Plane wave solutions for the radiative transport equation

Size: px
Start display at page:

Download "Plane wave solutions for the radiative transport equation"

Transcription

1 Plane wave solutions for the radiative transport equation Arnold D. Kim School of Natural Sciences University of California, Merced

2 Overview Introduction to plane wave solutions Green s function Connection to the diffusion approximation Boundary value problems for the radiative transport equation Applications to inverse problems Conclusions and future work Plane wave solutions for the radiative transport equation p.1

3 The radiative transport equation Light propagation in tissues is governed by the radiative transport equation Ω I + ρσa I ρσs L I = Q, with the scattering operator L defined as Z f (Ω Ω )I(Ω, r)dω. L I = I + S2 Plane wave solutions for the radiative transport equation p.2

4 Simplification We consider here the radiative transport equation: µ z I + ρσa I ρσs L I = 0, with µ = cos θ and L I = I + Z 1 h(µ, µ )I(µ, z)dµ. 1 Everything we discuss here can be extended to the full dimensional problem (in principle). Plane wave solutions for the radiative transport equation p.3

5 Plane wave solutions Plane wave solutions are special solutions of the homogeneous problem with constant coefficients of the following form: I(µ, z) = V (µ)eλz. Substitution of this ansatz into the radiative transport equation yields the generalized eigenvalue problem: λµv + ρσa V ρσs L V = 0. Plane wave solutions for the radiative transport equation p.4

6 Brief history The notion of plane wave solutions has been discussed in at least the following references. S. Chandrasekhar, Radiative Transfer (Dover, 1960). K. Case and P. Zweifel, Linear Transport Theory (Addison-Wesley, 1967). A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, 1978). Plane wave solutions for the radiative transport equation p.5

7 Symmetry Theorem. If the pair [λ, V (µ)] is a solution of the generalized eigenvalue problem above, then so is [ λ, V ( µ)]. If we replace λ by λ and µ by µ in the generalized eigenvalue problem, we obtain Proof. λµv ( µ) + ρσa V ( µ) + ρσs V ( µ) Z 1 ρσs h( µ, µ )V ( µ )dµ = 0. 1 Because h( µ, µ ) = h(µ, µ ), we find that [ λ, V ( µ)] satisfies the original generalized eigenvalue problem. Plane wave solutions for the radiative transport equation p.6

8 Interpreting this symmetry For each plane wave solution of the form V (µ)eλz there exists a complimentary plane wave solution of the form V ( µ)e λz. The relationship between these two plane wave solutions is simply a coordinate transformation: If z z then we must also change µ µ. Plane wave solutions for the radiative transport equation p.7

9 Orthogonality Suppose [λ, V (µ)] and [λ, V (µ)] are two different solutions of the generalized eigenvalue problem so that λµv + ρσa V ρσs L V = 0, λ µv + ρσa V ρσs L V = 0. From these two equations, we derive the orthogonality property Z 1 V (µ)v (µ)µdµ = 0. (λ λ ) 1 Plane wave solutions for the radiative transport equation p.8

10 Ording and indexing For each eigenvalue λ, we know that λ is also a eigenvalue. Let us order and index these eigenvalues as < λ j < < λ 1 < λ1 < < λj <. We denote the eigenfunction corresponding to eigenvalue λj by Vj (µ). By the symmetry property, we have λ j = λj, V j (µ) = Vj ( µ). Plane wave solutions for the radiative transport equation p.9

11 Normalization Since Z 1 V j (µ)v j (µ)µdµ = 1 Z 1 Vj ( µ)vj ( µ)µdµ 1 = Z 1 Vj (µ)vj (µ)µdµ, 1 we choose to normalize the eigenfunctions so that Z 1 Vj (µ)vj (µ)µdµ = sgn(j). 1 Plane wave solutions for the radiative transport equation p.10

12 Green s function Green s function G satisfies µ z G + ρσa G ρσs L G = δ(µ µ )δ(z z ) in [ 1, 1] (, ). We prescribe that G 0 as z z, and that lim+ µg z +ǫ µg z ǫ = δ(µ µ ). ǫ 0 Plane wave solutions for the radiative transport equation p.11

13 Computing Green s function For z > z we seek G as the following expansion in plane wave solutions: G= X aj V j (µ)e λj (z z ), z > z. j=1 For z < z we seek G as G= X bj Vj (µ)e λj (z z ), z < z. j=1 Plane wave solutions for the radiative transport equation p.12

