Applications of admixture models

Size: px
Start display at page:

Download "Applications of admixture models"

Transcription

1 Applications of admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price Applications of admixture models 1 / 27

2 Outline Admixture models Population structure and GWAS Applications of admixture models Admixture models 2 / 27

3 Mixture model for genetic data K: the number of populations (mixture components) π k : mixture weights they represent how much each population contributes to the final distribution f m,k : allele frequency in each of K populations. p(x, z) = p(z)p(x z) Applications of admixture models Admixture models 3 / 27

4 Mixture model for genetic data Denote K p(z = k π) = k=1 π k 1{z=k} Now, assume the conditional distributions are independent Binomial. p(x z = k, (f m,k ) M m=1) = m = m p(x m z = k) Bin(2, f m,k ) Then, the marginal distribution of x is K p(x θ) = p(z = k π)p(x z = k, f k ) k=1 The parameters θ = (π k, f k ) K k=1. Applications of admixture models Admixture models 3 / 27

5 Mixture model for genetic data Given N individuals over M SNPs : x n, n {1,..., N}, write the log likelihood LL(θ). Estimate the maximum likelihood parameters θ using EM. Applications of admixture models Admixture models 4 / 27

6 Mixture model for genetic data: Example Supervised mixture models SNPs Allele frequency POP POP Individual x Does individual x belong to population 1 or 2? P (Data x is in population 1) = (0.25) 2 (0.75) 0 (0.57) 0 (0.43) 2... = P (Data x is in population 2) = (0.40) 2 (0.60) 0 (0.32) 0 (0.68) 2... = Applications of admixture models Admixture models 5 / 27

7 Mixture model for genetic data: Example Supervised mixture models SNPs Allele frequency POP POP Individual x Does individual x belong to population 1 or 2? P (Data x is in population 1) = (0.25) 2 (0.75) 0 (0.57) 0 (0.43) 2... = P (Data x is in population 2) = (0.40) 2 (0.60) 0 (0.32) 0 (0.68) 2... = Applications of admixture models Admixture models 5 / 27

8 Mixture models for genetic data Unsupervised mixture models What if allele frequencies are not known? Use EM to infer parameters (HW problem). Applications of admixture models Admixture models 6 / 27

9 Admixture models/latent Dirichlet Allocation Clustering: sample belongs to exactly one cluster. In genetics: Cluster = population Individuals could belong to more than one population. Applications of admixture models Admixture models 7 / 27

10 Admixture models Individual can now have fractional memberships in each population. Each SNP can have different ancestry. Applications of admixture models Admixture models 8 / 27

11 Population admixture Admixed population is one that has ancestry from multiple distinct populations. Applications of admixture models Admixture models 9 / 27

12 Admixture better reflects human biology Applications of admixture models Admixture models 10 / 27

13 Admixture better reflects human biology 1 Hellenthal et al. Science 2014 Applications of admixture models Admixture models 11 / 27

14 Examples of admixed populations African-Americans: African and European ancestry. 10% of US population Latino Americans (Hispanics): European, Native American and African 15% of US population Mexican Americans, Puerto Ricans Hawaiians South Asians Middle Easterners Applications of admixture models Admixture models 12 / 27

15 Admixture and ancestry Applications of admixture models Admixture models 13 / 27

16 PCA on genetic data Applications of admixture models Admixture models 14 / 27

17 Admixture leads to variation in proportions of genome-wide ancestry Applications of admixture models Admixture models 15 / 27

18 PCA on HapMap Phase 3 Applications of admixture models Admixture models 16 / 27

19 PCA on HapMap Phase 3 Applications of admixture models Admixture models 16 / 27

20 Admixture model Each individual n has a parameter g n = (g n,1,..., g n,k ) where g n,k 0 and k g n,k = 1. Each population has a parameter for a SNP f k = (f 1,k,..., f M,k ). z n,m,l g n Mult(g n ), l {1, 2} x n,m z n,m,1, z n,m,2, f k Ber ( f m,zn,m,1 ) + Ber ( fm,zn,m,2 ) Applications of admixture models Admixture models 17 / 27

