Clustering web search results

Size: px
Start display at page:

Download "Clustering web search results"

Transcription

1 Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, Clustering images Set of Images [Goldberger et al.] 2 1

2 Clustering web search results 3 Some Data 4 2

3 K-means 1. Ask user how many clusters they d like. (e.g. k=5) 5 K-means 1. Ask user how many clusters they d like. (e.g. k=5) 2. Randomly guess k cluster Center locations 6 3

4 K-means 1. Ask user how many clusters they d like. (e.g. k=5) 2. Randomly guess k cluster Center locations 3. Each datapoint finds out which Center it s closest to. (Thus each Center owns a set of datapoints) 7 K-means 1. Ask user how many clusters they d like. (e.g. k=5) 2. Randomly guess k cluster Center locations 3. Each datapoint finds out which Center it s closest to. 4. Each Center finds the centroid of the points it owns 8 4

5 K-means 1. Ask user how many clusters they d like. (e.g. k=5) 2. Randomly guess k cluster Center locations 3. Each datapoint finds out which Center it s closest to. 4. Each Center finds the centroid of the points it owns 5. and jumps there 6. Repeat until terminated! 9 K-means Randomly initialize k centers µ (0) = µ 1 (0),, µ k (0) Classify: Assign each point j {1, N} to nearest center: Recenter: µ i becomes centroid of its point: Equivalent to µ i average of its points! 10 5

6 What is K-means optimizing? Potential function F(µ,C) of centers µ and point allocations C: N Optimal K-means: min µ min C F(µ,C) 11 Does K-means converge??? Part 1 Optimize potential function: Fix µ, optimize C 12 6

7 Does K-means converge??? Part 2 Optimize potential function: Fix C, optimize µ 13 Coordinate descent algorithms Want: min a min b F(a,b) Coordinate descent: fix a, minimize b fix b, minimize a repeat Converges!!! if F is bounded to a (often good) local optimum as we saw in applet (play with it!) (For LASSO it converged to the global optimum, because of convexity) K-means is a coordinate descent algorithm! 14 7

8 Mixtures of Gaussians Machine Learning CSE546 Emily Fox University of Washington November 4, (One) bad case for k-means Clusters may overlap Some clusters may be wider than others 16 8

9 Density Estimation Estimate a density based on x 1,,x N Emily Fox Density Estimation Contour Plot of Joint Density Emily Fox

10 Density as Mixture of Gaussians Approximate density with a mixture of Gaussians Mixture of 3 Gaussians Contour Plot of Joint Density Emily Fox Gaussians in d Dimensions 1 P(x) = (2π ) m/2 Σ exp # 1 1/2 $ % 2 x µ ( ) T Σ 1 ( x µ ) & ' ( 20 10

11 Density as Mixture of Gaussians Approximate density with a mixture of Gaussians Mixture of 3 Gaussians p(x i,µ, ) = Emily Fox Density as Mixture of Gaussians Approximate with density with a mixture of Gaussians Mixture of 3 Gaussians Our actual observations (b) C. Bishop, Emily Pattern Fox 2013 Recognition & Machine Learning 22 11

12 Clustering our Observations Imagine we have an assignment of each x i to a Gaussian Our actual observations 1 (a) 1 (b) Complete data labeled by true cluster assignments C. Bishop, Emily Pattern Fox 2013 Recognition & Machine Learning 23 Clustering our Observations Imagine we have an assignment of each x i to a Gaussian 1 (a) Introduce latent cluster indicator variable z i 0.5 Then we have p(x i z i,,µ, ) = Complete data labeled by true cluster assignments C. Bishop, Emily Pattern Fox 2013 Recognition & Machine Learning 24 12

13 Clustering our Observations We must infer the cluster assignments from the observations (c) Posterior probabilities of assignments to each cluster *given* model parameters: r ik = p(z i = k x i,,µ, ) = Soft assignments to clusters C. Bishop, Emily Pattern Fox 2013 Recognition & Machine Learning 25 Unsupervised Learning: not as hard as it looks Sometimes easy Sometimes impossible and sometimes in between 26 13

