2.3 Optimal paths. Optimal (shortest or longest) paths have a wide range of applications:

Size: px
Start display at page:

Download "2.3 Optimal paths. Optimal (shortest or longest) paths have a wide range of applications:"

Transcription

1 . Optimal paths Optimal (shortest or longest) paths have a wide range of applications: Google maps, GPS navigators planning and management of transportation, electrical and telecommunication networks project planning VLSI design subproblems of more complex problems... E. Amaldi Foundations of Operations Research Politecnico di Milano

2 .. Shortest path problem Problem Given a directed graph G = (N, A) with a cost c ij for each arc (i, j) A, and two nodes s and t, determine a minimum cost (shortest) path from s to t. s is the origin s t 5 t is the destination c ij represents the cost (length, travel time, ) of arc (i, j) A E. Amaldi Foundations of Operations Research Politecnico di Milano

3 .. Dijkstra s algorithm Assumption c ij 0 (i, j) A Edsger Dijkstra (90-00) Definition: A path (i, i ), (i, i ),, (i k-, i k ) is simple if i u i v for all u v (a node is visited at most once) i i k i Property: If c ij 0 for all (i, j) A, every shortest path is simple. E. Amaldi Foundations of Operations Research Politecnico di Milano

4 input G = (N, A) with n = N and m = A, a node s N, c ij 0 (i, j) A with c ij = + if (i, j) A output Shortest paths from s to all other nodes of G s t 5 E. Amaldi Foundations of Operations Research Politecnico di Milano

5 Idea: Consider the nodes in order of increasing cost of the shortest path from s to any one of the other nodes. To each node j N, we assign a label L[j] which corresponds, at the end of the algorithm, to the cost of a minimum cost path from s to j. # 0 Greedy w.r.t. paths from s to j! 0 s # 6 8 # # # t # 5 E. Amaldi Foundations of Operations Research Politecnico di Milano 5

6 Example s t Two labels associated with each node j in S: [ L[j], pred[j] ] where L[j] = cost of a shortest path from s to j, pred[j] = predecessor of j in the shortest path from s to j [ 0, ] + ( S ) S * 0 + < 0 + [, ] s S E. Amaldi Foundations of Operations Research Politecnico di Milano 6

7 S * [ 0, ] [, ] 0 + < + [, ] 0 + < ( S ) 8 5 S [ 0, ] [, ] + ( S ) [, ] 0 + < + 0 * 5 [ 6, ] [ 0, ] S 0 + ( S ) [, ] [, ] 5 E. Amaldi Foundations of Operations Research Politecnico di Milano 7 [ 6, ] * [ 8, 5 ] 6 + < + 0

8 [ 0, ] [, ] 0 + ( S ) * [ 8, 5 ] S [, ] [ 6, ] 5 S [, ] [ 8, 5 ] + ( S ) [ 0, ] * 6 [, ] [ 6, ] [, ] E. Amaldi Foundations of Operations Research Politecnico di Milano 8 5

9 A set of shortest path from s to every other node j can be retrieved backwards: pred[j], pred[ pred [j] ],..., s [ 0, ] s [, ] 6 8 [, ] [ 8, 5 ] 6 [ 6, ] t [, ] j= t resulting path from s to t resulting path from s to node E. Amaldi Foundations of Operations Research Politecnico di Milano 9

10 Dijkstra s algorithm Data structure S N subset of nodes whose labels are final L[ j] =... cost of a shortest path from s to j, j S min{ L[i] + c ij : (i, j) + (S) }, j S E. Amaldi Foundations of Operations Research Politecnico di Milano 0

11 s v L[v]= h c vh = L[h] + ( S ) i S c ij = L[i]=5 L[j] j Given a directed graph G and the current subset of nodes S N, consider the outgoing cut + (S) and select (v,h) + (S) such that: L[v] + c vh = min { L[i] + c ij : (i, j) + (S) } thus L[v] + c vh L[i] + c ij (i,j) + (S) E. Amaldi Foundations of Operations Research Politecnico di Milano

12 pred[ j] = predecessor of j in the shortest path from s to j j S v such that L[v]+c vj = min {L[i] + c ij : i S} j S with c ij = if (i,j) A s L[i]=5 i c ij = j v c vj = L[v]= L[ j]=5 pred[ j]=v S + (S) E. Amaldi Foundations of Operations Research Politecnico di Milano

13 Pseudocode of Dijkstra s algorithm input output G = (N, A), n = N, m = A, s N, c ij 0 (i, j) A Shortest paths from s to all the other nodes BEGIN END S := {s}; L[s] := 0; pred[s] := s; WHILE S n DO Select (v,h) + (S) ={ (i,j) : (i,j)a, is, js} such that L[v] + c vh = min { L[i] + c ij : (i,j) + (S) }; L[h] := L[v] + c vh ; pred[h] := v; S:=S {h}; END-WHILE outgoing cut induced by S N.B.: If + (S)=, the algorithm ends: no h N \ S is reachable from s E. Amaldi Foundations of Operations Research Politecnico di Milano