21 Inference in the admixture model Parameters:θ = (g n, f k ). Use EM to estimate parameters. E-step: Compute r (t) n,m,a,b p(z n,m = (a, b) x n,m, g (t) n, f (t) m,k ). M-step: Update estimates of the parameters. Work out the updates! Applications of admixture models Admixture models 18 / 27

22 Inference in the admixture model Parameters:θ = (g n, f k ). Use EM to estimate parameters. E-step: Compute r (t) n,m,a,b p(z n,m = (a, b) x n,m, g (t) n, f (t) m,k ). M-step: Update estimates of the parameters. Work out the updates! Applications of admixture models Admixture models 18 / 27

23 Admixture model for genetic data: Example Supervised admixture models SNPs Allele frequency POP POP Individual x Individual x has ancestry α from population 1 and (1 α) from population 2. Find α. P (Data α) = [0.25α (1 α)] 2 [(1 0.25)α + (1 0.40)(1 α)] 0 [0.57α (1 α)] 0 [(1 0.57)α + (1 0.32)(1 α)] 2... Maximum value of P attained at α = Applications of admixture models Admixture models 19 / 27

24 Admixture model for genetic data: Example Supervised admixture models SNPs Allele frequency POP POP Individual x Individual x has ancestry α from population 1 and (1 α) from population 2. Find α. P (Data α) = [0.25α (1 α)] 2 [(1 0.25)α + (1 0.40)(1 α)] 0 [0.57α (1 α)] 0 [(1 0.57)α + (1 0.32)(1 α)] 2... Maximum value of P attained at α = Applications of admixture models Admixture models 19 / 27

25 Applying admixture models to HGDP Human Genome Diversity Project Applications of admixture models Admixture models 20 / 27

26 Applying admixture models to HGDP Human Genome Diversity Project 2 Li et al. Science 2008 Applications of admixture models Admixture models 20 / 27

27 Admixture models outside of genetics Also known as topic models or LDA (Latent Dirichlet Allocation). Used to model topics in documents. Genotypes = words Individual = document Population = topic Each document has different distributions over topics. Each topic specifies distribution over words. Applications of admixture models Admixture models 21 / 27

28 Admixture models outside of genetics 3 Griffiths and Steyvers, PNAS 2004 Applications of admixture models Admixture models 21 / 27

29 Outline Admixture models Population structure and GWAS Applications of admixture models Population structure and GWAS 22 / 27

30 Population structure can lead to false discoveries Applications of admixture models Population structure and GWAS 23 / 27

31 Population structure can lead to false discoveries Applications of admixture models Population structure and GWAS 23 / 27

32 Appraches to deal with population stratification Structured association Cluster individuals into populations. Do GWAS in each population. Combine results. Applications of admixture models Population structure and GWAS 24 / 27

33 Appraches to deal with population stratification Principal Components Include Principal Components in the model. Applications of admixture models Population structure and GWAS 24 / 27

34 Example n = 200 m = 1000 Z n {1, 2} Z n = 1, n 100 Z n = 2, n > 100 { N (10, 1), Zn = 1 Y n Z n N (0, 1), Z n = 2 X n,m Z n Ber (f Zn,m) Applications of admixture models Population structure and GWAS 25 / 27

35 How well does the model fit? True ancestry Z known Applications of admixture models Population structure and GWAS 26 / 27

36 How well does the model fit? True ancestry Z unknown We find 222 SNPs that are statistically significant (p-value <.05/1000) Applications of admixture models Population structure and GWAS 26 / 27

37 How well does the model fit? Visualize these associations Applications of admixture models Population structure and GWAS 26 / 27

38 How well does the model fit? Visualize these associations in each population Applications of admixture models Population structure and GWAS 26 / 27

39 How well does the model fit? Infer PCs (PC scores for first PC) Applications of admixture models Population structure and GWAS 26 / 27

40 How well does the model fit? Infer PCs (PC1 vs PC2) Applications of admixture models Population structure and GWAS 26 / 27

41 How well does the model fit? Fraction of variance explained About 6% variance explained by PC1 Applications of admixture models Population structure and GWAS 26 / 27

42 How well does the model fit? Correct for PCs No association is significant! Applications of admixture models Population structure and GWAS 26 / 27