14 Computing Green s function Substituting our plane wave expansions into lim+ µg z +ǫ µg z ǫ = δ(µ µ ), ǫ 0 we find that X [aj V j (µ)µ bj Vj (µ)µ] = δ(µ µ ). j=1 Plane wave solutions for the radiative transport equation p.13

15 Computing Green s function By multiplying the equation above by Vk (µ) and integrating over µ, we find that X j=1 aj Z 1 Vk (µ)v j (µ)µdµ bj 1 = Z Z 1 Vk (µ)vj (µ)µdµ 1 1 Vk (µ)δ(µ µ )dµ = Vk (µ ). 1 Due to the orthogonality property, we find that ak = Vk (µ ) when k < 0, bk = Vk (µ ) when k > 0. Plane wave solutions for the radiative transport equation p.14

16 Green s function Using plane wave solutions, we can write G(µ, z; µ, z ) explicitly as X λ, j (z z ) V (µ)v (µ )e, z < z j j j=1 G(µ, z; µ z ) = X λ (z z ). j V (µ)v (µ )e, z > z j j j=1 Plane wave solutions for the radiative transport equation p.15

17 Asymptotics Recall that the eigenvalues are ordered as < λ j < < λ 1 < λ1 < < λj <. That means as z z, we find that ( λ1 (z z ) V1 (µ)v1 (µ )e, G(µ, z; µ z ) λ1 (z z ) V 1 (µ)v 1 (µ )e, z < z, z > z. Plane wave solutions for the radiative transport equation p.16

18 Diffusion approximation When ρσa ρσs, we find that p λ1 3ρσa ρσs (1 g), V1 (µ) c0 + c1 µ, which is exactly what the diffusion approximation gives. The diffusion approximation corresponds to the slowest decaying plane wave solution. Plane wave solutions for the radiative transport equation p.17

19 Diffusion approximation V1(µ) λ µ Plane wave solution Diffusion approximation µ's/µa Plane wave solutions for the radiative transport equation p.18

20 Diffusion approximation µ's/µa = 100 µ's/µa = λj λj 2 diffusion mode 10 0 diffusion mode j j Plane wave solutions for the radiative transport equation p.19

21 Half-space Consider the boundary value problem in [ 1, 1] (0, ): µ z H + ρσa H ρσs L H = δ(µ µ )δ(z z ), H z=0 = 0 on (0, 1]. Green s function G satisfies the equation, but not the boundary condition, so we seek H as H = G Y, where Y satisfies the homogeneous problem and G z=0 = Y z=0 on (0, 1]. Plane wave solutions for the radiative transport equation p.20

22 Half-space Since Y is a solution to the homogeneous problem in the half-space, we represent it as Y (µ, z; µ, z ) = X yj (µ, z )V j (µ)e λj z. j=1 Substituting into the boundary condition, we obtain X j=1 Vj (µ)vj (µ )e λj z = X yj (µ, z )V j (µ), 0 < µ 1. j=1 Plane wave solutions for the radiative transport equation p.21

23 Half-space Through some elementary calculations, we can show that X λk z yj (µ, z ) = djk Vk (µ )e k=1 where djk satisfies the linear system X V j (µ)djk = Vk (µ) 0 < µ 1, k = 1, 2,. j=1 Plane wave solutions for the radiative transport equation p.22

24 Extensions We can use this approach to study other geometries, namely Plane-parallel slab Layered half-space composed of a slab situated on top of a half-space. Plane wave solutions for the radiative transport equation p.23

25 Recap So far, we have made use of plane wave solutions to compute Green s function and solve the half-space problem. To do these calculations, we need the eigenvalues λj and the eigenfunctions Vj (µ), but what are they? In general, we cannot calculate these eigenvalues and eigenfunctions analytically, so we calculate them numerically. Plane wave solutions for the radiative transport equation p.24

26 Numerics We use an M -point Gauss-Legendre quadrature rule of the form Z 1 M X f (µ)dµ f (µm )wm, 1 m=1 with µm and wm denoting the quadrature abscissas and weights, respectively. This quadrature rule is exact for integrating polynomials on [ 1, 1] of degree 2M 1. Plane wave solutions for the radiative transport equation p.25