14 Complexity Depends on how, at each iteration, the arc (v,h) is selected among those of the current outgoing cut + (S). If all m arcs are scanned and those that do not belong to + (S) are discarded, the overall complexity would be O(nm), hence O(n )for dense graphs. If all labels L[j] are determined by appropriate updates ( Prim s algorithm), we need to consider a single arc of + (S) for each node js overall complexity O(n ). E. Amaldi Foundations of Operations Research Politecnico di Milano

15 Proposition: Dijkstra s algorithm is exact. Proof At k-th step: S = {s, i,..., i k } and L[ j ] = cost of a minimum cost path from s to j, j S cost of a minimum cost path with all intermediate nodes in S j S By induction on the number k of steps : inductive basis : it is true for k = since S = {s}, L[s] = 0 and L[ j] = c sj j s. inductive step : if it is true at the k-th step, it is also true at the (k+)-th step. E. Amaldi Foundations of Operations Research Politecnico di Milano 5

16 (k+)-th step: Let h S be the node that is inserted in S and the path from s to h such that: L[v] + c vh L[i] + c ij (i, j) + (S). Let us verify that every path from s to h has c() c(). s S v L[v] i j h There exist is and js such that = (i, j) where (i, j) is the first arc + (S). by choice of (v,h) c() = c( ) + c ij + c( ) L[i] + c ij L[v] + c vh = c(). c( ) L[ i ]: by induction assumption c( ) 0 because c ij 0 E. Amaldi Foundations of Operations Research Politecnico di Milano 6

17 A set of shortest paths from s to all the nodes j can be retrieved via the vector of predecessors. [, ] [ 8, 5 ] [ 0, ] s t [, ] 5 [, ] [ 6, ] E. Amaldi Foundations of Operations Research Politecnico di Milano 7

18 Remarks ) Taking the union of a set of shortest paths from node s to all the other nodes of G, we obtain an arborescence rooted at s. s t 5 Such arborescences, which are referred to as shortest path trees, have nothing to do with minimum cost spanning trees! E. Amaldi Foundations of Operations Research Politecnico di Milano 8

19 ) Dijkstra s algorithm is not applicable when there are arcs with negative cost c ij. Example Dijkstra s algorithm yields the path (,),(,) of cost, - but path (,),(,),(,) has cost. Due to c < 0 the last step in the exactness proof fails! The minimum cost from to is not updated after the first step. According to a greedy choice on the arcs in + ({}), it is taken as c which is locally optimal (c < c ) even though the path (,),(,) has a strictly smaller cost because c < 0. E. Amaldi Foundations of Operations Research Politecnico di Milano 9

20 Exercise Determine the shortest paths form node 0 to all the other nodes of the following graph: E. Amaldi Foundations of Operations Research Politecnico di Milano 0

21 .. Shortest path problem with negative costs Observation: If the graph G contains a circuit of negative cost, the shortest path problem may not be well-defined. Example s t -6 circuit s cost: - Each time we go through the circuit, the cost decreases. There is no finite shortest path from s to t. E. Amaldi Foundations of Operations Research Politecnico di Milano

22 Floyd-Warshall s algorithm allows to detect the presence of circuits with negative cost, and hence identify the cases in which the problem is ill-defined. It provides a set of shortest paths between all pairs of nodes, even when there are arcs with negative cost. It is based on iteratively applying a triangular operation described below. E. Amaldi Foundations of Operations Research Politecnico di Milano

23 Floyd-Warshall s algorithm input output Directed graph G = (N, A) described via the n x n cost matrix C = [c ij ]. For each pair of nodes i, j N, the cost d ij of shortest path from i to j. Data structure: two n x n matrices D and P whose elements correspond, at the end of the algorithm, to d ij = cost of a shortest path from i to j p ij = predecessor of j in shortest path from i to j E. Amaldi Foundations of Operations Research Politecnico di Milano

24 Example D P For (i, j) A set d ij = c ij, for loops d ii = 0, and for (i, j) A set d ij =. The matrix of predecessors is initialized with p ij = i, for all i. E. Amaldi Foundations of Operations Research Politecnico di Milano Notation: from to, from to

25 Triangular operation with respect to node h: d ih h d hj j i d ij For each pair of nodes i, j, with i h and j h (including case i=j), check whether when going from i to j it is more convenient to go via h : d ih + d hj < d ij Cycle h= : Since there are no such arcs, the matrices D and P remain unchanged E. Amaldi Foundations of Operations Research Politecnico di Milano 5

26 Cycle for h= skip i = and j = D P = d < d +d = + = no update 6 = d < d +d = + = no update -0 = d < d +d = + = no update 8 = d < d +d = + = no update 0 = d < d +d = + = no update = d < d +d = + = no update = d < d +d = + = no update 9 = d < d +d = + = no update 0 = d < d +d = + = no update E. Amaldi Foundations of Operations Research Politecnico di Milano 6

