A fast direct solver for high frequency scattering from a cavity in two dimensions

Size: px
Start display at page:

Download "A fast direct solver for high frequency scattering from a cavity in two dimensions"

Transcription

1 1/31 A fast direct solver for high frequency scattering from a cavity in two dimensions Jun Lai 1 Joint work with: Leslie Greengard (CIMS) Sivaram Ambikasaran (CIMS) Workshop on fast direct solver, Dartmouth College, Courant Institute of Mathematical Sciences, New York University

2 2/31 Outline 1 Introduction 2 Integral formulation of the cavity problem 3 Discretization 4 Fast direct solver 5 Numerical experiment 6 Conclusion

3 3/31 Introduction Cavity structures exist in many electromagnetic applications Figure : F16 exhaust nozzle, from: f16model.blogspot.com

4 4/31 Geometry Consider the 2D wave scattering from a cavity embedded in the ground plane Γ 1 R 2 + \Ω 1 x2 Ω 1 Γ c P 1 B x1 B P2 Γ c Γ Ω 2 Γ 2 R 2 \Ω 2 Figure : Geometry of the problem

5 5/31 Related work Well-posedness(Ammari-Bao-Wood 02) Inverse scattering problem(bao-gao-li 11) Stability of the solution(bao-yun-zhou 12,Li-Ma-Sun 12) Numerical simulation: bounding and shooting rays(ling-chou-lee 89), Gaussian beam asymptotics(burkholder 91), finite difference(bao-sun 05), finite element(liu-jin 00), iterative physical optics(hemon-pouliguen 08), mode matching method(bao-gao-lin-zhang 12), Overfilled cavity(van-wood 04,Huang-Wood 05) Asymptotic of resonances(bonnetier-triki 14) Optimal design(bao-lai 14)

6 6/31 Formulation Assumption: permittivity ε 0, permeability µ 0 are constant everywhere Plane wave incidence: Total field u has the form: u inc = e i(k 0 cos θx k 0 sin θy) u(x, y) = u s (x, y) + u inc e i(k 0 cos θx+k 0 sin θy) Total field u satisfies the equation: u + k 2 u = 0 in Ω 1 R 2 + where k = ω ε 0 µ 0 is the wavenumber.

7 7/31 Helmholtz Equation The scattered wave satisfies the Helmholtz equation: { u s + k 2 u s = 0 in Ω 1 R 2 + u s = g on Γ Γ c (1) along with the Sommerfeld radiation condition (2), where g = (u i + u r ), along with the Sommerfeld radiation condition ( ) u s lim r iku s = 0 (2) r r Approach to find u s : Integral formulation.

8 8/31 Preliminary Let Φ(x, y) = i 4 H(1) 0 (k x y ) (3) Φ H (x, y) = i 4 H(1) 0 (k x y ) i 4 H(1) 0 (k x y ) (4) and S H and D H are the single layer and double layer operators in the half-space: SΓ H 1 σ = Φ H (x, y)σ(y)ds y (5) Γ 1 DΓ H Φ H (x, y) 1 µ = µ(y)ds y. (6) Γ 1 n(y)

9 x2 x1 9/31 Integral Formulation Assume Γ 1 is an artificial boundary that covers the cavity Ω 1. A natural formulation to represent the exterior field u s is: u s = S H Γ 1 σ + D H Γ 1 µ, for x R 2 +\Ω 1 (7) The scattered field u s in Ω 1 is represented by u s = S Γ1 σ + D Γ1 µ + D B µ + D Γ µ for x Ω 1 (8) Γ1 R 2 + \Ω1 Γ c P1 B Ω1 B P2 Γ c Γ Ω2 Γ2 R 2 \Ω2

10 Integral equation Combining the boundary condition and jump condition from layer potentials yields i.e. µ S Γ2 σ D Γ2 µ D B µ D Γ µ = 0, for x Γ 1 σ + N Γ2 σ + T Γ2 µ + T B µ + T Γ µ = 0, for x Γ µ + S Γ 1 σ + D Γ1 µ + D B µ + D Γ µ = g, for x Γ B A = where 1/2 D D S D 1/2 + D D S D D 1 D S T T T 1 + N N Γ σ = T Γ µ = Γ Γ µ B µ Γ µ Γ1 σ Γ1 (9) (10) Φ(x, y) n(x) σ(y)ds y (11) 2 Φ(x, y) n(x) n(y) µ(y)ds y (12) 10/31