27 Numerics Using this M -point Gauss-Legendre quadrature rule in the scattering operator, we obtain LM Vm = Vm + M X h(µm, µn )Vn wn, n=1 where Vm V (µm ). Then, we solve the M M generalized eigenvalue problem: λµm Vm + ρσa Vm ρσs LM Vm = 0, m = 1,, M. Plane wave solutions for the radiative transport equation p.26

28 Numerics We can extend this approach to study the full problem by computing a sequence of these matrix eigenvalue problems in the spatial frequency domain: p λµv + i 1 µ2 (kx cos ϕ + ky sin ϕ)v + ρσa V ρσs L V = 0. This method is so-called embarrassingly parallel since each of the eigenvalue problems for spatial frequency each pair (kx, ky ) is decoupled completely from the others. Plane wave solutions for the radiative transport equation p.27

29 Inverse source problem Consider the following problem in [ 1, 1] (0, ): µ z I + ρσa I ρσs L I = S0 δ(z z0 ), I z=0 = 0 on (0, 1]. Suppose, we measure the out-going intensity at z = 0: M (µ) = I(µ, 0) on 1 µ < 0, can we determine S0 and z0? Plane wave solutions for the radiative transport equation p.28

30 Inverse source problem The solution to forward model is Z 1 M (µ) = S0 H(µ, 0; µ, z0 )dµ on 1 µ < 0. 1 Substituting our plane wave expansions, we obtain M (µ) = S0 X j=1 with V j = Z " Vj (µ)v j e λj z0 X k=1 djk V k e λk z0! V j (µ) # 1 Vj (µ)dµ. 1 Plane wave solutions for the radiative transport equation p.29

31 Inverse source problem Using our explicit expression for M (µ), we can seek the unknown values: S0 and z0 by solving a nonlinear least-squares problem numerically. The key here is that we see the explicit dependence that the measured data has on the parameters. Plane wave solutions for the radiative transport equation p.30

32 Other inverse problems We have used this basic approach to study a variety of linear or linearized inverse problems. Registering a source in a half-space of tissue. Estimating optical properties in layered tissues. Reconstructing a thin absorber in a half-space of tissue. Reconstructing an irregular interface in layered tissues. Reconstructing an absorber in epithelial tissues. Plane wave solutions for the radiative transport equation p.31

33 Conclusions We have given an overview of plane wave solutions. We have shown how to construct explicit solutions to boundary value problems using expansions of plane wave solutions. These explicit solutions provide insight on how measured data depends on the optical properties of tissues. Plane wave solutions for the radiative transport equation p.32

34 Future work Plane wave solutions for the vector radiative transport equation. Using plane wave solutions to study data measured using spatial frequency domain methods. Implementation of the plane wave solution codes to various platforms for practical use in teaching and research, e.g. Virtual Photonics Simulator, Python, etc. Plane wave solutions for the radiative transport equation p.33

Ocean Optics Inversion Algorithm

Ocean Optics Inversion Algorithm Ocean Optics Inversion Algorithm N. J. McCormick 1 and Eric Rehm 2 1 University of Washington Department of Mechanical Engineering Seattle, WA 98195-26 mccor@u.washington.edu 2 University of Washington

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer K. Franklin Evans Program in Atmospheric and Oceanic Sciences University of Colorado, Boulder Computational Methods in

More information

FRESNEL DIFFRACTION AND PARAXIAL WAVE EQUATION. A. Fresnel diffraction

FRESNEL DIFFRACTION AND PARAXIAL WAVE EQUATION. A. Fresnel diffraction 19 IV. FRESNEL DIFFRACTION AND PARAXIAL WAVE EQUATION A. Fresnel diffraction Any physical optical beam is of finite transverse cross section. Beams of finite cross section may be described in terms of

More information

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012

Diffuse Optical Tomography, Inverse Problems, and Optimization. Mary Katherine Huffman. Undergraduate Research Fall 2011 Spring 2012 Diffuse Optical Tomography, Inverse Problems, and Optimization Mary Katherine Huffman Undergraduate Research Fall 11 Spring 12 1. Introduction. This paper discusses research conducted in order to investigate

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

A fast direct solver for high frequency scattering from a cavity in two dimensions

A fast direct solver for high frequency scattering from a cavity in two dimensions 1/31 A fast direct solver for high frequency scattering from a cavity in two dimensions Jun Lai 1 Joint work with: Leslie Greengard (CIMS) Sivaram Ambikasaran (CIMS) Workshop on fast direct solver, Dartmouth