27 Cycle for h= skip i = and j = D P HALT! 0 = d < d +d = + = no update = d < d +d = + 6 = 9 no update = d > d +d = - 0 = -7 p := p = = d = d +d = 8 + = no update 0 = d < d +d = = no update = d > d +d = 8-0 = - p := p = = d < d +d = + = 9 = d > d +d = + 6 = 7 0 = d > d +d = - 0 = -9 no update p := p = negative cost cycle found! E. Amaldi Foundations of Operations Research Politecnico di Milano 7

28 Pseudocode of Floyd-Warshall s algorithm BEGIN FOR i:= TO n DO FOR j:= TO n DO p ij := i; END-FOR END-FOR FOR h:= TO n DO /* triangular operation w.r.t. h */ FOR i:= TO n WITH i h DO FOR j:= TO n WITH j h DO IF (d ih + d hj < d ij ) THEN Triangular operation: d ij = d ih + d hj ; Update d ij if it is convenient in p ij := p hj ; terms of cost to reach j from i END-IF via h END-FOR END-FOR FOR i:= TO n DO IF d ii < 0 THEN STOP; END-IF /* a circuit with negative cost*/ END-FOR END-FOR END E. Amaldi Foundations of Operations Research Politecnico di Milano 8

29 Proposition: Floyd-Warshall s algorithm is exact. Proof s idea: Assume the nodes of G are numbered from to n. Just verify that, if the node index order is followed, after the h-th cycle the value d ij for any i and j corresponds to the cost of a shortest path from i to j with only intermediate nodes in {,, h}. Complexity Since in the worst case the triangular operation is executed for all nodes h and for each pair of nodes i and j, the overall complexity is O(n ). E. Amaldi Foundations of Operations Research Politecnico di Milano 9

30 Exercise Find the shortest paths between every pair of nodes of the following graph: E. Amaldi Foundations of Operations Research Politecnico di Milano 0

2.3 Optimal paths. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

2.3 Optimal paths. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 . Optimal paths E. Amaldi Foundations of Operations Research Politecnico di Milano Optimal (minimum or maximum) paths have a wide range of applications: Google maps, GPS navigators planning and management

More information

2.2 Optimal cost spanning trees

2.2 Optimal cost spanning trees . Optimal cost spanning trees Spanning trees have a number of applications: network design (communication, electrical,...) IP network protocols compact memory storage (DNA)... E. Amaldi Foundations of

More information

2.3.4 Optimal paths in directed acyclic graphs

2.3.4 Optimal paths in directed acyclic graphs .3.4 Optimal paths in directed acyclic graphs Definition: A directed graph G = (N, A) is acyclic if it contains no circuits. A directed acyclic graph is referred to as DAG. circuit Problem Given a directed

More information

2.8 An application of Dynamic Programming to machine renewal

2.8 An application of Dynamic Programming to machine renewal ex-.6-. Foundations of Operations Research Prof. E. Amaldi.6 Shortest paths with nonnegative costs Given the following directed graph, find a set of shortest paths from node to all the other nodes, using

More information

Lecture 18 Solving Shortest Path Problem: Dijkstra s Algorithm. October 23, 2009

Lecture 18 Solving Shortest Path Problem: Dijkstra s Algorithm. October 23, 2009 Solving Shortest Path Problem: Dijkstra s Algorithm October 23, 2009 Outline Lecture 18 Focus on Dijkstra s Algorithm Importance: Where it has been used? Algorithm s general description Algorithm steps

More information

Analysis of Algorithms, I

Analysis of Algorithms, I Analysis of Algorithms, I CSOR W4231.002 Eleni Drinea Computer Science Department Columbia University Thursday, March 8, 2016 Outline 1 Recap Single-source shortest paths in graphs with real edge weights:

More information

Chalmers University of Technology. Network Models. April 11, Birgit Grohe

Chalmers University of Technology. Network Models. April 11, Birgit Grohe Chalmers University of Technology Applied Optimisation lp 4 VT08 Network Models April 11, 2008 Birgit Grohe Network Models - Examples Many different problems can be formulated as graph/network models:

More information

Network Models - Examples. Network Models. Definition and Terminology. The Minimum Spanning Tree (MST) Problem

Network Models - Examples. Network Models. Definition and Terminology. The Minimum Spanning Tree (MST) Problem Chalmers University of Technology Applied Optimisa- Network Models - Examples tion lp 4 VT08 Network Models April 11, 2008 Birgit Grohe Many different problems can be formulated as graph/network models:

More information

Shortest path problems

Shortest path problems Next... Shortest path problems Single-source shortest paths in weighted graphs Shortest-Path Problems Properties of Shortest Paths, Relaxation Dijkstra s Algorithm Bellman-Ford Algorithm Shortest-Paths

More information

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms Professor Henry Carter Fall 2016 Recap Space-time tradeoffs allow for faster algorithms at the cost of space complexity

