f( q ) J k k k O QP

13 Example: 2 link robot calibration a 2 * p k a 1

14 Example: 2 link robot calibration a 2 * p k a 1

15 Example: 2 link robot calibration p = L NM a a sinθ + a sin( θ ) cosθ + a cos( θ ) O QP where θ = θ + θ p * = L NM ( a1+ a1)sin( θ1+ θ1) + ( a2 + a2)sin( θ12 + θ1+ θ2) 0 ( a + a cos( θ + θ ) + ( a + a ) cos( θ + θ + θ ) O QP

16 Example: 2 link robot calibration p = f( q ) = f( a, a, θ, θ ) = k k L NM a1sinθ1, k + a2sin( θ12, k) 0 a cosθ + a cos( θ ) 1 1, k 2 12, k O QP where θ = θ + θ so we solve the least squares problem L NM f a OL QP NM a1 f f f a 2 ( q ) ( q ) ( q ) ( q ) a θ θ θ 1P θ arot 1 ( y, θ 1 k ) + arot( y, θ ) * k k k k p, k , k 2 O Q L NM L M N O QP O P Q

17 Example: 2 link robot calibration Here so J f L NM ( q ) = k L NM sinθ sin θ a (cosθ + cos θ ) a cosθ , k 12, k 1 1, k 12, k 2 12, k cosθ cos θ a (sinθ + sin θ ) a cosθ 1, k 12, k 1 1, k 12, k 2 12, k a 1 sinθ, k sin θ, k a (cosθ, k + cos θ, k) a cosθ , k a cosθ, k cos θ, k a (sinθ, k + sin θ, k) a cosθ , k θ PM 1P θ OL QN 2 O Q O QP L NM x a sinθ + a sin( θ ) z a cos a cos( ) * k 1 1, k 2 12, k * k 1 θ1, k + 2 θ12, k O QP

18

19 Example: Robodoc Wrist Calibration Basic robot had very accurate calibration Custom wrist was less accurate Crucial goal was to determine position of cutter tip Cutter Calibration post

20

21 Kinematic Model p = p + R( z, θ + θ ) ( α x+ v ) tool wrist 4 4 distal v = R( x, β ) [ R( y, θ + θ )( v + v )] distal 5 5 c c

22 Linearization p p + [ R R ( v + v )] +... post wrist 4 5 c c

23 Linear Least Squares Most commonly used method for parameter estimation Many numerical libraries See the web site Here is a quick review Microsoft PowerPoint Presentation

24 Example: Undistorted fluoroscope calibration

25 Calibration if no distortion (version 1) Assume no distortion. For the moment also assume that you have N point calibration features (e.g., small steel balls) at known { } positions a0,, a N 1 relative to the detector. Assume further that the points { } create images at corresponding points d0,, d N 1 on the detector. Estimate the position s of the x-ray source relative to the detector

26 Approach F obj s Calibration object a k d k Detector

27 Projection of a point feature s s= λ(a-d)+d (a - d) (s - d) λ = (a - d) (a - d) a d d= µ ( a s) + s µ = (a - s) (d - s) (a - s) (a - s)

28 Approach s d a ( a d) ( s d) = 0 skew( a d) s = ( a d) d = a d d d = a d 0 dz az ay dy az dz 0 dx ax s = a d dy ay ax dx 0

29 Solve least squares problem Approach skew( a0 d0) sx a0 d0 s y s z skew( N 1 N 1) a d an 1 dn 1 s a d

30 What if pose of calibration object is imprecisely known? This is a hairier problem, but solvable In fact, it makes a great homework assignment.