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Lagrange Multipliers and Problem Formulation

Lagrange Multipliers and Problem Formulation Lagrange Multipliers and Problem Formulation Steven J. Miller Department of Mathematics and Statistics Williams College Williamstown, MA 01267 Abstract The method of Lagrange Multipliers (and its generalizations)

More information

x ~ Hemispheric Lighting

x ~ Hemispheric Lighting Irradiance and Incoming Radiance Imagine a sensor which is a small, flat plane centered at a point ~ x in space and oriented so that its normal points in the direction n. This sensor can compute the total

More information

Advanced Image Reconstruction Methods for Photoacoustic Tomography

Advanced Image Reconstruction Methods for Photoacoustic Tomography Advanced Image Reconstruction Methods for Photoacoustic Tomography Mark A. Anastasio, Kun Wang, and Robert Schoonover Department of Biomedical Engineering Washington University in St. Louis 1 Outline Photoacoustic/thermoacoustic

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

Parallel and perspective projections such as used in representing 3d images.

Parallel and perspective projections such as used in representing 3d images. Chapter 5 Rotations and projections In this chapter we discuss Rotations Parallel and perspective projections such as used in representing 3d images. Using coordinates and matrices, parallel projections

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

TD2 : Stereoscopy and Tracking: solutions

TD2 : Stereoscopy and Tracking: solutions TD2 : Stereoscopy and Tracking: solutions Preliminary: λ = P 0 with and λ > 0. If camera undergoes the rigid transform: (R,T), then with, so that is the intrinsic parameter matrix. C(Cx,Cy,Cz) is the point

More information

Forward and Adjoint Radiance Monte Carlo Models for Quantitative Photoacoustic Imaging

Forward and Adjoint Radiance Monte Carlo Models for Quantitative Photoacoustic Imaging Forward and Adjoint Radiance Monte Carlo Models for Quantitative Photoacoustic Imaging Roman Hochuli a, Samuel Powell b, Simon Arridge b and Ben Cox a a Department of Medical Physics & Biomedical Engineering,

More information

Fundamental Optics for DVD Pickups. The theory of the geometrical aberration and diffraction limits are introduced for

Fundamental Optics for DVD Pickups. The theory of the geometrical aberration and diffraction limits are introduced for Chapter Fundamental Optics for DVD Pickups.1 Introduction to basic optics The theory of the geometrical aberration and diffraction limits are introduced for estimating the focused laser beam spot of a

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Numerical Aspects of Special Functions

Numerical Aspects of Special Functions Numerical Aspects of Special Functions Nico M. Temme In collaboration with Amparo Gil and Javier Segura, Santander, Spain. Nico.Temme@cwi.nl Centrum voor Wiskunde en Informatica (CWI), Amsterdam Numerics

More information

CIPC Louis Mattar. Fekete Associates Inc. Analytical Solutions in Well Testing

CIPC Louis Mattar. Fekete Associates Inc. Analytical Solutions in Well Testing CIPC 2003 Louis Mattar Fekete Associates Inc Analytical Solutions in Well Testing Well Test Equation 2 P 2 P 1 P + = x 2 y 2 α t Solutions Analytical Semi-Analytical Numerical - Finite Difference Numerical

More information

Diffusion Wavelets for Natural Image Analysis

Diffusion Wavelets for Natural Image Analysis Diffusion Wavelets for Natural Image Analysis Tyrus Berry December 16, 2011 Contents 1 Project Description 2 2 Introduction to Diffusion Wavelets 2 2.1 Diffusion Multiresolution............................

More information

Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion

Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion N. Bleistein J.K. Cohen J.W. Stockwell, Jr. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion With 71 Illustrations Springer Contents Preface List of Figures vii xxiii 1 Multidimensional

More information

CPSC 340: Machine Learning and Data Mining. Kernel Trick Fall 2017

CPSC 340: Machine Learning and Data Mining. Kernel Trick Fall 2017 CPSC 340: Machine Learning and Data Mining Kernel Trick Fall 2017 Admin Assignment 3: Due Friday. Midterm: Can view your exam during instructor office hours or after class this week. Digression: the other

More information

New Basis Functions and Their Applications to PDEs

New Basis Functions and Their Applications to PDEs Copyright c 2007 ICCES ICCES, vol.3, no.4, pp.169-175, 2007 New Basis Functions and Their Applications to PDEs Haiyan Tian 1, Sergiy Reustkiy 2 and C.S. Chen 1 Summary We introduce a new type of basis