14 Summary of GMM Concept Estimate a density based on x 1,,x N KX p(x i, µ, ) = z in (x i µ z i, z i) z i =1 1 (a) Complete data labeled by true cluster assignments Surface Plot of Joint Density, Marginalizing Cluster Assignments Emily Fox Summary of GMM Components Observations x i i 2 R d, i =1, 2,...,N Hidden cluster labels z i 2{1, 2,...,K}, i =1, 2,...,N Hidden mixture means µ k 2 R d, k =1, 2,...,K Hidden mixture covariances Hidden mixture probabilities k 2 R d d, k =1, 2,...,K KX k, k =1 k=1 Gaussian mixture marginal and conditional likelihood : KX p(x i, µ, ) = z i p(x i z i,µ, ) z i =1 p(x i z i,µ, ) =N (x i µ z i, z i) Emily Fox

15 Expectation Maximization Machine Learning CSE546 Emily Fox University of Washington November 6, Next back to Density Estimation What if we want to do density estimation with multimodal or clumpy data? 30 15

16 But we don t see class labels!!! MLE: argmax i P(z i,x i ) But we don t know z i Maximize marginal likelihood: argmax i P(x i ) = argmax i k=1 K P(z i =k,x i ) 31 Special case: spherical Gaussians and hard assignments P(z i = k, x i 1 ) = (2π ) m/2 Σ k exp # 1 1/2 2 xi µ $ % k ( ) T Σ 1 k ( x i µ k ) & ' ( P(zi = k) If P(X z=k) is spherical, with same σ for all classes: # P(x i z i = k) exp 1 x i 2& µ $ % 2σ 2 k ' ( If each x i belongs to one class C(i) (hard assignment), marginal likelihood: N K N % P(x i, z i = k) exp 1 & ' 2σ 2 i=1 k=1 i=1 x i µ C(i) ( ) * 2 Same as K-means!!! 32 16

17 Supervised Learning of Mixtures of Gaussians Mixtures of Gaussians: Prior class probabilities: P(z=k) Likelihood function per class: P(x z=k) Suppose, for each data point, we know location x and class z Learning is easy J For prior P(z) For likelihood function: 33 EM: Reducing Unsupervised Learning to Supervised Learning If we knew assignment of points to classes è Supervised Learning! Expectation-Maximization (EM) Guess assignment of points to classes In standard ( soft ) EM: each point associated with prob. of being in each class Recompute model parameters Iterate 34 17

18 Form of Likelihood Conditioned on class of point x i... p(x i z i,µ, ) = Marginalizing class assignment: p(x i,µ, ) = Emily Fox Gaussian Mixture Model Most commonly used mixture model Observations: Parameters: Likelihood: Ex. z i = country of origin, x i = height of i th person k th mixture component = distribution of heights in country k Emily Fox

19 Example (Taken from Kevin Murphy s ML textbook) Data: gene expression levels Goal: cluster genes with similar expression trajectories Emily Fox Mixture models are useful for Density estimation Allows for multimodal density Clustering Want membership information for each observation e.g., topic of current document Soft clustering: p(z i = k x i, )= Hard clustering: z i = arg max p(z i = k x i, )= k Emily Fox

20 Issues Label switching Color = label does not matter Can switch labels and likelihood is unchanged Log likelihood is not convex in the parameters Problem is simpler for complete data likelihood Emily Fox ML Estimate of Mixture Model Params Log likelihood L x ( ), log p({x i } ) = X i log X z i p(x i,z i ) Want ML estimate ˆ ML = Neither convex nor concave and local optima Emily Fox

21 If complete data were observed z i Assume class labels were observed in addition to L x,z ( ) = X log p(x i,z i ) i x i Compute ML estimates Separates over clusters k! Example: mixture of Gaussians (MoG) = { k,µ k, k } K k=1 Emily Fox Iterative Algorithm Motivates a coordinate ascent-like algorithm: 1. Infer missing values z i given estimate of parameters ˆ 2. Optimize parameters to produce new ˆ given filled in data z i 3. Repeat Example: MoG (derivation soon + HW) 1. Infer responsibilities r ik = p(z i = k x i, ˆ (t 1) )= 2. Optimize parameters max w.r.t. k : max w.r.t. µ k, k : Emily Fox