31 Mapping the space Compare observed system performance to reference standard ( ground truth ) Interpolate residual errors System + - Model of reality Reality Error Model Correction Lookup Table

32 Example: Fluoroscope calibration

33 Projection of a point feature with distortion a s s= λ(a-d)+d (a-d) (s-d) λ = (a - d) (a - d) d u u = f( d, ν )

34

35

36 C-Arm Detector and dewarp plate Experimental Setup Robot Arm Corkscrew Phantom Surgical Cutter

37 Dewarping Method

38 Intrinsic Image Calibration Intrinsic imaging parameters (Schreiner et. al.) Image Warping (Checkerboard Based Method) 1/16 4/16 3/16 4/16 Top View Side View

39 Step 0: Acquire Image

40 Step 1: Find groove points Find image points corresponding to the centerline of each vertical and horizontal groove

41 Step 2: Fit 5 th order Bernstein Fit least square smooth curve to each vertical and horizontal groove 5 th order Bernstein Polynomial Polynomial Curves k B( a0,, a5; v) = ak ( 1 v) v k = 0 k k

42 Step 3: Dewarp Employ a two pass scan line algorithm to dewarp the image

43 Advantages Fast 2 seconds on Pentium II 400 Robust works well even with overlaid objects Sub-pixel Accuracy mean error 0.12 mm on the central area Does not completely obscure the image trades off image contrast depth for image area

44 Two Plane Method Plane 1 pattern Plane 2 pattern E.g., Lavallee E.g., Helm

45 Two Plane Method Plane 1 pattern Plane 2 pattern Given q = a point in image coordinates, determine the points f f The desired ray in space passes through and * 1 * 2 f = the point on grid 1 corresponding to = the point on grid 2 corresponding to * 2. f * 1 q q

46 Photos: Sofamor Danek

47 Interpolation Ubiquitous throughout CIS research and applications Many techniques and methods Here are a few more notes Microsoft PowerPoint Presentation

48 Two plane calibration Again, the essential problem is to determine the coordinates in the two planes at which the source-to-detector ray passes through the plane. Many methods for this. E.g., Find the four surrounding bead locations on each plane and use bilinear interpolation Fit a general spline model for the distortion on each plane and then directly interpolate

Calibration. Reality. Error. Measuring device. Model of Reality Fall 2001 Copyright R. H. Taylor 1999, 2001

Calibration. Reality. Error. Measuring device. Model of Reality Fall 2001 Copyright R. H. Taylor 1999, 2001 Calibration Calibrate (vt) : 1. to determine the caliber of (as a thermometer tube); 2. to determine, rectify, or mark the gradations of (as a thermometer tube); 3. to standardize (as a measuring instrument)

More information

Calibration of a rotating multi-beam Lidar

Calibration of a rotating multi-beam Lidar The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Calibration of a rotating multi-beam Lidar Naveed Muhammad 1,2 and Simon Lacroix 1,2 Abstract

More information

Blacksburg, VA July 24 th 30 th, 2010 Georeferencing images and scanned maps Page 1. Georeference

Blacksburg, VA July 24 th 30 th, 2010 Georeferencing images and scanned maps Page 1. Georeference George McLeod Prepared by: With support from: NSF DUE-0903270 in partnership with: Geospatial Technician Education Through Virginia s Community Colleges (GTEVCC) Georeference The process of defining how

More information

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG.

Computer Vision. Coordinates. Prof. Flávio Cardeal DECOM / CEFET- MG. Computer Vision Coordinates Prof. Flávio Cardeal DECOM / CEFET- MG cardeal@decom.cefetmg.br Abstract This lecture discusses world coordinates and homogeneous coordinates, as well as provides an overview

More information

CSCI 5980: Assignment #3 Homography

CSCI 5980: Assignment #3 Homography Submission Assignment due: Feb 23 Individual assignment. Write-up submission format: a single PDF up to 3 pages (more than 3 page assignment will be automatically returned.). Code and data. Submission

More information

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any)

Project Title: Welding Machine Monitoring System Phase II. Name of PI: Prof. Kenneth K.M. LAM (EIE) Progress / Achievement: (with photos, if any) Address: Hong Kong Polytechnic University, Phase 8, Hung Hom, Kowloon, Hong Kong. Telephone: (852) 3400 8441 Email: cnerc.steel@polyu.edu.hk Website: https://www.polyu.edu.hk/cnerc-steel/ Project Title:

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 4

GEOG 4110/5100 Advanced Remote Sensing Lecture 4 GEOG 4110/5100 Advanced Remote Sensing Lecture 4 Geometric Distortion Relevant Reading: Richards, Sections 2.11-2.17 Geometric Distortion Geometric Distortion: Errors in image geometry, (location, dimensions,

More information

Subpixel Corner Detection Using Spatial Moment 1)

Subpixel Corner Detection Using Spatial Moment 1) Vol.31, No.5 ACTA AUTOMATICA SINICA September, 25 Subpixel Corner Detection Using Spatial Moment 1) WANG She-Yang SONG Shen-Min QIANG Wen-Yi CHEN Xing-Lin (Department of Control Engineering, Harbin Institute

More information

Chapter 18. Geometric Operations

Chapter 18. Geometric Operations Chapter 18 Geometric Operations To this point, the image processing operations have computed the gray value (digital count) of the output image pixel based on the gray values of one or more input pixels;

More information

Operation Trajectory Control of Industrial Robots Based on Motion Simulation

Operation Trajectory Control of Industrial Robots Based on Motion Simulation Operation Trajectory Control of Industrial Robots Based on Motion Simulation Chengyi Xu 1,2, Ying Liu 1,*, Enzhang Jiao 1, Jian Cao 2, Yi Xiao 2 1 College of Mechanical and Electronic Engineering, Nanjing

More information

An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy

An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy An Automated Image-based Method for Multi-Leaf Collimator Positioning Verification in Intensity Modulated Radiation Therapy Chenyang Xu 1, Siemens Corporate Research, Inc., Princeton, NJ, USA Xiaolei Huang,

More information

THE ANALYTIC AND NUMERICAL DEFINITION OF THE GEOMETRY OF THE BRITISH MUSEUM GREAT COURT ROOF

THE ANALYTIC AND NUMERICAL DEFINITION OF THE GEOMETRY OF THE BRITISH MUSEUM GREAT COURT ROOF Williams, C.J.K. 2001 The analytic and numerical definition of the geometry of the British Museum Great THE ANALYTIC AND NUMERICAL DEFINITION OF THE GEOMETRY OF THE BRITISH MUSEUM GREAT COURT ROOF Chris

More information

Georeferencing & Spatial Adjustment

Georeferencing & Spatial Adjustment Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to the Real World Rotation Differential Scaling Distortion Skew Translation 1 The Problem How are geographically unregistered data, either

More information

Robust and Accurate Detection of Object Orientation and ID without Color Segmentation

Robust and Accurate Detection of Object Orientation and ID without Color Segmentation 0 Robust and Accurate Detection of Object Orientation and ID without Color Segmentation Hironobu Fujiyoshi, Tomoyuki Nagahashi and Shoichi Shimizu Chubu University Japan Open Access Database www.i-techonline.com

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Jianhua Yao National Institute of Health Bethesda, MD USA jyao@cc.nih.gov Russell Taylor The Johns

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

ENGN2911I: 3D Photography and Geometry Processing Assignment 1: 3D Photography using Planar Shadows

ENGN2911I: 3D Photography and Geometry Processing Assignment 1: 3D Photography using Planar Shadows ENGN2911I: 3D Photography and Geometry Processing Assignment 1: 3D Photography using Planar Shadows Instructor: Gabriel Taubin Assignment written by: Douglas Lanman 29 January 2009 Figure 1: 3D Photography

More information

Georeferencing & Spatial Adjustment 2/13/2018

Georeferencing & Spatial Adjustment 2/13/2018 Georeferencing & Spatial Adjustment The Problem Aligning Raster and Vector Data to the Real World How are geographically unregistered data, either raster or vector, made to align with data that exist in

More information

Optimized Design of 3D Laser Triangulation Systems

Optimized Design of 3D Laser Triangulation Systems The Scan Principle of 3D Laser Triangulation Triangulation Geometry Example of Setup Z Y X Target as seen from the Camera Sensor Image of Laser Line The Scan Principle of 3D Laser Triangulation Detektion

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

The Problem. Georeferencing & Spatial Adjustment. Nature Of The Problem: For Example: Georeferencing & Spatial Adjustment 9/20/2016