More information

Lecture 11: Analysis of Algorithms (CS ) 1

Lecture 11: Analysis of Algorithms (CS ) 1 Lecture 11: Analysis of Algorithms (CS583-002) 1 Amarda Shehu November 12, 2014 1 Some material adapted from Kevin Wayne s Algorithm Class @ Princeton 1 2 Dynamic Programming Approach Floyd-Warshall Shortest

More information

The Shortest Path Problem. The Shortest Path Problem. Mathematical Model. Integer Programming Formulation

The Shortest Path Problem. The Shortest Path Problem. Mathematical Model. Integer Programming Formulation The Shortest Path Problem jla,jc@imm.dtu.dk Department of Management Engineering Technical University of Denmark The Shortest Path Problem Given a directed network G = (V,E,w) for which the underlying

More information

Review of course COMP-251B winter 2010

Review of course COMP-251B winter 2010 Review of course COMP-251B winter 2010 Lecture 1. Book Section 15.2 : Chained matrix product Matrix product is associative Computing all possible ways of parenthesizing Recursive solution Worst-case running-time

More information

Shortest Paths. March 21, CTU in Prague. Z. Hanzálek (CTU) Shortest Paths March 21, / 44

Shortest Paths. March 21, CTU in Prague. Z. Hanzálek (CTU) Shortest Paths March 21, / 44 Shortest Paths Zdeněk Hanzálek hanzalek@fel.cvut.cz CTU in Prague March 21, 2017 Z. Hanzálek (CTU) Shortest Paths March 21, 2017 1 / 44 Table of contents 1 Introduction Problem Statement Negative Weights

More information

CS420/520 Algorithm Analysis Spring 2009 Lecture 14

CS420/520 Algorithm Analysis Spring 2009 Lecture 14 CS420/520 Algorithm Analysis Spring 2009 Lecture 14 "A Computational Analysis of Alternative Algorithms for Labeling Techniques for Finding Shortest Path Trees", Dial, Glover, Karney, and Klingman, Networks

More information

The Shortest Path Problem

The Shortest Path Problem The Shortest Path Problem 1 Shortest-Path Algorithms Find the shortest path from point A to point B Shortest in time, distance, cost, Numerous applications Map navigation Flight itineraries Circuit wiring

More information

CIS 121 Data Structures and Algorithms Minimum Spanning Trees

CIS 121 Data Structures and Algorithms Minimum Spanning Trees CIS 121 Data Structures and Algorithms Minimum Spanning Trees March 19, 2019 Introduction and Background Consider a very natural problem: we are given a set of locations V = {v 1, v 2,..., v n }. We want

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Week 11: Minimum Spanning trees

Week 11: Minimum Spanning trees Week 11: Minimum Spanning trees Agenda: Minimum Spanning Trees Prim s Algorithm Reading: Textbook : 61-7 1 Week 11: Minimum Spanning trees Minimum spanning tree (MST) problem: Input: edge-weighted (simple,

More information

Lecture 6 Basic Graph Algorithms

Lecture 6 Basic Graph Algorithms CS 491 CAP Intro to Competitive Algorithmic Programming Lecture 6 Basic Graph Algorithms Uttam Thakore University of Illinois at Urbana-Champaign September 30, 2015 Updates ICPC Regionals teams will be

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis TOM 50: Networking Theory & undamentals Lecture pril 6, 2003 Prof. Yannis. Korilis 2 Topics Routing in ata Network Graph Representation of a Network Undirected Graphs Spanning Trees and Minimum Weight

More information

Lecture 19. Broadcast routing

Lecture 19. Broadcast routing Lecture 9 Broadcast routing Slide Broadcast Routing Route a packet from a source to all nodes in the network Possible solutions: Flooding: Each node sends packet on all outgoing links Discard packets received

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Shortest paths in weighted graphs (Bellman-Ford, Floyd-Warshall) Outline 1 Shortest paths in graphs with

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

Routing. Information Networks p.1/35

Routing. Information Networks p.1/35 Routing Routing is done by the network layer protocol to guide packets through the communication subnet to their destinations The time when routing decisions are made depends on whether we are using virtual

More information

7.3 Spanning trees Spanning trees [ ] 61

7.3 Spanning trees Spanning trees [ ] 61 7.3. Spanning trees [161211-1348 ] 61 7.3 Spanning trees We know that trees are connected graphs with the minimal number of edges. Hence trees become very useful in applications where our goal is to connect

More information

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20.