22 E.M. Convergence EM is coordinate ascent on an interesting potential function Coord. ascent for bounded pot. func. è convergence to a local optimum guaranteed This algorithm is REALLY USED. And in high dimensional state spaces, too. E.G. Vector Quantization for Speech Data 43 Gaussian Mixture Example: Start Emily Fox

23 After first iteration Emily Fox After 2nd iteration Emily Fox

24 After 3rd iteration Emily Fox After 4th iteration Emily Fox

25 After 5th iteration Emily Fox After 6th iteration Emily Fox

26 After 20th iteration Emily Fox Some Bio Assay data Emily Fox

27 GMM clustering of the assay data Emily Fox Resulting Density Estimator Emily Fox

28 Expectation Maximization (EM) Setup More broadly applicable than just to mixture models considered so far Model: x y observable incomplete data not (fully) observable complete data parameters Interested in maximizing (wrt ): p(x ) = X y p(x, y ) Special case: x = g(y) Emily Fox Expectation Maximization (EM) Derivation Step 1 Rewrite desired likelihood in terms of complete data terms p(y ) =p(y x, )p(x ) Step 2 Assume estimate of parameters Take expectation with respect to ˆ p(y x, ˆ ) Emily Fox

29 Expectation Maximization (EM) Derivation Step 3 Consider log likelihood of data at any L x ( ) L x (ˆ ) relative to log likelihood at ˆ Aside: Gibbs Inequality Proof: E p [log p(x)] E p [log q(x)] Emily Fox Expectation Maximization (EM) Derivation L x ( ) L x (ˆ ) =[U(, ˆ ) U(ˆ, ˆ )] [V (, ˆ ) V (ˆ, ˆ )] Step 4 Determine conditions under which log likelihood at exceeds that at Using Gibbs inequality: ˆ If Then L x ( ) L x (ˆ ) Emily Fox

30 Motivates EM Algorithm Initial guess: Estimate at iteration t: E-Step Compute M-Step Compute Emily Fox Example Mixture Models E-Step Compute M-Step Compute U(, ˆ (t) )=E[log p(y ) x, ˆ (t) ] ˆ (t+1) = arg max U(, ˆ (t) ) Consider y i = {z i,x i } i.i.d. p(x i,z i ) = z ip(x i E qt [log p(y )] = X z i)= E qt [log p(x i,z i )] = i Emily Fox

31 Coordinate Ascent Behavior Bound log likelihood: L x ( ) = U(, ˆ (t) )+V(, ˆ (t) ) L x (ˆ (t) )= U(ˆ (t), ˆ (t) )+V (ˆ (t), ˆ (t) ) Figure from KM textbook Emily Fox Comments on EM Since Gibbs inequality is satisfied with equality only if p=q, any step that changes should strictly increase likelihood In practice, can replace the M-Step with increasing U instead of maximizing it (Generalized EM) Under certain conditions (e.g., in exponential family), can show that EM converges to a stationary point of L x ( ) Often there is a natural choice for y has physical meaning If you want to choose any y, not necessarily x=g(y), replace p(y ) in U with p(y, x ) Emily Fox

32 Initialization In mixture model case where y i = {z i,x i } there are many ways to initialize the EM algorithm Examples: Choose K observations at random to define each cluster. Assign other observations to the nearest centriod to form initial parameter estimates Pick the centers sequentially to provide good coverage of data Grow mixture model by splitting (and sometimes removing) clusters until K clusters are formed Can be quite important to convergence rates in practice Emily Fox What you should know K-means for clustering: algorithm converges because it s coordinate ascent EM for mixture of Gaussians: How to learn maximum likelihood parameters (locally max. like.) in the case of unlabeled data Be happy with this kind of probabilistic analysis Remember, E.M. can get stuck in local minima, and empirically it DOES EM is coordinate ascent 64 32