43 Summary PCA is an example of a latent variable model with continuous latent variable. Unlike clustering, where the latent variable is discrete. Probabilistic model corresponding to PCA. Admixture models or topic models or LDA are generalizations of clustering. Applications to infer ancestry and correct for population structure. Question: When do we include PCs in our regression? Applications of admixture models Population structure and GWAS 27 / 27

Estimating. Local Ancestry in admixed Populations (LAMP)

Estimating. Local Ancestry in admixed Populations (LAMP) Estimating Local Ancestry in admixed Populations (LAMP) QIAN ZHANG 572 6/05/2014 Outline 1) Sketch Method 2) Algorithm 3) Simulated Data: Accuracy Varying Pop1-Pop2 Ancestries r 2 pruning threshold Number

More information

ELAI user manual. Yongtao Guan Baylor College of Medicine. Version June Copyright 2. 3 A simple example 2

ELAI user manual. Yongtao Guan Baylor College of Medicine. Version June Copyright 2. 3 A simple example 2 ELAI user manual Yongtao Guan Baylor College of Medicine Version 1.0 25 June 2015 Contents 1 Copyright 2 2 What ELAI Can Do 2 3 A simple example 2 4 Input file formats 3 4.1 Genotype file format....................................

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

Step-by-Step Guide to Advanced Genetic Analysis

Step-by-Step Guide to Advanced Genetic Analysis Step-by-Step Guide to Advanced Genetic Analysis Page 1 Introduction In the previous document, 1 we covered the standard genetic analyses available in JMP Genomics. Here, we cover the more advanced options

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Unsupervised Learning: Kmeans, GMM, EM Readings: Barber 20.1-20.3 Stefan Lee Virginia Tech Tasks Supervised Learning x Classification y Discrete x Regression

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

Analysis of Population Structure: A Unifying Framework and Novel Methods Based on Sparse Factor Analysis

Analysis of Population Structure: A Unifying Framework and Novel Methods Based on Sparse Factor Analysis Analysis of Population Structure: A Unifying Framework and Novel Methods Based on Sparse Factor Analysis Barbara E. Engelhardt 1 *, Matthew Stephens 2 1 Computer Science Department, University of Chicago,

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING Luca Bortolussi Department of Mathematics and Geosciences University of Trieste Office 238, third floor, H2bis luca@dmi.units.it Trieste, Winter Semester

More information

faststructure: Variational Inference of Population Structure in Large SNP Datasets

faststructure: Variational Inference of Population Structure in Large SNP Datasets Genetics: Early Online, published on April 15, 2014 as 10.1534/genetics.114.164350 faststructure: Variational Inference of Population Structure in Large SNP Datasets Anil Raj, Matthew Stephens, Jonathan

More information

Hidden Markov Models in the context of genetic analysis

Hidden Markov Models in the context of genetic analysis Hidden Markov Models in the context of genetic analysis Vincent Plagnol UCL Genetics Institute November 22, 2012 Outline 1 Introduction 2 Two basic problems Forward/backward Baum-Welch algorithm Viterbi

More information

Inference and Representation

Inference and Representation Inference and Representation Rachel Hodos New York University Lecture 5, October 6, 2015 Rachel Hodos Lecture 5: Inference and Representation Today: Learning with hidden variables Outline: Unsupervised

More information

arxiv: v2 [q-bio.qm] 17 Nov 2013

arxiv: v2 [q-bio.qm] 17 Nov 2013 arxiv:1308.2150v2 [q-bio.qm] 17 Nov 2013 GeneZip: A software package for storage-efficient processing of genotype data Palmer, Cameron 1 and Pe er, Itsik 1 1 Center for Computational Biology and Bioinformatics,

More information

Bayesian analysis of genetic population structure using BAPS: Exercises

Bayesian analysis of genetic population structure using BAPS: Exercises Bayesian analysis of genetic population structure using BAPS: Exercises p S u k S u p u,s S, Jukka Corander Department of Mathematics, Åbo Akademi University, Finland Exercise 1: Clustering of groups of

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Improved Ancestry Estimation for both Genotyping and Sequencing Data using Projection Procrustes Analysis and Genotype Imputation