More information

IMGS Solution Set #9

IMGS Solution Set #9 IMGS-3-175 Solution Set #9 1. A white-light source is filtered with a passband of λ 10nmcentered about λ 0 600 nm. Determine the coherence length of the light emerging from the filter. Solution: The coherence

More information

Rectification and Distortion Correction

Rectification and Distortion Correction Rectification and Distortion Correction Hagen Spies March 12, 2003 Computer Vision Laboratory Department of Electrical Engineering Linköping University, Sweden Contents Distortion Correction Rectification

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

Almost Curvature Continuous Fitting of B-Spline Surfaces

Almost Curvature Continuous Fitting of B-Spline Surfaces Journal for Geometry and Graphics Volume 2 (1998), No. 1, 33 43 Almost Curvature Continuous Fitting of B-Spline Surfaces Márta Szilvási-Nagy Department of Geometry, Mathematical Institute, Technical University

More information

Analytic Rendering of Multiple Scattering in Participating Media

Analytic Rendering of Multiple Scattering in Participating Media Analytic Rendering of Multiple Scattering in Participating Media Srinivasa G. Narasimhan, Ravi Ramamoorthi and Shree K. Nayar Computer Science Department, Columbia University New York, NY, USA E-mail:

More information

Image Reconstruction in Optical Tomography : Utilizing Large Data Sets

Image Reconstruction in Optical Tomography : Utilizing Large Data Sets Image Reconstruction in Optical Tomography : Utilizing Large Data Sets Vadim A. Markel, Ph.D. Department of Radiology John C. Schotland, M.D., Ph.D. Department of Bioengineering http://whale.seas.upenn.edu

More information

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009

2.710 Optics Spring 09 Solutions to Problem Set #1 Posted Wednesday, Feb. 18, 2009 MASSACHUSETTS INSTITUTE OF TECHNOLOGY.70 Optics Spring 09 Solutions to Problem Set # Posted Wednesday, Feb. 8, 009 Problem : Spherical waves and energy conservation In class we mentioned that the radiation

More information

Spherical Microphone Arrays

Spherical Microphone Arrays Spherical Microphone Arrays Acoustic Wave Equation Helmholtz Equation Assuming the solutions of wave equation are time harmonic waves of frequency ω satisfies the homogeneous Helmholtz equation: Boundary

More information

Kinematics of the Stewart Platform (Reality Check 1: page 67)

Kinematics of the Stewart Platform (Reality Check 1: page 67) MATH 5: Computer Project # - Due on September 7, Kinematics of the Stewart Platform (Reality Check : page 7) A Stewart platform consists of six variable length struts, or prismatic joints, supporting a

More information

Combinatorics of free product graphs

Combinatorics of free product graphs Combinatorics of free product graphs Gregory Quenell March 8, 994 Abstract We define the return generating function on an abstract graph, and develop tools for computing such functions. The relation between

More information

Chapter 13. Boundary Value Problems for Partial Differential Equations* Linz 2002/ page

Chapter 13. Boundary Value Problems for Partial Differential Equations* Linz 2002/ page Chapter 13 Boundary Value Problems for Partial Differential Equations* E lliptic equations constitute the third category of partial differential equations. As a prototype, we take the Poisson equation

More information

Diffuse light tomography to detect blood vessels using Tikhonov regularization Huseyin Ozgur Kazanci* a, Steven L. Jacques b a

Diffuse light tomography to detect blood vessels using Tikhonov regularization Huseyin Ozgur Kazanci* a, Steven L. Jacques b a Diffuse light tomography to detect blood vessels using Tikhonov regularization Huseyin Ozgur Kazanci* a, Steven L. Jacques b a Biomedical Engineering, Faculty of Engineering, Akdeniz University, 07058

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Compact spectrometer based on a disordered photonic chip Brandon Redding, Seng Fatt Liew, Raktim Sarma, Hui Cao* Department of Applied Physics, Yale University, New Haven, CT

More information

Performance and Application of the DORT2002 Light Scattering Simulation Model

Performance and Application of the DORT2002 Light Scattering Simulation Model Performance and Application of the DORT22 Light Scattering Simulation Model Per Edström Marcus Lehto Mid Sweden University FSCN Report ISSN 165-5387 23:22 Internal FSCN Report Number: June 23 NET W O R