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Expectation Maximization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University April 10 th, 2006 1 Announcements Reminder: Project milestone due Wednesday beginning of class 2 Coordinate

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Unsupervised Learning: Kmeans, GMM, EM Readings: Barber 20.1-20.3 Stefan Lee Virginia Tech Tasks Supervised Learning x Classification y Discrete x Regression

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/26/17 Jumble of unlabeled images HISTOGRAM blue

More information

Inference and Representation

Inference and Representation Inference and Representation Rachel Hodos New York University Lecture 5, October 6, 2015 Rachel Hodos Lecture 5: Inference and Representation Today: Learning with hidden variables Outline: Unsupervised

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

COMS 4771 Clustering. Nakul Verma

COMS 4771 Clustering. Nakul Verma COMS 4771 Clustering Nakul Verma Supervised Learning Data: Supervised learning Assumption: there is a (relatively simple) function such that for most i Learning task: given n examples from the data, find

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/27/2017 Jumble of unlabeled images HISTOGRAM blue

More information

Clustering. Image segmentation, document clustering, protein class discovery, compression

Clustering. Image segmentation, document clustering, protein class discovery, compression Clustering CS 444 Some material on these is slides borrowed from Andrew Moore's machine learning tutorials located at: Clustering The problem of grouping unlabeled data on the basis of similarity. A key

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning Unsupervised Learning Clustering and the EM Algorithm Susanna Ricco Supervised Learning Given data in the form < x, y >, y is the target to learn. Good news: Easy to tell if our algorithm is giving the

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Machine Learning Department School of Computer Science Carnegie Mellon University. K- Means + GMMs

Machine Learning Department School of Computer Science Carnegie Mellon University. K- Means + GMMs 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University K- Means + GMMs Clustering Readings: Murphy 25.5 Bishop 12.1, 12.3 HTF 14.3.0 Mitchell

More information

The EM Algorithm Lecture What's the Point? Maximum likelihood parameter estimates: One denition of the \best" knob settings. Often impossible to nd di

The EM Algorithm Lecture What's the Point? Maximum likelihood parameter estimates: One denition of the \best knob settings. Often impossible to nd di The EM Algorithm This lecture introduces an important statistical estimation algorithm known as the EM or \expectation-maximization" algorithm. It reviews the situations in which EM works well and its

More information

Clustering & Dimensionality Reduction. 273A Intro Machine Learning

Clustering & Dimensionality Reduction. 273A Intro Machine Learning Clustering & Dimensionality Reduction 273A Intro Machine Learning What is Unsupervised Learning? In supervised learning we were given attributes & targets (e.g. class labels). In unsupervised learning

More information

Mixture Models and EM

Mixture Models and EM Table of Content Chapter 9 Mixture Models and EM -means Clustering Gaussian Mixture Models (GMM) Expectation Maximiation (EM) for Mixture Parameter Estimation Introduction Mixture models allows Complex

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Unsupervised learning Daniel Hennes 29.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Supervised learning Regression (linear

More information

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD Expectation-Maximization Nuno Vasconcelos ECE Department, UCSD Plan for today last time we started talking about mixture models we introduced the main ideas behind EM to motivate EM, we looked at classification-maximization

More information

Gaussian Mixture Models For Clustering Data. Soft Clustering and the EM Algorithm

Gaussian Mixture Models For Clustering Data. Soft Clustering and the EM Algorithm Gaussian Mixture Models For Clustering Data Soft Clustering and the EM Algorithm K-Means Clustering Input: Observations: xx ii R dd ii {1,., NN} Number of Clusters: kk Output: Cluster Assignments. Cluster

More information

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B Clustering in R d Clustering CSE 250B Two common uses of clustering: Vector quantization Find a finite set of representatives that provides good coverage of a complex, possibly infinite, high-dimensional

More information

CSC 411: Lecture 12: Clustering

CSC 411: Lecture 12: Clustering CSC 411: Lecture 12: Clustering Raquel Urtasun & Rich Zemel University of Toronto Oct 22, 2015 Urtasun & Zemel (UofT) CSC 411: 12-Clustering Oct 22, 2015 1 / 18 Today Unsupervised learning Clustering -means