11 11/31 Numerical result The formulation is not Fredholm equation of second kind. Numerically it is difficult to discretize T B µ to high order. Table : Results for pot shaped cavity at different wavenumber k Error

12 x2 x1 12/31 Conclusion New formulation We therefore propose the following formulation: { u s = S H Γ 1 σ + D H Γ 1 µ + D B µ, for x R 2 +\Ω 1 u s = S H Γ 1 σ + D H Γ 1 µ + D B µ + D Γ µ, for x Ω 1 (13) Compared to the old formulation: u s = { S H Γ1 σ + D H Γ 1 µ, for x R 2 +\Ω 1 S Γ1 σ + D Γ1 µ + D B µ + D Γ µ for x Ω 1 (14) we add some non-physical terms in the new formulation. Γ1 R 2 + \Ω1 Ω1 Γ c P1 B B P2 Γ c Γ Ω2 Γ2 R 2 \Ω2

13 x2 x1 13/31 Conclusion Integral equation The new formulation leads to the following integral equation: µ D Γ µ = 0, for x Γ 1 σ + T Γ µ = 0, for x Γ µ + SH Γ 1 σ + DΓ H 1 µ + D B µ + D Γ µ = g, for x B Γ Advantage: the system is still second kind. More importantly, there is no hypersingular term anymore. One can even eliminate µ and σ on Γ 1 by hand and reduce the unknown to µ on B Γ only. Γ1 R 2 + \Ω1 Γ c P1 B Ω1 B P2 Γ c Γ Ω2 Γ2 R 2 \Ω2

14 14/31 Conclusion Well-posedness We have the following uniqueness result: Theorem Given k > 0, the following system µ D Γ µ = 0, for x Γ 1 σ + T Γ µ = 0, for x Γ µ + SH Γ 1 σ + DΓ H 1 µ + D B µ + D Γ µ = 0, for x B Γ only has a zero solution for µ C(B) C(Γ) C(Γ 1 ) and σ C(Γ 1 ). from which the existence of the solution follows.

15 15/31 Discretization In our numerical simulation, we apply Nyström discetization to the integral equation. In other words, we replace the integral K (x, y)σ(y)ds y (15) by the quadrature N i=1 j=1 Γ p K(x l,m, y i,j )σ(y i,j )w l,m,i,j (16) where x l,m is the m-th Gauss-Legendre node on panel l, y i,j is the j-th Gauss-Legendre node on panel i, w l,m,i,j is the quadrature weight and K is the "quadrature kernel".

16 16/31 Dyadic refinement In the existence of corners, we apply the dyadic refinement at the end of each segment Figure : Graded mesh on a smooth segment Error analysis: The formal error analysis depends on the regularity of σ and µ. Qualitatively, if ɛ denotes the length of the finest panel, then the error is proportional to O(e p + ɛ).

17 17/31 Fast direct solver A large dense linear system will be generated from the cavity problem, especially when the frequency is high. Conventional linear solver, either direct or iterative, requires an enormous amount of time. We therefore choose fast direct solver to solve the problem. The advantages of fast direct solver are: The direct solver is insensitive to multiple reflections inside the cavity, especially at high frequencies and hence is much faster than iterative solver. The solver scales exceptionally well with multiple right hand sides.

18 18/31 The linear matrix to be solved The following is the system that we need to solve: A = 1/2 D 0 0 D 1/2 + D D H S H 0 D T 0 1 µ B µ Γ µ Γ1 σ Γ1 (17)

19 19/31 Low rank interaction for far field Low Rank Interaction Figure : Low Rank interaction between two different segments The rank of the far field interaction is roughly on the order of log(k), which implies the matrix, A R N N, has a hierarchical off-diagonal low-rank (HODLR) structure.