The Problem. Georeferencing & Spatial Adjustment. Nature Of The Problem: For Example: Georeferencing & Spatial Adjustment 9/20/2016 Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to the Real World The Problem How are geographically unregistered data, either raster or vector, made to align with data that exist in

More information

Robot Vision: Camera calibration

Robot Vision: Camera calibration Robot Vision: Camera calibration Ass.Prof. Friedrich Fraundorfer SS 201 1 Outline Camera calibration Cameras with lenses Properties of real lenses (distortions, focal length, field-of-view) Calibration

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) Motion Control (wheeled robots) Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> speed control,

More information

CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION

CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION In this chapter we will discuss the process of disparity computation. It plays an important role in our caricature system because all 3D coordinates of nodes

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2017/18 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

A Robust Two Feature Points Based Depth Estimation Method 1)

A Robust Two Feature Points Based Depth Estimation Method 1) Vol.31, No.5 ACTA AUTOMATICA SINICA September, 2005 A Robust Two Feature Points Based Depth Estimation Method 1) ZHONG Zhi-Guang YI Jian-Qiang ZHAO Dong-Bin (Laboratory of Complex Systems and Intelligence

More information

Creating a distortion characterisation dataset for visual band cameras using fiducial markers.

Creating a distortion characterisation dataset for visual band cameras using fiducial markers. Creating a distortion characterisation dataset for visual band cameras using fiducial markers. Robert Jermy Council for Scientific and Industrial Research Email: rjermy@csir.co.za Jason de Villiers Council

More information

Structured Light. Tobias Nöll Thanks to Marc Pollefeys, David Nister and David Lowe

Structured Light. Tobias Nöll Thanks to Marc Pollefeys, David Nister and David Lowe Structured Light Tobias Nöll tobias.noell@dfki.de Thanks to Marc Pollefeys, David Nister and David Lowe Introduction Previous lecture: Dense reconstruction Dense matching of non-feature pixels Patch-based

More information

Image warping , , Computational Photography Fall 2017, Lecture 10

Image warping , , Computational Photography Fall 2017, Lecture 10 Image warping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 10 Course announcements Second make-up lecture on Friday, October 6 th, noon-1:30

More information

CALIBRATION BETWEEN DEPTH AND COLOR SENSORS FOR COMMODITY DEPTH CAMERAS. Cha Zhang and Zhengyou Zhang

CALIBRATION BETWEEN DEPTH AND COLOR SENSORS FOR COMMODITY DEPTH CAMERAS. Cha Zhang and Zhengyou Zhang CALIBRATION BETWEEN DEPTH AND COLOR SENSORS FOR COMMODITY DEPTH CAMERAS Cha Zhang and Zhengyou Zhang Communication and Collaboration Systems Group, Microsoft Research {chazhang, zhang}@microsoft.com ABSTRACT

More information

Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They can be performed sequentially or simultaneou

Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They can be performed sequentially or simultaneou an edge image, nd line or curve segments present Given the image. in Line and Curves Detection 1 Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW Thorsten Thormählen, Hellward Broszio, Ingolf Wassermann thormae@tnt.uni-hannover.de University of Hannover, Information Technology Laboratory,

More information

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Transformations. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Transformations Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Angel: Interactive Computer Graphics 4E Addison-Wesley 25 1 Objectives

More information

The Problem. Georeferencing & Spatial Adjustment. Nature of the problem: For Example: Georeferencing & Spatial Adjustment 2/4/2014

The Problem. Georeferencing & Spatial Adjustment. Nature of the problem: For Example: Georeferencing & Spatial Adjustment 2/4/2014 Georeferencing & Spatial Adjustment Aligning Raster and Vector Data to a GIS The Problem How are geographically unregistered data, either raster or vector, made to align with data that exist in geographical

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

Calibration of a rotating multi-beam Lidar

Calibration of a rotating multi-beam Lidar Calibration of a rotating multi-beam Lidar Naveed Muhammad 1,2 and Simon Lacroix 1,2 Abstract This paper presents a technique for the calibration of multi-beam laser scanners. The technique is based on

More information

Robot Geometry and Kinematics

Robot Geometry and Kinematics CIS 68/MEAM 50 Robot Geometr and Kinematics CIS 68/MEAM 50 Outline Industrial (conventional) robot arms Basic definitions for understanding -D geometr, kinematics Eamples Classification b geometr Relationship

More information

Binocular Stereo Vision. System 6 Introduction Is there a Wedge in this 3D scene?