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Support Vector Machines

Support Vector Machines Support Vector Machines . Importance of SVM SVM is a discriminative method that brings together:. computational learning theory. previously known methods in linear discriminant functions 3. optimization

More information

ECE 470: Homework 5. Due Tuesday, October 27 in Seth Hutchinson. Luke A. Wendt

ECE 470: Homework 5. Due Tuesday, October 27 in Seth Hutchinson. Luke A. Wendt ECE 47: Homework 5 Due Tuesday, October 7 in class @:3pm Seth Hutchinson Luke A Wendt ECE 47 : Homework 5 Consider a camera with focal length λ = Suppose the optical axis of the camera is aligned with

More information

The Fast Multipole Method (FMM)

The Fast Multipole Method (FMM) The Fast Multipole Method (FMM) Motivation for FMM Computational Physics Problems involving mutual interactions of N particles Gravitational or Electrostatic forces Collective (but weak) long-range forces

More information

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Jingwei Zhu March 19, 2014 Instructor: Surya Pratap Vanka 1 Project Description The purpose of this

More information

PATTERN CLASSIFICATION AND SCENE ANALYSIS

PATTERN CLASSIFICATION AND SCENE ANALYSIS PATTERN CLASSIFICATION AND SCENE ANALYSIS RICHARD O. DUDA PETER E. HART Stanford Research Institute, Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane

More information

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

CHAPTER 5 SYSTEMS OF EQUATIONS. x y page 1 of Section 5.1 CHAPTER 5 SYSTEMS OF EQUATIONS SECTION 5.1 GAUSSIAN ELIMINATION matrix form of a system of equations The system 2x + 3y + 4z 1 5x + y + 7z 2 can be written as Ax where b 2 3 4 A [

More information

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4)

MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology. Lecture 9: Reflection and Refraction (Petty Ch4) MET 4410 Remote Sensing: Radar and Satellite Meteorology MET 5412 Remote Sensing in Meteorology Lecture 9: Reflection and Refraction (Petty Ch4) When to use the laws of reflection and refraction? EM waves

More information

Problem Solving 10: Double-Slit Interference

Problem Solving 10: Double-Slit Interference MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics roblem Solving 10: Double-Slit Interference OBJECTIVES 1. To introduce the concept of interference. 2. To find the conditions for constructive

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

Lecture 4: Petersen Graph 2/2; also, Friendship is Magic!

Lecture 4: Petersen Graph 2/2; also, Friendship is Magic! Spectral Graph Theory Instructor: Padraic Bartlett Lecture 4: Petersen Graph /; also, Friendship is Magic! Week 4 Mathcamp 0 We did a ton of things yesterday! Here s a quick recap:. If G is a n, k, λ,

More information

Post-Processing Radial Basis Function Approximations: A Hybrid Method

Post-Processing Radial Basis Function Approximations: A Hybrid Method Post-Processing Radial Basis Function Approximations: A Hybrid Method Muhammad Shams Dept. of Mathematics UMass Dartmouth Dartmouth MA 02747 Email: mshams@umassd.edu August 4th 2011 Abstract With the use

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

Precomputed Radiance Transfer: Theory and Practice

Precomputed Radiance Transfer: Theory and Practice 1 Precomputed Radiance Transfer: Peter-Pike Sloan Microsoft Jaakko Lehtinen Helsinki Univ. of Techn. & Remedy Entertainment Jan Kautz MIT 2 Introduction Jan Kautz MIT 3 Introduction We see here an example

More information

Homogeneous Coordinates and Transformations of the Plane

Homogeneous Coordinates and Transformations of the Plane 2 Homogeneous Coordinates and Transformations of the Plane 2. Introduction In Chapter planar objects were manipulated by applying one or more transformations. Section.7 identified the problem that the

More information

EE119 Homework 3. Due Monday, February 16, 2009

EE119 Homework 3. Due Monday, February 16, 2009 EE9 Homework 3 Professor: Jeff Bokor GSI: Julia Zaks Due Monday, February 6, 2009. In class we have discussed that the behavior of an optical system changes when immersed in a liquid. Show that the longitudinal

More information

Perspective Mappings. Contents

Perspective Mappings. Contents Perspective Mappings David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