Improved Ancestry Estimation for both Genotyping and Sequencing Data using Projection Procrustes Analysis and Genotype Imputation The American Journal of Human Genetics Supplemental Data Improved Ancestry Estimation for both Genotyping and Sequencing Data using Projection Procrustes Analysis and Genotype Imputation Chaolong Wang,

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

A short manual for LFMM (command-line version)

A short manual for LFMM (command-line version) A short manual for LFMM (command-line version) Eric Frichot efrichot@gmail.com April 16, 2013 Please, print this reference manual only if it is necessary. This short manual aims to help users to run LFMM

More information

Dealing with heterogeneity: group-specific variances and stratified analyses

Dealing with heterogeneity: group-specific variances and stratified analyses Dealing with heterogeneity: group-specific variances and stratified analyses Tamar Sofer July 2017 1 / 32 The HCHS/SOL population is quite heterogeneous 1. Due to admixture: Hispanics are admixed with

More information

Genome Assembly Using de Bruijn Graphs. Biostatistics 666

Genome Assembly Using de Bruijn Graphs. Biostatistics 666 Genome Assembly Using de Bruijn Graphs Biostatistics 666 Previously: Reference Based Analyses Individual short reads are aligned to reference Genotypes generated by examining reads overlapping each position

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Feature LDA: a Supervised Topic Model for Automatic Detection of Web API Documentations from the Web

Feature LDA: a Supervised Topic Model for Automatic Detection of Web API Documentations from the Web Feature LDA: a Supervised Topic Model for Automatic Detection of Web API Documentations from the Web Chenghua Lin, Yulan He, Carlos Pedrinaci, and John Domingue Knowledge Media Institute, The Open University

More information

LEA: An R Package for Landscape and Ecological Association Studies

LEA: An R Package for Landscape and Ecological Association Studies LEA: An R Package for Landscape and Ecological Association Studies Eric Frichot and Olivier François Université Grenoble-Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG UMR 5525, Grenoble,

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

Documentation for BayesAss 1.3

Documentation for BayesAss 1.3 Documentation for BayesAss 1.3 Program Description BayesAss is a program that estimates recent migration rates between populations using MCMC. It also estimates each individual s immigrant ancestry, the

More information

Machine Learning Department School of Computer Science Carnegie Mellon University. K- Means + GMMs

Machine Learning Department School of Computer Science Carnegie Mellon University. K- Means + GMMs 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University K- Means + GMMs Clustering Readings: Murphy 25.5 Bishop 12.1, 12.3 HTF 14.3.0 Mitchell

More information

GemTools Documentation

GemTools Documentation Literature: GemTools Documentation Bert Klei and Brian P. Kent February 2011 This software is described in GemTools: a fast and efficient approach to estimating genetic ancestry (in preparation) Klei L,

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Parallelism for LDA Yang Ruan, Changsi An

Parallelism for LDA Yang Ruan, Changsi An Parallelism for LDA Yang Ruan, Changsi An (yangruan@indiana.edu, anch@indiana.edu) 1. Overview As parallelism is very important for large scale of data, we want to use different technology to parallelize

More information

THE deluge of genomic polymorphism data, such as

THE deluge of genomic polymorphism data, such as Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.108.100222 mstruct: Inference of Population Structure in Light of Both Genetic Admixing and Allele Mutations Suyash Shringarpure*

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

CSE 158. Web Mining and Recommender Systems. Midterm recap

CSE 158. Web Mining and Recommender Systems. Midterm recap CSE 158 Web Mining and Recommender Systems Midterm recap Midterm on Wednesday! 5:10 pm 6:10 pm Closed book but I ll provide a similar level of basic info as in the last page of previous midterms CSE 158

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Step-by-Step Guide to Basic Genetic Analysis

Step-by-Step Guide to Basic Genetic Analysis Step-by-Step Guide to Basic Genetic Analysis Page 1 Introduction This document shows you how to clean up your genetic data, assess its statistical properties and perform simple analyses such as case-control

More information

A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression

A Comparative Study of Locality Preserving Projection and Principle Component Analysis on Classification Performance Using Logistic Regression Journal of Data Analysis and Information Processing, 2016, 4, 55-63 Published Online May 2016 in SciRes. http://www.scirp.org/journal/jdaip http://dx.doi.org/10.4236/jdaip.2016.42005 A Comparative Study