Binocular Stereo Vision. System 6 Introduction Is there a Wedge in this 3D scene? System 6 Introduction Is there a Wedge in this 3D scene? Binocular Stereo Vision Data a stereo pair of images! Given two 2D images of an object, how can we reconstruct 3D awareness of it? AV: 3D recognition

More information

A Simulation Study and Experimental Verification of Hand-Eye-Calibration using Monocular X-Ray

A Simulation Study and Experimental Verification of Hand-Eye-Calibration using Monocular X-Ray A Simulation Study and Experimental Verification of Hand-Eye-Calibration using Monocular X-Ray Petra Dorn, Peter Fischer,, Holger Mönnich, Philip Mewes, Muhammad Asim Khalil, Abhinav Gulhar, Andreas Maier

More information

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a).

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a). = sin( x) = 8 Lecture :Linear Approximations and Differentials Consider a point on a smooth curve y = f(x), say P = (a, f(a)), If we draw a tangent line to the curve at the point P, we can see from the

More information

University of Technology Building & Construction Department / Remote Sensing & GIS lecture

University of Technology Building & Construction Department / Remote Sensing & GIS lecture 5. Corrections 5.1 Introduction 5.2 Radiometric Correction 5.3 Geometric corrections 5.3.1 Systematic distortions 5.3.2 Nonsystematic distortions 5.4 Image Rectification 5.5 Ground Control Points (GCPs)

More information

DTU M.SC. - COURSE EXAM Revised Edition

DTU M.SC. - COURSE EXAM Revised Edition Written test, 16 th of December 1999. Course name : 04250 - Digital Image Analysis Aids allowed : All usual aids Weighting : All questions are equally weighed. Name :...................................................

More information

Concept of Curve Fitting Difference with Interpolation

Concept of Curve Fitting Difference with Interpolation Curve Fitting Content Concept of Curve Fitting Difference with Interpolation Estimation of Linear Parameters by Least Squares Curve Fitting by Polynomial Least Squares Estimation of Non-linear Parameters

More information

Intrinsic and Extrinsic Camera Parameter Estimation with Zoomable Camera for Augmented Reality

Intrinsic and Extrinsic Camera Parameter Estimation with Zoomable Camera for Augmented Reality Intrinsic and Extrinsic Camera Parameter Estimation with Zoomable Camera for Augmented Reality Kazuya Okada, Takafumi Taketomi, Goshiro Yamamoto, Jun Miyazaki, Hirokazu Kato Nara Institute of Science and

More information

Tracked surgical drill calibration

Tracked surgical drill calibration Tracked surgical drill calibration An acetabular fracture is a break in the socket portion of the "ball-and-socket" hip joint. The majority of acetabular fractures are caused by some type of highenergy

More information

Towards full-body X-ray images

Towards full-body X-ray images Towards full-body X-ray images Christoph Luckner 1,2, Thomas Mertelmeier 2, Andreas Maier 1, Ludwig Ritschl 2 1 Pattern Recognition Lab, FAU Erlangen-Nuernberg 2 Siemens Healthcare GmbH, Forchheim christoph.luckner@fau.de

More information

Volumetric Operations with Surface Margins

Volumetric Operations with Surface Margins MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Volumetric Operations with Surface Margins Christopher R. Wren Yuri A. Ivanov TR-2001-47 January 2002 Abstract Cheap cameras and fast processors

More information

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation CHAPTER 4 RAY COMPUTATION Ray computation is the second stage of the ray tracing procedure and is composed of two steps. First, the normal to the current wavefront is computed. Then the intersection of