20 20/31 Inverse of a matrix with low rank perturbation One can quickly find the inverse of a matrix with low rank perturbation if the inverse of the matrix is known through Sherman-Morrison formula: If A R n n is invertible, u R n and v R n, then (A + uv T ) 1 = A 1 A 1 uv T A v T A 1 u (18) Generalization to rank k perturbation to A is the Sherman-Morrison-Woodbury formula: (A + UV T ) 1 = A 1 A 1 U(I + V T A 1 U) 1 V T A 1 (19)

21 21/31 HODLR matrix A 2-level HODLR matrix can be written in the form shown in equation (21). A = [ = A (1) 1 U (1) 1 K (1) 1,2 V ] (1)T 2 U (1) 2 K (1) 2,1 V (1)T 1 A (1) 2 [ (2) A 1 U (2) 1 K (2) 1,2 V (2)T 2 U (2) 2 K (2) 2,1 V (2)T 1 A (2) 2 U (1) 2 K (1) 2,1 V (1)T 1 ] U (1) 1 K (1) 1,2 V (1)T 2 [ (2) A 3 U (2) 3 K (2) 3,4 V ] (2)T 4 U (2) 4 K (2) 4,3 V (2)T 3 A (2) 4 The low-rank decomposition of the off-diagonal blocks is obtained using the adaptive cross approximation (ACA) algorithm, which is a minor modification of the partially pivoted LU algorithm. (20) (21)

22 22/31 Multiple level Full rank; Low rank; Figure : A hierarchical off-diagonal low-rank matrix at different levels.

23 23/31 factorization The matrix A is factored as shown in Equation (22). A = A κ A κ 1 A 1 A 0 (22) where A i s are block diagonal matrices with 2 i diagonal blocks and each block is a low-rank perturbation to identity matrix. = A A 3 A 2 A 1 A 0 Full rank; Low-rank; Identity matrix; Zero matrix; Figure : Factorization of a HODLR matrix at level 3.

24 24/31 Inversion To invert the matrix after the factorization, one simply needs to apply the Sherman-Morrison-Woodbury formula recursively. The whole cost is on O(N). For multiple right hand sides, the additional cost is negligible.

25 25/31 Numerical experiment We are trying to mimic the following field in Ω: u(x) = i 4 H(1) 0 (k (x x 0) ) + i 4 H(1) 0 (k (x x 0 ) ), (23) by solving the following equation µ + D Γ µ = u(x), for x Γ 1 σ + T Γ µ = u(x) n, for x Γ µ + SH Γ 1 σ + DΓ H 1 µ + D B µ + D Γ µ = u(x), for x B Γ (24) where x 0 = (5, 12), x 0 = (5, 12) and the center of the cavity is at (0.5, 0).

26 Pot shaped cavity (a) Figure : Example 1. (a)real part of the scattered field for a pot shaped cavity from the normal incidence of a plane wave with wavenumber k=160. (b)the backscatter RCS in db for the pot shaped cavity at k= (b) /31

27 27/31 Pot shaped cavity Table : Results for pot shaped cavity at different wavenumber k N mid N over N tot T factor (s) T solve (s) E error

28 Engine shaped cavity (a) (b) Figure : Example 2. (a)real part of the scattered field for a engine shaped cavity from the 45 o incidence of a plane wave with wavenumber k=160. (b)the backscatter RCS in db for the engine shaped cavity at k= /31

29 Rough bottom cavity (a) (b) Figure : Example 3. (a)real part of the scattered field for a rough bottom cavity from the normal incidence of a plane wave with wavenumber k=160. (b)the backscatter RCS in db for the rough bottom cavity at k= /31

30 30/31 Conclusion Propose an integral formulation for the cavity problem that leads to a high order discretization Apply the fast direct solver for the resulted linear system The extension to TE case is straightforward Future work includes the impedance boundary problem, optimal design problem

31 31/31 Thank you

High Frequency Wave Scattering

High Frequency Wave Scattering High Frequency Wave Scattering University of Reading March 21st, 2006 - Scattering theory What is the effect of obstacles or inhomogeneities on an incident wave? - Scattering theory What is the effect

More information

Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation

Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation Nail A. Gumerov Ross Adelman Ramani Duraiswami University of Maryland Institute for Advanced Computer Studies and Fantalgo,

More information

Iterative methods for use with the Fast Multipole Method

Iterative methods for use with the Fast Multipole Method Iterative methods for use with the Fast Multipole Method Ramani Duraiswami Perceptual Interfaces and Reality Lab. Computer Science & UMIACS University of Maryland, College Park, MD Joint work with Nail

More information

A high frequency boundary element method for scattering by penetrable convex polygons

A high frequency boundary element method for scattering by penetrable convex polygons School of Mathematical, Physical and Computational Sciences Department of Mathematics and Statistics Preprint MPCS-2017-06 9 May 2017 A high frequency boundary element method for scattering by penetrable