More information

REAP Software Documentation

REAP Software Documentation REAP Software Documentation Version 1.2 Timothy Thornton 1 Department of Biostatistics 1 The University of Washington 1 REAP A C program for estimating kinship coefficients and IBD sharing probabilities

More information

Spatial Latent Dirichlet Allocation

Spatial Latent Dirichlet Allocation Spatial Latent Dirichlet Allocation Xiaogang Wang and Eric Grimson Computer Science and Computer Science and Artificial Intelligence Lab Massachusetts Tnstitute of Technology, Cambridge, MA, 02139, USA

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao Classifying Images with Visual/Textual Cues By Steven Kappes and Yan Cao Motivation Image search Building large sets of classified images Robotics Background Object recognition is unsolved Deformable shaped

More information

Liangjie Hong*, Dawei Yin*, Jian Guo, Brian D. Davison*

Liangjie Hong*, Dawei Yin*, Jian Guo, Brian D. Davison* Tracking Trends: Incorporating Term Volume into Temporal Topic Models Liangjie Hong*, Dawei Yin*, Jian Guo, Brian D. Davison* Dept. of Computer Science and Engineering, Lehigh University, Bethlehem, PA,

More information

Statistical relationship discovery in SNP data using Bayesian networks

Statistical relationship discovery in SNP data using Bayesian networks Statistical relationship discovery in SNP data using Bayesian networks Pawe l Szlendak and Robert M. Nowak Institute of Electronic Systems, Warsaw University of Technology, Nowowiejska 5/9, -665 Warsaw,

More information

Tutorial on gene-c ancestry es-ma-on: How to use LASER. Chaolong Wang Sequence Analysis Workshop June University of Michigan

Tutorial on gene-c ancestry es-ma-on: How to use LASER. Chaolong Wang Sequence Analysis Workshop June University of Michigan Tutorial on gene-c ancestry es-ma-on: How to use LASER Chaolong Wang Sequence Analysis Workshop June 2014 @ University of Michigan LASER: Loca-ng Ancestry from SEquence Reads Main func:ons of the so

More information

Documentation for MavericK software: Version 1.0

Documentation for MavericK software: Version 1.0 Documentation for MavericK software: Version 1.0 Robert Verity MRC centre for outbreak analysis and modelling Imperial College London and Richard A. Nichols Queen Mary University of London May 19, 2016

More information

Scalable Bayes Clustering for Outlier Detection Under Informative Sampling

Scalable Bayes Clustering for Outlier Detection Under Informative Sampling Scalable Bayes Clustering for Outlier Detection Under Informative Sampling Based on JMLR paper of T. D. Savitsky Terrance D. Savitsky Office of Survey Methods Research FCSM - 2018 March 7-9, 2018 1 / 21

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 9, 2012 Today: Graphical models Bayes Nets: Inference Learning Readings: Required: Bishop chapter

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

More information

User Manual for TreeMix v1.1. Joseph K. Pickrell, Jonathan K. Pritchard

User Manual for TreeMix v1.1. Joseph K. Pickrell, Jonathan K. Pritchard User Manual for TreeMix v1.1 Joseph K. Pickrell, Jonathan K. Pritchard October 1, 2012 Contents 1 Introduction 2 2 Installation 2 3 Input file format 2 3.1 SNP data..........................................

More information

Data Analytics. Qualification Exam, May 18, am 12noon

Data Analytics. Qualification Exam, May 18, am 12noon CS220 Data Analytics Number assigned to you: Qualification Exam, May 18, 2014 9am 12noon Note: DO NOT write any information related to your name or KAUST student ID. 1. There should be 12 pages including

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Classication of Corporate and Public Text

Classication of Corporate and Public Text Classication of Corporate and Public Text Kevin Nguyen December 16, 2011 1 Introduction In this project we try to tackle the problem of classifying a body of text as a corporate message (text usually sent