Title. Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis. Nesrine Damak. Fakultät für Informatik TU München. 20. Title Ferienakademie im Sarntal Course 2 Distance Problems: Theory and Praxis Nesrine Damak Fakultät für Informatik TU München 20. September 2010 Nesrine Damak: Classical Shortest-Path Algorithms 1/ 35

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

Graphs and Network Flows ISE 411. Lecture 7. Dr. Ted Ralphs

Graphs and Network Flows ISE 411. Lecture 7. Dr. Ted Ralphs Graphs and Network Flows ISE 411 Lecture 7 Dr. Ted Ralphs ISE 411 Lecture 7 1 References for Today s Lecture Required reading Chapter 20 References AMO Chapter 13 CLRS Chapter 23 ISE 411 Lecture 7 2 Minimum

More information

Dijkstra s Algorithm. Dijkstra s algorithm is a natural, greedy approach towards

Dijkstra s Algorithm. Dijkstra s algorithm is a natural, greedy approach towards CPSC-320: Intermediate Algorithm Design and Analysis 128 CPSC-320: Intermediate Algorithm Design and Analysis 129 Dijkstra s Algorithm Dijkstra s algorithm is a natural, greedy approach towards solving

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Communication Speeds in a Computer Network Find fastest way to route a data packet between two computers 6 Kbps 4 0 Mbps 6 6 Kbps 6 Kbps Gbps 00 Mbps 8 6 Kbps

More information

D. Θ nlogn ( ) D. Ο. ). Which of the following is not necessarily true? . Which of the following cannot be shown as an improvement? D.

D. Θ nlogn ( ) D. Ο. ). Which of the following is not necessarily true? . Which of the following cannot be shown as an improvement? D. CSE 0 Name Test Fall 00 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to convert an array, with priorities stored at subscripts through n,

More information

Model Answer. Section A Q.1 - (20 1=10) B.Tech. (Fifth Semester) Examination Analysis and Design of Algorithm (IT3105N) (Information Technology)

Model Answer. Section A Q.1 - (20 1=10) B.Tech. (Fifth Semester) Examination Analysis and Design of Algorithm (IT3105N) (Information Technology) B.Tech. (Fifth Semester) Examination 2013 Analysis and Design of Algorithm (IT3105N) (Information Technology) Model Answer. Section A Q.1 - (20 1=10) 1. Merge Sort uses approach to algorithm design. Ans:

More information

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019 CS 341: Algorithms Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo February 26, 2019 D.R. Stinson (SCS) CS 341 February 26, 2019 1 / 296 1 Course Information 2 Introduction

More information

Communication Networks I December 4, 2001 Agenda Graph theory notation Trees Shortest path algorithms Distributed, asynchronous algorithms Page 1

Communication Networks I December 4, 2001 Agenda Graph theory notation Trees Shortest path algorithms Distributed, asynchronous algorithms Page 1 Communication Networks I December, Agenda Graph theory notation Trees Shortest path algorithms Distributed, asynchronous algorithms Page Communication Networks I December, Notation G = (V,E) denotes a

More information

END-TERM EXAMINATION

END-TERM EXAMINATION (Please Write your Exam Roll No. immediately) Exam. Roll No... END-TERM EXAMINATION Paper Code : MCA-205 DECEMBER 2006 Subject: Design and analysis of algorithm Time: 3 Hours Maximum Marks: 60 Note: Attempt

More information

Shortest Paths. Nishant Mehta Lectures 10 and 11

Shortest Paths. Nishant Mehta Lectures 10 and 11 Shortest Paths Nishant Mehta Lectures 0 and Finding the Fastest Way to Travel between Two Intersections in Vancouver Granville St and W Hastings St Homer St and W Hastings St 6 Granville St and W Pender

More information

Classic Graph Theory Problems

Classic Graph Theory Problems Classic Graph Theory Problems Hiroki Sayama sayama@binghamton.edu The Origin Königsberg bridge problem Pregel River (Solved negatively by Euler in 176) Representation in a graph Can all the seven edges

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spanning Trees Problem A town has a set of houses and a set of roads. A road connects 2 and only 2 houses. A road connecting houses u and v has a repair cost w(u, v). Goal: Repair enough (and no

More information

Dynamic Programming: 1D Optimization. Dynamic Programming: 2D Optimization. Fibonacci Sequence. Crazy 8 s. Edit Distance

Dynamic Programming: 1D Optimization. Dynamic Programming: 2D Optimization. Fibonacci Sequence. Crazy 8 s. Edit Distance Dynamic Programming: 1D Optimization Fibonacci Sequence To efficiently calculate F [x], the xth element of the Fibonacci sequence, we can construct the array F from left to right (or bottom up ). We start

More information

MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati

MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati MA 252: Data Structures and Algorithms Lecture 36 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati The All-Pairs Shortest Paths Problem

More information

LECTURES 3 and 4: Flows and Matchings

LECTURES 3 and 4: Flows and Matchings LECTURES 3 and 4: Flows and Matchings 1 Max Flow MAX FLOW (SP). Instance: Directed graph N = (V,A), two nodes s,t V, and capacities on the arcs c : A R +. A flow is a set of numbers on the arcs such that