More information

Low-rank Properties, Tree Structure, and Recursive Algorithms with Applications. Jingfang Huang Department of Mathematics UNC at Chapel Hill

Low-rank Properties, Tree Structure, and Recursive Algorithms with Applications. Jingfang Huang Department of Mathematics UNC at Chapel Hill Low-rank Properties, Tree Structure, and Recursive Algorithms with Applications Jingfang Huang Department of Mathematics UNC at Chapel Hill Fundamentals of Fast Multipole (type) Method Fundamentals: Low

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

Progress In Electromagnetics Research, PIER 43, , 2003

Progress In Electromagnetics Research, PIER 43, , 2003 Progress In Electromagnetics Research, PIER 43, 123 142, 2003 2D CAVITY MODELING USING METHOD OF MOMENTS AND ITERATIVE SOLVERS C.-F. Wang and Y.-B. Gan Temasek Laboratories National University of Singapore

More information

A hybrid numerical-asymptotic boundary element method for high frequency scattering by penetrable convex polygons

A hybrid numerical-asymptotic boundary element method for high frequency scattering by penetrable convex polygons A hybrid numerical-asymptotic boundary element method for high frequency scattering by penetrable convex polygons arxiv:1704.07745v4 [math.na] 14 Dec 2017 S. P. Groth a, D. P. Hewett b and S. Langdon a

More information

Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion

Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion N. Bleistein J.K. Cohen J.W. Stockwell, Jr. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion With 71 Illustrations Springer Contents Preface List of Figures vii xxiii 1 Multidimensional

More information

FMM accelerated BEM for 3D Helmholtz equation

FMM accelerated BEM for 3D Helmholtz equation FMM accelerated BEM for 3D Helmholtz equation Nail A. Gumerov and Ramani Duraiswami Institute for Advanced Computer Studies University of Maryland, U.S.A. also @ Fantalgo, LLC, U.S.A. www.umiacs.umd.edu/~gumerov

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

Light scattering by penetrable convex polygons

Light scattering by penetrable convex polygons University of Reading School of Mathematical and Physical Sciences Light scattering by penetrable convex polygons Samuel Groth August 2011 This dissertation is for a joint MSc in the Departments of Mathematics

More information

Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 1627, FI-70211, Finland

Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 1627, FI-70211, Finland Timo Lähivaara, Tomi Huttunen, Simo-Pekka Simonaho University of Kuopio, Department of Physics P.O.Box 627, FI-72, Finland timo.lahivaara@uku.fi INTRODUCTION The modeling of the acoustic wave fields often

More information

SUMMARY. solve the matrix system using iterative solvers. We use the MUMPS codes and distribute the computation over many different

SUMMARY. solve the matrix system using iterative solvers. We use the MUMPS codes and distribute the computation over many different Forward Modelling and Inversion of Multi-Source TEM Data D. W. Oldenburg 1, E. Haber 2, and R. Shekhtman 1 1 University of British Columbia, Department of Earth & Ocean Sciences 2 Emory University, Atlanta,

More information

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation

HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation HFSS Hybrid Finite Element and Integral Equation Solver for Large Scale Electromagnetic Design and Simulation Laila Salman, PhD Technical Services Specialist laila.salman@ansys.com 1 Agenda Overview of

More information

Methods of solving sparse linear systems. Soldatenko Oleg SPbSU, Department of Computational Physics

Methods of solving sparse linear systems. Soldatenko Oleg SPbSU, Department of Computational Physics Methods of solving sparse linear systems. Soldatenko Oleg SPbSU, Department of Computational Physics Outline Introduction Sherman-Morrison formula Woodbury formula Indexed storage of sparse matrices Types

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Can Xia 1, 2,WanqingYou 2, and Yufa Sun 2, *

Can Xia 1, 2,WanqingYou 2, and Yufa Sun 2, * Progress In Electromagnetics Research Letters, Vol. 81, 133 139, 2019 Fast Calculation of Monostatic Radar Cross Section of Conducting Targets Using Hierarchical Characteristic Basis Function Method and

More information

Adaptive boundary element methods in industrial applications

Adaptive boundary element methods in industrial applications Adaptive boundary element methods in industrial applications Günther Of, Olaf Steinbach, Wolfgang Wendland Adaptive Fast Boundary Element Methods in Industrial Applications, Hirschegg, September 30th,