More information

Capture and Dewarping of Page Spreads with a Handheld Compact 3D Camera

Capture and Dewarping of Page Spreads with a Handheld Compact 3D Camera Capture and Dewarping of Page Spreads with a Handheld Compact 3D Camera Michael P. Cutter University of California at Santa Cruz Baskin School of Engineering (Computer Engineering department) Santa Cruz,

More information

Restoring Warped Document Image Based on Text Line Correction

Restoring Warped Document Image Based on Text Line Correction Restoring Warped Document Image Based on Text Line Correction * Dep. of Electrical Engineering Tamkang University, New Taipei, Taiwan, R.O.C *Correspondending Author: hsieh@ee.tku.edu.tw Abstract Document

More information

3D Imaging from Video and Planar Radiography

3D Imaging from Video and Planar Radiography 3D Imaging from Video and Planar Radiography Julien Pansiot and Edmond Boyer Morpheo, Inria Grenoble Rhône-Alpes, France International Conference on Medical Image Computing and Computer Assisted Intervention

More information

Adding vectors. Let s consider some vectors to be added.

Adding vectors. Let s consider some vectors to be added. Vectors Some physical quantities have both size and direction. These physical quantities are represented with vectors. A common example of a physical quantity that is represented with a vector is a force.

More information

Grasping Known Objects with Aldebaran Nao

Grasping Known Objects with Aldebaran Nao CS365 Project Report Grasping Known Objects with Aldebaran Nao By: Ashu Gupta( ashug@iitk.ac.in) Mohd. Dawood( mdawood@iitk.ac.in) Department of Computer Science and Engineering IIT Kanpur Mentor: Prof.

More information

Rectification and Distortion Correction

Rectification and Distortion Correction Rectification and Distortion Correction Hagen Spies March 12, 2003 Computer Vision Laboratory Department of Electrical Engineering Linköping University, Sweden Contents Distortion Correction Rectification

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5)

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5) Announcements Stereo Project 2 due today Project 3 out today Single image stereogram, by Niklas Een Readings Szeliski, Chapter 10 (through 10.5) Public Library, Stereoscopic Looking Room, Chicago, by Phillips,

More information

Midterm Exam Solutions

Midterm Exam Solutions Midterm Exam Solutions Computer Vision (J. Košecká) October 27, 2009 HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions, etc., with other fellow

More information

Introduction to Homogeneous coordinates

Introduction to Homogeneous coordinates Last class we considered smooth translations and rotations of the camera coordinate system and the resulting motions of points in the image projection plane. These two transformations were expressed mathematically

More information

Computer Vision I - Appearance-based Matching and Projective Geometry

Computer Vision I - Appearance-based Matching and Projective Geometry Computer Vision I - Appearance-based Matching and Projective Geometry Carsten Rother 05/11/2015 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation

More information

3D Guide Wire Navigation from Single Plane Fluoroscopic Images in Abdominal Catheterizations

3D Guide Wire Navigation from Single Plane Fluoroscopic Images in Abdominal Catheterizations 3D Guide Wire Navigation from Single Plane Fluoroscopic Images in Abdominal Catheterizations Martin Groher 2, Frederik Bender 1, Ali Khamene 3, Wolfgang Wein 3, Tim Hauke Heibel 2, Nassir Navab 2 1 Siemens

More information

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Visual Odometry. Features, Tracking, Essential Matrix, and RANSAC. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Visual Odometry Features, Tracking, Essential Matrix, and RANSAC Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline The

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

Stereo imaging ideal geometry

Stereo imaging ideal geometry Stereo imaging ideal geometry (X,Y,Z) Z f (x L,y L ) f (x R,y R ) Optical axes are parallel Optical axes separated by baseline, b. Line connecting lens centers is perpendicular to the optical axis, and

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

CSE 490R P3 - Model Learning and MPPI Due date: Sunday, Feb 28-11:59 PM

CSE 490R P3 - Model Learning and MPPI Due date: Sunday, Feb 28-11:59 PM CSE 490R P3 - Model Learning and MPPI Due date: Sunday, Feb 28-11:59 PM 1 Introduction In this homework, we revisit the concept of local control for robot navigation, as well as integrate our local controller