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

Lecture 8: The EM algorithm

Lecture 8: The EM algorithm 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 8: The EM algorithm Lecturer: Manuela M. Veloso, Eric P. Xing Scribes: Huiting Liu, Yifan Yang 1 Introduction Previous lecture discusses

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Image Segmentation Some material for these slides comes from https://www.csd.uwo.ca/courses/cs4487a/

More information

1 Case study of SVM (Rob)

1 Case study of SVM (Rob) DRAFT a final version will be posted shortly COS 424: Interacting with Data Lecturer: Rob Schapire and David Blei Lecture # 8 Scribe: Indraneel Mukherjee March 1, 2007 In the previous lecture we saw how

More information

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering K-means and Hierarchical Clustering Xiaohui Xie University of California, Irvine K-means and Hierarchical Clustering p.1/18 Clustering Given n data points X = {x 1, x 2,, x n }. Clustering is the partitioning

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

More information

Cluster Analysis. Jia Li Department of Statistics Penn State University. Summer School in Statistics for Astronomers IV June 9-14, 2008

Cluster Analysis. Jia Li Department of Statistics Penn State University. Summer School in Statistics for Astronomers IV June 9-14, 2008 Cluster Analysis Jia Li Department of Statistics Penn State University Summer School in Statistics for Astronomers IV June 9-1, 8 1 Clustering A basic tool in data mining/pattern recognition: Divide a

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 17 EM CS/CNS/EE 155 Andreas Krause Announcements Project poster session on Thursday Dec 3, 4-6pm in Annenberg 2 nd floor atrium! Easels, poster boards and cookies

More information

Supervised vs. Unsupervised Learning

Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

Warped Mixture Models

Warped Mixture Models Warped Mixture Models Tomoharu Iwata, David Duvenaud, Zoubin Ghahramani Cambridge University Computational and Biological Learning Lab March 11, 2013 OUTLINE Motivation Gaussian Process Latent Variable

More information

Machine Learning (CSE 446): Unsupervised Learning

Machine Learning (CSE 446): Unsupervised Learning Machine Learning (CSE 446): Unsupervised Learning Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 19 Announcements HW2 posted. Due Feb 1. It is long. Start this week! Today:

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

K-Means Clustering 3/3/17

K-Means Clustering 3/3/17 K-Means Clustering 3/3/17 Unsupervised Learning We have a collection of unlabeled data points. We want to find underlying structure in the data. Examples: Identify groups of similar data points. Clustering

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

ALTERNATIVE METHODS FOR CLUSTERING

ALTERNATIVE METHODS FOR CLUSTERING ALTERNATIVE METHODS FOR CLUSTERING K-Means Algorithm Termination conditions Several possibilities, e.g., A fixed number of iterations Objects partition unchanged Centroid positions don t change Convergence

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

10. MLSP intro. (Clustering: K-means, EM, GMM, etc.)

10. MLSP intro. (Clustering: K-means, EM, GMM, etc.) 10. MLSP intro. (Clustering: K-means, EM, GMM, etc.) Rahil Mahdian 01.04.2016 LSV Lab, Saarland University, Germany What is clustering? Clustering is the classification of objects into different groups,

More information

Introduction to Machine Learning. Xiaojin Zhu

Introduction to Machine Learning. Xiaojin Zhu Introduction to Machine Learning Xiaojin Zhu jerryzhu@cs.wisc.edu Read Chapter 1 of this book: Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi- Supervised Learning. http://www.morganclaypool.com/doi/abs/10.2200/s00196ed1v01y200906aim006

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 9, 2012 Today: Graphical models Bayes Nets: Inference Learning Readings: Required: Bishop chapter

More information

CLUSTERING. JELENA JOVANOVIĆ Web:

CLUSTERING. JELENA JOVANOVIĆ   Web: CLUSTERING JELENA JOVANOVIĆ Email: jeljov@gmail.com Web: http://jelenajovanovic.net OUTLINE What is clustering? Application domains K-Means clustering Understanding it through an example The K-Means algorithm

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Fall 09, Homework 5

Fall 09, Homework 5 5-38 Fall 09, Homework 5 Due: Wednesday, November 8th, beginning of the class You can work in a group of up to two people. This group does not need to be the same group as for the other homeworks. You

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Cluster analysis formalism, algorithms. Department of Cybernetics, Czech Technical University in Prague.