Monte-Carlo modeling used to simulate propagation of photons in a medium

Monte-Carlo modeling used to simulate propagation of photons in a medium Monte-Carlo modeling used to simulate propagation of photons in a medium Nils Haëntjens Ocean Optics Class 2017 based on lectures from Emmanuel Boss and Edouard Leymarie What is Monte Carlo Modeling? Monte

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometry and Camera Calibration 3D Coordinate Systems Right-handed vs. left-handed x x y z z y 2D Coordinate Systems 3D Geometry Basics y axis up vs. y axis down Origin at center vs. corner Will often

More information

INTRODUCTION TO The Uniform Geometrical Theory of Diffraction

INTRODUCTION TO The Uniform Geometrical Theory of Diffraction INTRODUCTION TO The Uniform Geometrical Theory of Diffraction D.A. McNamara, C.W.I. Pistorius J.A.G. Malherbe University of Pretoria Artech House Boston London CONTENTS Preface xiii Chapter 1 The Nature

More information

Optimization of metallic biperiodic photonic crystals. Application to compact directive antennas

Optimization of metallic biperiodic photonic crystals. Application to compact directive antennas Optimization of metallic biperiodic photonic crystals Application to compact directive antennas Nicolas Guérin Computational Optic Groups (COG) IFH, ETHZ, http://alphard.ethz.ch Keywords: 3D modeling,

More information

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC Advanced Mathematics and Mechanics Applications Using MATLAB Third Edition Howard B. Wilson University of Alabama Louis H. Turcotte Rose-Hulman Institute of Technology David Halpern University of Alabama

More information

CS-9645 Introduction to Computer Vision Techniques Winter 2019

CS-9645 Introduction to Computer Vision Techniques Winter 2019 Table of Contents Projective Geometry... 1 Definitions...1 Axioms of Projective Geometry... Ideal Points...3 Geometric Interpretation... 3 Fundamental Transformations of Projective Geometry... 4 The D

More information

Diffraction. Light bends! Diffraction assumptions. Solution to Maxwell's Equations. The far-field. Fraunhofer Diffraction Some examples

Diffraction. Light bends! Diffraction assumptions. Solution to Maxwell's Equations. The far-field. Fraunhofer Diffraction Some examples Diffraction Light bends! Diffraction assumptions Solution to Maxwell's Equations The far-field Fraunhofer Diffraction Some examples Diffraction Light does not always travel in a straight line. It tends

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY

REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY Arvind Saibaba Sarah Vallélian Statistical and Applied Mathematical Sciences Institute & North Carolina State University May 26, 2016 OUTLINE

More information

Vectors. Section 1: Lines and planes

Vectors. Section 1: Lines and planes Vectors Section 1: Lines and planes Notes and Examples These notes contain subsections on Reminder: notation and definitions Equation of a line The intersection of two lines Finding the equation of a plane

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

X-ray tomography. X-ray tomography. Applications in Science. X-Rays. Notes. Notes. Notes. Notes

X-ray tomography. X-ray tomography. Applications in Science. X-Rays. Notes. Notes. Notes. Notes X-ray tomography Important application of the Fast Fourier transform: X-ray tomography. Also referred to as CAT scan (Computerized Axial Tomography) X-ray tomography This has revolutionized medical diagnosis.

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 19, 2012 Andre Tkacenko

More information

Topic 4: Vectors Markscheme 4.6 Intersection of Lines and Planes Paper 2

Topic 4: Vectors Markscheme 4.6 Intersection of Lines and Planes Paper 2 Topic : Vectors Markscheme. Intersection of Lines and Planes Paper. Using an elimination method, x y + z x y z x y x + y 8 y Therefore x, y, z Using matrices, x y z x y z 5 (using a graphic display calculator)

More information

Metropolis Light Transport

Metropolis Light Transport Metropolis Light Transport CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Announcements Final presentation June 13 (Tuesday)

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1 Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

More information

Pre-Calculus Summer Assignment

Pre-Calculus Summer Assignment Name: Pre-Calculus Summer Assignment Due Date: The beginning of class on September 8, 017. The purpose of this assignment is to have you practice the mathematical skills necessary to be successful in Pre-Calculus.