More information

3-D D Euclidean Space - Vectors

3-D D Euclidean Space - Vectors 3-D D Euclidean Space - Vectors Rigid Body Motion and Image Formation A free vector is defined by a pair of points : Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Coordinates of the vector : 3D Rotation

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

Improving Vision-Based Distance Measurements using Reference Objects

Improving Vision-Based Distance Measurements using Reference Objects Improving Vision-Based Distance Measurements using Reference Objects Matthias Jüngel, Heinrich Mellmann, and Michael Spranger Humboldt-Universität zu Berlin, Künstliche Intelligenz Unter den Linden 6,

More information

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration

EECS 4330/7330 Introduction to Mechatronics and Robotic Vision, Fall Lab 1. Camera Calibration 1 Lab 1 Camera Calibration Objective In this experiment, students will use stereo cameras, an image acquisition program and camera calibration algorithms to achieve the following goals: 1. Develop a procedure

More information

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin.

More Mosaic Madness. CS194: Image Manipulation & Computational Photography. Steve Seitz and Rick Szeliski. Jeffrey Martin (jeffrey-martin. More Mosaic Madness Jeffrey Martin (jeffrey-martin.com) CS194: Image Manipulation & Computational Photography with a lot of slides stolen from Alexei Efros, UC Berkeley, Fall 2018 Steve Seitz and Rick

More information

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D.

Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Multi-slice CT Image Reconstruction Jiang Hsieh, Ph.D. Applied Science Laboratory, GE Healthcare Technologies 1 Image Generation Reconstruction of images from projections. textbook reconstruction advanced

More information

Thickness of the standard piece: 10 mm The most important calibration data are engraved in the side face of the specimen.

Thickness of the standard piece: 10 mm The most important calibration data are engraved in the side face of the specimen. Rk standard The surface of this standard is made up of turned grooves (average curve radius approx. 150 mm). The surface consists of a hardened nickel coating (> 900HV1) on a base body made from brass.

More information

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures)

COS429: COMPUTER VISON CAMERAS AND PROJECTIONS (2 lectures) COS429: COMPUTER VISON CMERS ND PROJECTIONS (2 lectures) Pinhole cameras Camera with lenses Sensing nalytical Euclidean geometry The intrinsic parameters of a camera The extrinsic parameters of a camera

More information

Outline. ETN-FPI Training School on Plenoptic Sensing

Outline. ETN-FPI Training School on Plenoptic Sensing Outline Introduction Part I: Basics of Mathematical Optimization Linear Least Squares Nonlinear Optimization Part II: Basics of Computer Vision Camera Model Multi-Camera Model Multi-Camera Calibration

More information

Multi-view Surface Inspection Using a Rotating Table

Multi-view Surface Inspection Using a Rotating Table https://doi.org/10.2352/issn.2470-1173.2018.09.iriacv-278 2018, Society for Imaging Science and Technology Multi-view Surface Inspection Using a Rotating Table Tomoya Kaichi, Shohei Mori, Hideo Saito,

More information

Homework Assignment /645 Fall Instructions and Score Sheet (hand in with answers)

Homework Assignment /645 Fall Instructions and Score Sheet (hand in with answers) Homework Assignment 3 600.445/645 Fall 2018 Instructions and Score Sheet (hand in with answers) Name Email Other contact information (optional) Signature (required) I have followed the rules in completing

More information

A Tool for Kinematic Error Analysis of Robots/Active Vision Systems

A Tool for Kinematic Error Analysis of Robots/Active Vision Systems A Tool for Kinematic Error Analysis of Robots/Active Vision Systems Kanglin Xu and George F. Luger Department of Computer Science University of New Mexico Albuquerque, NM 87131 {klxu,luger}@cs.unm.edu

More information

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography

Today. Stereo (two view) reconstruction. Multiview geometry. Today. Multiview geometry. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 2009 Today From 2D to 3D using multiple views Introduction Geometry of two views Stereo matching Other applications Multiview geometry

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Self-Calibration of a Camera Equipped SCORBOT ER-4u Robot