Cluster analysis formalism, algorithms. Department of Cybernetics, Czech Technical University in Prague. Cluster analysis formalism, algorithms Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz poutline motivation why clustering? applications, clustering as

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

IBL and clustering. Relationship of IBL with CBR

IBL and clustering. Relationship of IBL with CBR IBL and clustering Distance based methods IBL and knn Clustering Distance based and hierarchical Probability-based Expectation Maximization (EM) Relationship of IBL with CBR + uses previously processed

More information

Clustering. Supervised vs. Unsupervised Learning

Clustering. Supervised vs. Unsupervised Learning Clustering Supervised vs. Unsupervised Learning So far we have assumed that the training samples used to design the classifier were labeled by their class membership (supervised learning) We assume now

More information

Cluster Analysis. Debashis Ghosh Department of Statistics Penn State University (based on slides from Jia Li, Dept. of Statistics)

Cluster Analysis. Debashis Ghosh Department of Statistics Penn State University (based on slides from Jia Li, Dept. of Statistics) Cluster Analysis Debashis Ghosh Department of Statistics Penn State University (based on slides from Jia Li, Dept. of Statistics) Summer School in Statistics for Astronomers June 1-6, 9 Clustering: Intuition

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018

Homework #4 Programming Assignment Due: 11:59 pm, November 4, 2018 CSCI 567, Fall 18 Haipeng Luo Homework #4 Programming Assignment Due: 11:59 pm, ovember 4, 2018 General instructions Your repository will have now a directory P4/. Please do not change the name of this

More information

Approaches to Clustering

Approaches to Clustering Clustering A basic tool in data mining/pattern recognition: Divide a set of data into groups. Samples in one cluster are close and clusters are far apart. 6 5 4 3 1 1 3 1 1 3 4 5 6 Motivations: Discover

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

An Introduction to PDF Estimation and Clustering

An Introduction to PDF Estimation and Clustering Sigmedia, Electronic Engineering Dept., Trinity College, Dublin. 1 An Introduction to PDF Estimation and Clustering David Corrigan corrigad@tcd.ie Electrical and Electronic Engineering Dept., University

More information

Quantitative Biology II!

Quantitative Biology II! Quantitative Biology II! Lecture 3: Markov Chain Monte Carlo! March 9, 2015! 2! Plan for Today!! Introduction to Sampling!! Introduction to MCMC!! Metropolis Algorithm!! Metropolis-Hastings Algorithm!!

More information

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 8 1 Example: Data augmentation / Auxiliary variables A commonly-used

More information

http://www.xkcd.com/233/ Text Clustering David Kauchak cs160 Fall 2009 adapted from: http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt Administrative 2 nd status reports Paper review

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Clustering Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann Clustering (1) Common technique for statistical data analysis (machine learning,

More information

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING

COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING COMPUTATIONAL STATISTICS UNSUPERVISED LEARNING Luca Bortolussi Department of Mathematics and Geosciences University of Trieste Office 238, third floor, H2bis luca@dmi.units.it Trieste, Winter Semester

More information

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm

DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm DATA MINING LECTURE 7 Hierarchical Clustering, DBSCAN The EM Algorithm CLUSTERING What is a Clustering? In general a grouping of objects such that the objects in a group (cluster) are similar (or related)

More information

Clustering: K-means and Kernel K-means

Clustering: K-means and Kernel K-means Clustering: K-means and Kernel K-means Piyush Rai Machine Learning (CS771A) Aug 31, 2016 Machine Learning (CS771A) Clustering: K-means and Kernel K-means 1 Clustering Usually an unsupervised learning problem