More information

Visual Recognition: Image Formation

Visual Recognition: Image Formation Visual Recognition: Image Formation Raquel Urtasun TTI Chicago Jan 5, 2012 Raquel Urtasun (TTI-C) Visual Recognition Jan 5, 2012 1 / 61 Today s lecture... Fundamentals of image formation You should know

More information

Lecture 6. Dielectric Waveguides and Optical Fibers. Slab Waveguide, Modes, V-Number Modal, Material, and Waveguide Dispersions

Lecture 6. Dielectric Waveguides and Optical Fibers. Slab Waveguide, Modes, V-Number Modal, Material, and Waveguide Dispersions Lecture 6 Dielectric Waveguides and Optical Fibers Slab Waveguide, Modes, V-Number Modal, Material, and Waveguide Dispersions Step-Index Fiber, Multimode and Single Mode Fibers Numerical Aperture, Coupling

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10 MATH 573 LECTURE NOTES 77 13.8. Predictor-corrector methods. We consider the Adams methods, obtained from the formula xn+1 xn+1 y(x n+1 y(x n ) = y (x)dx = f(x,y(x))dx x n x n by replacing f by an interpolating

More information

To do this the end effector of the robot must be correctly positioned relative to the work piece.

To do this the end effector of the robot must be correctly positioned relative to the work piece. Spatial Descriptions and Transformations typical robotic task is to grasp a work piece supplied by a conveyer belt or similar mechanism in an automated manufacturing environment, transfer it to a new position

More information

Von Neumann Analysis for Higher Order Methods

Von Neumann Analysis for Higher Order Methods 1. Introduction Von Neumann Analysis for Higher Order Methods Von Neumann analysis is a widely used method to study how an initial wave is propagated with certain numerical schemes for a linear wave equation

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

Ganado Unified School District Pre-Calculus 11 th /12 th Grade

Ganado Unified School District Pre-Calculus 11 th /12 th Grade Ganado Unified School District Pre-Calculus 11 th /12 th Grade PACING Guide SY 2016-2017 Timeline & Resources Quarter 1 AZ College and Career Readiness Standard HS.A-CED.4. Rearrange formulas to highlight

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

On Smooth Bicubic Surfaces from Quad Meshes

On Smooth Bicubic Surfaces from Quad Meshes On Smooth Bicubic Surfaces from Quad Meshes Jianhua Fan and Jörg Peters Dept CISE, University of Florida Abstract. Determining the least m such that one m m bi-cubic macropatch per quadrilateral offers

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Concept of Curve Fitting Difference with Interpolation

Concept of Curve Fitting Difference with Interpolation Curve Fitting Content Concept of Curve Fitting Difference with Interpolation Estimation of Linear Parameters by Least Squares Curve Fitting by Polynomial Least Squares Estimation of Non-linear Parameters

More information

The Humble Tetrahedron

The Humble Tetrahedron The Humble Tetrahedron C. Godsalve email:seagods@hotmail.com November 4, 010 In this article, it is assumed that the reader understands Cartesian coordinates, basic vectors, trigonometry, and a bit of

More information

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer INVERSE AND ILL-POSED PROBLEMS SERIES Monte Carlo Method for Solving Inverse Problems of Radiation Transfer V.S.Antyufeev. ///VSP/// UTRECHT BOSTON KÖLN TOKYO 2000 Contents Chapter 1. Monte Carlo modifications

More information

What is Monte Carlo Modeling*?

What is Monte Carlo Modeling*? What is Monte Carlo Modeling*? Monte Carlo Modeling is a statisitcal method used here to simulate radiative transfer by simulating photon (or more exactly light rays/beams) interaction with a medium. MC

More information

NUC E 521. Chapter 6: METHOD OF CHARACTERISTICS

NUC E 521. Chapter 6: METHOD OF CHARACTERISTICS NUC E 521 Chapter 6: METHOD OF CHARACTERISTICS K. Ivanov 206 Reber, 865-0040, kni1@psu.edu Introduction o Spatial three-dimensional (3D) and energy dependent modeling of neutron population in a reactor

More information

Ganado Unified School District Trigonometry/Pre-Calculus 12 th Grade

Ganado Unified School District Trigonometry/Pre-Calculus 12 th Grade Ganado Unified School District Trigonometry/Pre-Calculus 12 th Grade PACING Guide SY 2014-2015 Timeline & Resources Quarter 1 AZ College and Career Readiness Standard HS.A-CED.4. Rearrange formulas to

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function

Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function Modeling photon propagation in biological tissues using a generalized Delta-Eddington phase function W. Cong, 1 H. Shen, 1 A. Cong, 1 Y. Wang, 2 and G. Wang 1 1 Biomedical Imaging Division, School of Biomedical

More information