More information

Single Source Shortest Path (SSSP) Problem

Single Source Shortest Path (SSSP) Problem Single Source Shortest Path (SSSP) Problem Single Source Shortest Path Problem Input: A directed graph G = (V, E); an edge weight function w : E R, and a start vertex s V. Find: for each vertex u V, δ(s,

More information

CS 6783 (Applied Algorithms) Lecture 5

CS 6783 (Applied Algorithms) Lecture 5 CS 6783 (Applied Algorithms) Lecture 5 Antonina Kolokolova January 19, 2012 1 Minimum Spanning Trees An undirected graph G is a pair (V, E); V is a set (of vertices or nodes); E is a set of (undirected)

More information

Week 12: Minimum Spanning trees and Shortest Paths

Week 12: Minimum Spanning trees and Shortest Paths Agenda: Week 12: Minimum Spanning trees and Shortest Paths Kruskal s Algorithm Single-source shortest paths Dijkstra s algorithm for non-negatively weighted case Reading: Textbook : 61-7, 80-87, 9-601

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Graphs : Shortest Paths Marius Kloft Content of this Lecture Single-Source-Shortest-Paths: Dijkstra s Algorithm Single-Source-Single-Target All-Pairs Shortest Paths Transitive

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 6 based on Juraj Stacho s lecture notes ad the

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

Shortest Path Problem

Shortest Path Problem Shortest Path Problem CLRS Chapters 24.1 3, 24.5, 25.2 Shortest path problem Shortest path problem (and variants) Properties of shortest paths Algorithmic framework Bellman-Ford algorithm Shortest paths

More information

Single Source Shortest Path

Single Source Shortest Path Single Source Shortest Path A directed graph G = (V, E) and a pair of nodes s, d is given. The edges have a real-valued weight W i. This time we are looking for the weight and the shortest path from s

More information

Sources for this lecture 2. Shortest paths and minimum spanning trees

Sources for this lecture 2. Shortest paths and minimum spanning trees S-72.2420 / T-79.5203 Shortest paths and minimum spanning trees 1 S-72.2420 / T-79.5203 Shortest paths and minimum spanning trees 3 Sources for this lecture 2. Shortest paths and minimum spanning trees

More information

( ) + n. ( ) = n "1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1

( ) + n. ( ) = n 1) + n. ( ) = T n 2. ( ) = 2T n 2. ( ) = T( n 2 ) +1 CSE 0 Name Test Summer 00 Last Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose you are sorting millions of keys that consist of three decimal

More information

SUGGESTION : read all the questions and their values before you start.

SUGGESTION : read all the questions and their values before you start. Faculty of Science Final Examination Computer Science 308-251B Examiner: Prof. Claude Crépeau Date: April 30, 2010 Associate Examiner: Prof. Patrick Hayden Time: 09:00 12:00 INSTRUCTIONS: This examination

More information

) $ f ( n) " %( g( n)

) $ f ( n)  %( g( n) CSE 0 Name Test Spring 008 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to compute the sum of the n elements of an integer array is: # A.

More information

Algorithm Design (8) Graph Algorithms 1/2

Algorithm Design (8) Graph Algorithms 1/2 Graph Algorithm Design (8) Graph Algorithms / Graph:, : A finite set of vertices (or nodes) : A finite set of edges (or arcs or branches) each of which connect two vertices Takashi Chikayama School of

More information

2.3.5 Project planning

2.3.5 Project planning efinitions:..5 Project planning project consists of a set of m activities with their duration: activity i has duration d i, i = 1,..., m. estimate Some pairs of activities are subject to a precedence constraint:

More information

Math 485, Graph Theory: Homework #3

Math 485, Graph Theory: Homework #3 Math 485, Graph Theory: Homework #3 Stephen G Simpson Due Monday, October 26, 2009 The assignment consists of Exercises 2129, 2135, 2137, 2218, 238, 2310, 2313, 2314, 2315 in the West textbook, plus the

More information

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 9. Greedy Technique. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 9 Greedy Technique Copyright 2007 Pearson Addison-Wesley. All rights reserved. Greedy Technique Constructs a solution to an optimization problem piece by piece through a sequence of choices that

More information

Parallel Graph Algorithms

Parallel Graph Algorithms Parallel Graph Algorithms Design and Analysis of Parallel Algorithms 5DV050/VT3 Part I Introduction Overview Graphs definitions & representations Minimal Spanning Tree (MST) Prim s algorithm Single Source

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

PBW 654 Applied Statistics - I Urban Operations Research. Unit 3. Network Modelling

PBW 654 Applied Statistics - I Urban Operations Research. Unit 3. Network Modelling PBW 54 Applied Statistics - I Urban Operations Research Unit 3 Network Modelling Background So far, we treated urban space as a continuum, where an entity could travel from any point to any other point

More information

Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest. Introduction to Algorithms

Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest. Introduction to Algorithms Thomas H. Cormen Charles E. Leiserson Ronald L. Rivest Introduction to Algorithms Preface xiii 1 Introduction 1 1.1 Algorithms 1 1.2 Analyzing algorithms 6 1.3 Designing algorithms 1 1 1.4 Summary 1 6