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning CS325 Artificial Intelligence Cengiz Spring 2013 Unsupervised Learning Missing teacher No labels, y Just input data, x What can you learn with it? Unsupervised Learning Missing teacher No labels, y Just

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Unsupervised Learning: Clustering Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com (Some material

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

732A54/TDDE31 Big Data Analytics

732A54/TDDE31 Big Data Analytics 732A54/TDDE31 Big Data Analytics Lecture 10: Machine Learning with MapReduce Jose M. Peña IDA, Linköping University, Sweden 1/27 Contents MapReduce Framework Machine Learning with MapReduce Neural Networks

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Week 9: Data Mining (4/4) March 9, 2017 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These slides

More information

Expectation Maximization (EM) and Gaussian Mixture Models

Expectation Maximization (EM) and Gaussian Mixture Models Expectation Maximization (EM) and Gaussian Mixture Models Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 2 3 4 5 6 7 8 Unsupervised Learning Motivation

More information

k-means demo Administrative Machine learning: Unsupervised learning" Assignment 5 out

k-means demo Administrative Machine learning: Unsupervised learning Assignment 5 out Machine learning: Unsupervised learning" David Kauchak cs Spring 0 adapted from: http://www.stanford.edu/class/cs76/handouts/lecture7-clustering.ppt http://www.youtube.com/watch?v=or_-y-eilqo Administrative

More information

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample CS 1675 Introduction to Machine Learning Lecture 18 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem:

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Expectation Maximization!

Expectation Maximization! Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University and http://www.stanford.edu/class/cs276/handouts/lecture17-clustering.ppt Steps in Clustering Select Features

More information

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves

Machine Learning A W 1sst KU. b) [1 P] Give an example for a probability distributions P (A, B, C) that disproves Machine Learning A 708.064 11W 1sst KU Exercises Problems marked with * are optional. 1 Conditional Independence I [2 P] a) [1 P] Give an example for a probability distribution P (A, B, C) that disproves

More information

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos

22 October, 2012 MVA ENS Cachan. Lecture 5: Introduction to generative models Iasonas Kokkinos Machine Learning for Computer Vision 1 22 October, 2012 MVA ENS Cachan Lecture 5: Introduction to generative models Iasonas Kokkinos Iasonas.kokkinos@ecp.fr Center for Visual Computing Ecole Centrale Paris

More information

Cluster Evaluation and Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University

Cluster Evaluation and Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University Cluster Evaluation and Expectation Maximization! adapted from: Doug Downey and Bryan Pardo, Northwestern University Kinds of Clustering Sequential Fast Cost Optimization Fixed number of clusters Hierarchical

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University March 4, 2015 Today: Graphical models Bayes Nets: EM Mixture of Gaussian clustering Learning Bayes Net structure

More information

Geoff McLachlan and Angus Ng. University of Queensland. Schlumberger Chaired Professor Univ. of Texas at Austin. + Chris Bishop

Geoff McLachlan and Angus Ng. University of Queensland. Schlumberger Chaired Professor Univ. of Texas at Austin. + Chris Bishop EM Algorithm Geoff McLachlan and Angus Ng Department of Mathematics & Institute for Molecular Bioscience University of Queensland Adapted by Joydeep Ghosh Schlumberger Chaired Professor Univ. of Texas

More information

Computer vision: models, learning and inference. Chapter 10 Graphical Models

Computer vision: models, learning and inference. Chapter 10 Graphical Models Computer vision: models, learning and inference Chapter 10 Graphical Models Independence Two variables x 1 and x 2 are independent if their joint probability distribution factorizes as Pr(x 1, x 2 )=Pr(x

More information

An Introduction to Cluster Analysis. Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs

An Introduction to Cluster Analysis. Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs An Introduction to Cluster Analysis Zhaoxia Yu Department of Statistics Vice Chair of Undergraduate Affairs zhaoxia@ics.uci.edu 1 What can you say about the figure? signal C 0.0 0.5 1.0 1500 subjects Two

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 30 (Monday) HW 4 is out

More information