More information

Hierarchical Mixture Models for Nested Data Structures

Hierarchical Mixture Models for Nested Data Structures Hierarchical Mixture Models for Nested Data Structures Jeroen K. Vermunt 1 and Jay Magidson 2 1 Department of Methodology and Statistics, Tilburg University, PO Box 90153, 5000 LE Tilburg, Netherlands

More information

Scalable Object Classification using Range Images

Scalable Object Classification using Range Images Scalable Object Classification using Range Images Eunyoung Kim and Gerard Medioni Institute for Robotics and Intelligent Systems University of Southern California 1 What is a Range Image? Depth measurement

More information

Step-by-Step Guide to Relatedness and Association Mapping Contents

Step-by-Step Guide to Relatedness and Association Mapping Contents Step-by-Step Guide to Relatedness and Association Mapping Contents OBJECTIVES... 2 INTRODUCTION... 2 RELATEDNESS MEASURES... 2 POPULATION STRUCTURE... 6 Q-K ASSOCIATION ANALYSIS... 10 K MATRIX COMPRESSION...

More information

Clustering algorithms

Clustering algorithms Clustering algorithms Machine Learning Hamid Beigy Sharif University of Technology Fall 1393 Hamid Beigy (Sharif University of Technology) Clustering algorithms Fall 1393 1 / 22 Table of contents 1 Supervised

More information

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning CS325 Artificial Intelligence Cengiz Spring 2013 Unsupervised Learning Missing teacher No labels, y Just input data, x What can you learn with it? Unsupervised Learning Missing teacher No labels, y Just

More information

Package semisup. March 10, Version Title Semi-Supervised Mixture Model

Package semisup. March 10, Version Title Semi-Supervised Mixture Model Version 1.7.1 Title Semi-Supervised Mixture Model Package semisup March 10, 2019 Description Useful for detecting SNPs with interactive effects on a quantitative trait. This R packages moves away from

More information

Clustering & Dimensionality Reduction. 273A Intro Machine Learning

Clustering & Dimensionality Reduction. 273A Intro Machine Learning Clustering & Dimensionality Reduction 273A Intro Machine Learning What is Unsupervised Learning? In supervised learning we were given attributes & targets (e.g. class labels). In unsupervised learning

More information

Lecture 8: The EM algorithm

Lecture 8: The EM algorithm 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 8: The EM algorithm Lecturer: Manuela M. Veloso, Eric P. Xing Scribes: Huiting Liu, Yifan Yang 1 Introduction Previous lecture discusses

More information

Package LEA. April 23, 2016

Package LEA. April 23, 2016 Package LEA April 23, 2016 Title LEA: an R package for Landscape and Ecological Association Studies Version 1.2.0 Date 2014-09-17 Author , Olivier Francois

More information

Genetic Analysis. Page 1

Genetic Analysis. Page 1 Genetic Analysis Page 1 Genetic Analysis Objectives: 1) Set up Case-Control Association analysis and the Basic Genetics Workflow 2) Use JMP tools to interact with and explore results 3) Learn advanced

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

jldadmm: A Java package for the LDA and DMM topic models

jldadmm: A Java package for the LDA and DMM topic models jldadmm: A Java package for the LDA and DMM topic models Dat Quoc Nguyen School of Computing and Information Systems The University of Melbourne, Australia dqnguyen@unimelb.edu.au Abstract: In this technical

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning Unsupervised Learning Clustering and the EM Algorithm Susanna Ricco Supervised Learning Given data in the form < x, y >, y is the target to learn. Good news: Easy to tell if our algorithm is giving the

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Latent Topic Model Based on Gaussian-LDA for Audio Retrieval

Latent Topic Model Based on Gaussian-LDA for Audio Retrieval Latent Topic Model Based on Gaussian-LDA for Audio Retrieval Pengfei Hu, Wenju Liu, Wei Jiang, and Zhanlei Yang National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 2: Probability: Discrete Random Variables Classification: Validation & Model Selection Many figures

More information

Clustering using Topic Models

Clustering using Topic Models Clustering using Topic Models Compiled by Sujatha Das, Cornelia Caragea Credits for slides: Blei, Allan, Arms, Manning, Rai, Lund, Noble, Page. Clustering Partition unlabeled examples into disjoint subsets