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Shortest Path Problem G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 3 GG A.I. 1/42 Outline 1 The Shortest Path Problem Introduction

More information

x ji = s i, i N, (1.1)

x ji = s i, i N, (1.1) Dual Ascent Methods. DUAL ASCENT In this chapter we focus on the minimum cost flow problem minimize subject to (i,j) A {j (i,j) A} a ij x ij x ij {j (j,i) A} (MCF) x ji = s i, i N, (.) b ij x ij c ij,

More information

Graphs and Network Flows IE411. Lecture 13. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 13. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 13 Dr. Ted Ralphs IE411 Lecture 13 1 References for Today s Lecture IE411 Lecture 13 2 References for Today s Lecture Required reading Sections 21.1 21.2 References

More information

Reference Sheet for CO142.2 Discrete Mathematics II

Reference Sheet for CO142.2 Discrete Mathematics II Reference Sheet for CO14. Discrete Mathematics II Spring 017 1 Graphs Defintions 1. Graph: set of N nodes and A arcs such that each a A is associated with an unordered pair of nodes.. Simple graph: no

More information

TIE Graph algorithms

TIE Graph algorithms TIE-20106 1 1 Graph algorithms This chapter discusses the data structure that is a collection of points (called nodes or vertices) and connections between them (called edges or arcs) a graph. The common

More information

Lecture 4: Graph Algorithms

Lecture 4: Graph Algorithms Lecture 4: Graph Algorithms Definitions Undirected graph: G =(V, E) V finite set of vertices, E finite set of edges any edge e = (u,v) is an unordered pair Directed graph: edges are ordered pairs If e

More information

CSE 101, Winter Design and Analysis of Algorithms. Lecture 11: Dynamic Programming, Part 2

CSE 101, Winter Design and Analysis of Algorithms. Lecture 11: Dynamic Programming, Part 2 CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 11: Dynamic Programming, Part 2 Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Goal: continue with DP (Knapsack, All-Pairs SPs, )

More information

CS 561, Lecture 10. Jared Saia University of New Mexico

CS 561, Lecture 10. Jared Saia University of New Mexico CS 561, Lecture 10 Jared Saia University of New Mexico Today s Outline The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and unchanging

More information

DESIGN AND ANALYSIS OF ALGORITHMS GREEDY METHOD

DESIGN AND ANALYSIS OF ALGORITHMS GREEDY METHOD 1 DESIGN AND ANALYSIS OF ALGORITHMS UNIT II Objectives GREEDY METHOD Explain and detail about greedy method Explain the concept of knapsack problem and solve the problems in knapsack Discuss the applications

More information

Algorithms for Minimum Spanning Trees

Algorithms for Minimum Spanning Trees Algorithms & Models of Computation CS/ECE, Fall Algorithms for Minimum Spanning Trees Lecture Thursday, November, Part I Algorithms for Minimum Spanning Tree Sariel Har-Peled (UIUC) CS Fall / 6 Sariel

More information

CSE 5311 Notes 8: Minimum Spanning Trees

CSE 5311 Notes 8: Minimum Spanning Trees CSE Notes 8: Minimum Spanning Trees (Last updated /8/7 :0 PM) CLRS, Chapter CONCEPTS Given a weighted, connected, undirected graph, find a minimum (total) weight free tree connecting the vertices. (AKA

More information

CSci 231 Final Review

CSci 231 Final Review CSci 231 Final Review Here is a list of topics for the final. Generally you are responsible for anything discussed in class (except topics that appear italicized), and anything appearing on the homeworks.

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

Graphs. There is no restriction on the relation E. Directed graphs also known as digraphs

Graphs. There is no restriction on the relation E. Directed graphs also known as digraphs 3: Graphs Graphs A directed graph is a pair (N,E) consisting of a set of nodes (or vertices) N, together with a relation E on N. Each element (n 1,n 2 ) of E is called an edge There is no restriction on

More information

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Topic Notes: Dynamic Programming

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Topic Notes: Dynamic Programming Computer Science 385 Design and Analysis of Algorithms Siena College Spring 29 Topic Notes: Dynamic Programming We next consider dynamic programming, a technique for designing algorithms to solve problems

More information

Weighted Graph Algorithms Presented by Jason Yuan

Weighted Graph Algorithms Presented by Jason Yuan Weighted Graph Algorithms Presented by Jason Yuan Slides: Zachary Friggstad Programming Club Meeting Weighted Graphs struct Edge { int u, v ; int w e i g h t ; // can be a double } ; Edge ( int uu = 0,

More information

Classical Shortest-Path Algorithms

Classical Shortest-Path Algorithms DISTANCE PROBLEMS IN NETWORKS - THEORY AND PRACTICE Classical Shortest-Path Algorithms Nesrine Damak October 10, 2010 Abstract In this work, we present four algorithms for the shortest path problem. The