Self-Calibration of a Camera Equipped SCORBOT ER-4u Robot Self-Calibration of a Camera Equipped SCORBOT ER-4u Robot Gossaye Mekonnen Alemu and Sanjeev Kumar Department of Mathematics IIT Roorkee Roorkee-247 667, India gossayemekonnen@gmail.com malikfma@iitr.ac.in

More information

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University

2D Image Transforms Computer Vision (Kris Kitani) Carnegie Mellon University 2D Image Transforms 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Extract features from an image what do we do next? Feature matching (object recognition, 3D reconstruction, augmented

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

Computer Vision Projective Geometry and Calibration. Pinhole cameras

Computer Vision Projective Geometry and Calibration. Pinhole cameras Computer Vision Projective Geometry and Calibration Professor Hager http://www.cs.jhu.edu/~hager Jason Corso http://www.cs.jhu.edu/~jcorso. Pinhole cameras Abstract camera model - box with a small hole

More information

GBT Commissioning Memo 11: Plate Scale and pointing effects of subreflector positioning at 2 GHz.

GBT Commissioning Memo 11: Plate Scale and pointing effects of subreflector positioning at 2 GHz. GBT Commissioning Memo 11: Plate Scale and pointing effects of subreflector positioning at 2 GHz. Keywords: low frequency Gregorian, plate scale, focus tracking, pointing. N. VanWey, F. Ghigo, R. Maddalena,

More information

EMRP JRP IND62 TIM: Use of on-board metrology systems for area-scanning on machine tools

EMRP JRP IND62 TIM: Use of on-board metrology systems for area-scanning on machine tools EMRP JRP IND62 TIM: Use of on-board metrology systems for area-scanning on machine tools Author: Co-authors: doc. Ing. Vít Zelený, CSc. doc. Ing. Ivana Linkeová, Ph.D. Ing. Jakub Sýkora Pavel Skalník Jaromír

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Robotic Arm Motion for Verifying Signatures

Robotic Arm Motion for Verifying Signatures Robotic Arm Motion for Verifying Signatures Moises Diaz 1 Miguel A. Ferrer 2 Jose J. Quintana 2 1 Universidad del Atlantico Medio, Spain 2 Instituto para el Desarrollo Tecnológico y la Innovación en Comunicaciones

More information

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16

Computer Vision I. Dense Stereo Correspondences. Anita Sellent 1/15/16 Computer Vision I Dense Stereo Correspondences Anita Sellent Stereo Two Cameras Overlapping field of view Known transformation between cameras From disparity compute depth [ Bradski, Kaehler: Learning

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

Information page for written examinations at Linköping University TER2

Information page for written examinations at Linköping University TER2 Information page for written examinations at Linköping University Examination date 2016-08-19 Room (1) TER2 Time 8-12 Course code Exam code Course name Exam name Department Number of questions in the examination

More information

Interpolation by Spline Functions

Interpolation by Spline Functions Interpolation by Spline Functions Com S 477/577 Sep 0 007 High-degree polynomials tend to have large oscillations which are not the characteristics of the original data. To yield smooth interpolating curves

More information

Camera calibration for miniature, low-cost, wide-angle imaging systems

Camera calibration for miniature, low-cost, wide-angle imaging systems Camera calibration for miniature, low-cost, wide-angle imaging systems Oliver Frank, Roman Katz, Christel-Loic Tisse and Hugh Durrant-Whyte ARC Centre of Excellence for Autonomous Systems University of

More information

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration

Camera Calibration. Schedule. Jesus J Caban. Note: You have until next Monday to let me know. ! Today:! Camera calibration Camera Calibration Jesus J Caban Schedule! Today:! Camera calibration! Wednesday:! Lecture: Motion & Optical Flow! Monday:! Lecture: Medical Imaging! Final presentations:! Nov 29 th : W. Griffin! Dec 1

More information

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1 F1 The ray approximation in optics assumes that light travels from one point to another along a narrow path called a ray that may be represented by a directed line (i.e. a line with an arrow on it). In

More information