More information

Promoting Ranking Diversity for Biomedical Information Retrieval based on LDA

Promoting Ranking Diversity for Biomedical Information Retrieval based on LDA Promoting Ranking Diversity for Biomedical Information Retrieval based on LDA Yan Chen, Xiaoshi Yin, Zhoujun Li, Xiaohua Hu and Jimmy Huang State Key Laboratory of Software Development Environment, Beihang

More information

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering K-means and Hierarchical Clustering Xiaohui Xie University of California, Irvine K-means and Hierarchical Clustering p.1/18 Clustering Given n data points X = {x 1, x 2,, x n }. Clustering is the partitioning

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints

Last week. Multi-Frame Structure from Motion: Multi-View Stereo. Unknown camera viewpoints Last week Multi-Frame Structure from Motion: Multi-View Stereo Unknown camera viewpoints Last week PCA Today Recognition Today Recognition Recognition problems What is it? Object detection Who is it? Recognizing

More information

Latent Variable Models for the Analysis, Visualization and Prediction of Network and Nodal Attribute Data. Isabella Gollini.

Latent Variable Models for the Analysis, Visualization and Prediction of Network and Nodal Attribute Data. Isabella Gollini. z i! z j Latent Variable Models for the Analysis, Visualization and Prediction of etwork and odal Attribute Data School of Engineering University of Bristol isabella.gollini@bristol.ac.uk January 4th,

More information

Cluster Evaluation and Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University

Cluster Evaluation and Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University Cluster Evaluation and Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University Kinds of Clustering Sequential Fast Cost Optimization Fixed number of clusters Hierarchical

More information

Multiple cosegmentation

Multiple cosegmentation Armand Joulin, Francis Bach and Jean Ponce. INRIA -Ecole Normale Supérieure April 25, 2012 Segmentation Introduction Segmentation Supervised and weakly-supervised segmentation Cosegmentation Segmentation

More information

Quiz Section Week 8 May 17, Machine learning and Support Vector Machines

Quiz Section Week 8 May 17, Machine learning and Support Vector Machines Quiz Section Week 8 May 17, 2016 Machine learning and Support Vector Machines Another definition of supervised machine learning Given N training examples (objects) {(x 1,y 1 ), (x 2,y 2 ),, (x N,y N )}

More information

LFMM version Reference Manual (Graphical User Interface version)

LFMM version Reference Manual (Graphical User Interface version) LFMM version 1.2 - Reference Manual (Graphical User Interface version) Eric Frichot 1, Sean Schoville 1, Guillaume Bouchard 2, Olivier François 1 * 1. Université Joseph Fourier Grenoble, Centre National

More information

Kernels for Structured Data

Kernels for Structured Data T-122.102 Special Course in Information Science VI: Co-occurence methods in analysis of discrete data Kernels for Structured Data Based on article: A Survey of Kernels for Structured Data by Thomas Gärtner

More information

Fisher vector image representation

Fisher vector image representation Fisher vector image representation Jakob Verbeek January 13, 2012 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.11.12.php Fisher vector representation Alternative to bag-of-words image representation

More information

GPU Data Mining in Neuroimaging Genomics

GPU Data Mining in Neuroimaging Genomics GPU Data Mining in Neuroimaging Genomics Bob Zigon Beckman Coulter Indianapolis, Indiana May 10, 2017 1 / 20 Outline Background ANOVA for Voxels and SNPs VEGAS for Voxels and Genes High Speed GPU Monte-Carlo

More information

LASER: Locating Ancestry from SEquence Reads version 2.04

LASER: Locating Ancestry from SEquence Reads version 2.04 LASER: Locating Ancestry from SEquence Reads version 2.04 Chaolong Wang 1 Computational and Systems Biology Genome Institute of Singapore A*STAR, Singapore 138672, Singapore Xiaowei Zhan 2 Department of

More information

SEQGWAS: Integrative Analysis of SEQuencing and GWAS Data

SEQGWAS: Integrative Analysis of SEQuencing and GWAS Data SEQGWAS: Integrative Analysis of SEQuencing and GWAS Data SYNOPSIS SEQGWAS [--sfile] [--chr] OPTIONS Option Default Description --sfile specification.txt Select a specification file --chr Select a chromosome

More information