More information

Algorithm Analysis Graph algorithm. Chung-Ang University, Jaesung Lee

Algorithm Analysis Graph algorithm. Chung-Ang University, Jaesung Lee Algorithm Analysis Graph algorithm Chung-Ang University, Jaesung Lee Basic definitions Graph = (, ) where is a set of vertices and is a set of edges Directed graph = where consists of ordered pairs

More information

Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis

Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis 3.2.12 simas@cs.aau.dk All-pairs shortest paths Main goals of the lecture: to go through one more example of dynamic programming

More information

CS 231: Algorithmic Problem Solving

CS 231: Algorithmic Problem Solving CS 231: Algorithmic Problem Solving Naomi Nishimura Module 5 Date of this version: June 14, 2018 WARNING: Drafts of slides are made available prior to lecture for your convenience. After lecture, slides

More information

from notes written mostly by Dr. Carla Savage: All Rights Reserved

from notes written mostly by Dr. Carla Savage: All Rights Reserved CSC 505, Fall 2000: Week 9 Objectives: learn about various issues related to finding shortest paths in graphs learn algorithms for the single-source shortest-path problem observe the relationship among

More information

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College Laura Toma Algorithms (csci2200), Bowdoin College Undirected graphs Concepts: connectivity, connected components paths (undirected) cycles Basic problems, given undirected graph G: is G connected how many

More information

Lecture #7. 1 Introduction. 2 Dijkstra s Correctness. COMPSCI 330: Design and Analysis of Algorithms 9/16/2014

Lecture #7. 1 Introduction. 2 Dijkstra s Correctness. COMPSCI 330: Design and Analysis of Algorithms 9/16/2014 COMPSCI 330: Design and Analysis of Algorithms 9/16/2014 Lecturer: Debmalya Panigrahi Lecture #7 Scribe: Nat Kell 1 Introduction In this lecture, we will further examine shortest path algorithms. We will

More information

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II Anna University 2 & 16 Mark Questions & Answers Year / Semester: II / III

More information

Lecture 3: Totally Unimodularity and Network Flows

Lecture 3: Totally Unimodularity and Network Flows Lecture 3: Totally Unimodularity and Network Flows (3 units) Outline Properties of Easy Problems Totally Unimodular Matrix Minimum Cost Network Flows Dijkstra Algorithm for Shortest Path Problem Ford-Fulkerson

More information

1 Non greedy algorithms (which we should have covered

1 Non greedy algorithms (which we should have covered 1 Non greedy algorithms (which we should have covered earlier) 1.1 Floyd Warshall algorithm This algorithm solves the all-pairs shortest paths problem, which is a problem where we want to find the shortest

More information

Multiple Choice. Write your answer to the LEFT of each problem. 3 points each

Multiple Choice. Write your answer to the LEFT of each problem. 3 points each CSE 0-00 Test Spring 0 Name Last 4 Digits of Student ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. Suppose f ( x) is a monotonically increasing function. Which of the

More information

Minimum Spanning Trees Shortest Paths

Minimum Spanning Trees Shortest Paths Minimum Spanning Trees Shortest Paths Minimum Spanning Tree Given a set of locations, with positive distances to each other, we want to create a network that connects all nodes to each other with minimal

More information

Parallel Graph Algorithms

Parallel Graph Algorithms Parallel Graph Algorithms Design and Analysis of Parallel Algorithms 5DV050 Spring 202 Part I Introduction Overview Graphsdenitions, properties, representation Minimal spanning tree Prim's algorithm Shortest

More information

LEC13: SHORTEST PATH. CSE 373 Analysis of Algorithms Fall 2016 Instructor: Prof. Sael Lee. Lecture slide courtesy of Prof.

LEC13: SHORTEST PATH. CSE 373 Analysis of Algorithms Fall 2016 Instructor: Prof. Sael Lee. Lecture slide courtesy of Prof. CSE 373 Analysis of Algorithms Fall 2016 Instructor: Prof. Sael Lee LEC13: SHORTEST PATH 1 SHORTEST PATHS Finding the shortest path between two nodes in a graph arises in many different applications: Transportation

More information

Routing algorithms. Jan Lönnberg, 51101M. October 2, Based on G. Tel: Introduction to Distributed Algorithms, chapter 4.

Routing algorithms. Jan Lönnberg, 51101M. October 2, Based on G. Tel: Introduction to Distributed Algorithms, chapter 4. Routing algorithms Jan Lönnberg, 51101M October 2, 2002 Based on G. Tel: Introduction to Distributed Algorithms, chapter 4. 1 Contents Introduction Destination-based routing Floyd-Warshall (single processor)

More information

Lecture I: Shortest Path Algorithms

Lecture I: Shortest Path Algorithms Lecture I: Shortest Path Algorithms Dr Kieran T. Herley Department of Computer Science University College Cork October 201 KH (21/10/1) Lecture I: Shortest Path Algorithms October 201 1 / 28 Background

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information