More information

Dense Matrix Algorithms

Dense Matrix Algorithms Dense Matrix Algorithms Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar To accompany the text Introduction to Parallel Computing, Addison Wesley, 2003. Topic Overview Matrix-Vector Multiplication

More information

June 5, Institute of Structural Analysis Graz University of Technology Lessingstr. 25/II, 8010 Graz, Austria

June 5, Institute of Structural Analysis Graz University of Technology Lessingstr. 25/II, 8010 Graz, Austria Higher-order meshing of implicit geometries part I: Integration and interpolation in cut elements arxiv:706.00578v [cs.na] 2 Jun 207 T.P. Fries, S. Omerović, D. Schöllhammer, J. Steidl June 5, 207 Institute

More information

Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets

Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets Progress In Electromagnetics Research M, Vol. 68, 173 180, 2018 Enhanced Characteristic Basis Function Method for Solving the Monostatic Radar Cross Section of Conducting Targets Jinyu Zhu, Yufa Sun *,

More information

Lecture 7: Introduction to HFSS-IE

Lecture 7: Introduction to HFSS-IE Lecture 7: Introduction to HFSS-IE 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. HFSS-IE: Integral Equation Solver Introduction HFSS-IE: Technology An Integral Equation solver technology

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

A Broadband Fast Multipole Accelerated Boundary Element Method for the 3D Helmholtz Equation. Abstract

A Broadband Fast Multipole Accelerated Boundary Element Method for the 3D Helmholtz Equation. Abstract A Broadband Fast Multipole Accelerated Boundary Element Method for the 3D Helmholtz Equation Nail A. Gumerov and Ramani Duraiswami (Dated: 31 December 2007, Revised 22 July 2008, Revised 03 October 2008.)

More information

Modeling the Acoustic Scattering from Axially Symmetric Fluid, Elastic, and Poroelastic Objects due to Nonsymmetric Forcing Using COMSOL Multiphysics

Modeling the Acoustic Scattering from Axially Symmetric Fluid, Elastic, and Poroelastic Objects due to Nonsymmetric Forcing Using COMSOL Multiphysics Modeling the Acoustic Scattering from Axially Symmetric Fluid, Elastic, and Poroelastic Objects due to Nonsymmetric Forcing Using COMSOL Multiphysics Anthony L. Bonomo *1 and Marcia J. Isakson 1 1 Applied

More information

Plane wave solutions for the radiative transport equation

Plane wave solutions for the radiative transport equation Plane wave solutions for the radiative transport equation Arnold D. Kim adkim@ucmerced.edu School of Natural Sciences University of California, Merced Overview Introduction to plane wave solutions Green

More information

RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities

RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities RCS Measurement and Analysis of Rectangular and Circular Cross-section Cavities Abhinav Bharat, M L Meena, S. Sunil Kumar, Neha Sangwa, Shyam Rankawat Defence Laboratory, DRDO Jodhpur, India-342011 Abstract

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

Design of Polygonal Patch Antennas with a. Broad-Band Behavior via a Proper Perturbation of Conventional Rectangular Radiators

Design of Polygonal Patch Antennas with a. Broad-Band Behavior via a Proper Perturbation of Conventional Rectangular Radiators Università degli Studi ROMA TRE Dipartimento di Elettronica Applicata Via della Vasca Navale 84 00146 Roma Design of Polygonal Patch Antennas with a Broad-Band Behavior via a Proper Perturbation of Conventional

More information

Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects

Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects RADIO SCIENCE, VOL. 38, NO. 2, 1028, doi:10.1029/2002rs002610, 2003 Comparison of iteration convergences of SIE and VSIE for solving electromagnetic scattering problems for coated objects Cai-Cheng Lu

More information

Numerical-Asymptotic Approximation at High Frequency

Numerical-Asymptotic Approximation at High Frequency Numerical-Asymptotic Approximation at High Frequency University of Reading Mathematical and Computational Aspects of Maxwell s Equations Durham, July 12th 2016 Our group on HF stuff in Reading Steve Langdon,

More information

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems

A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems A Graphical User Interface (GUI) for Two-Dimensional Electromagnetic Scattering Problems Veysel Demir vdemir@olemiss.edu Mohamed Al Sharkawy malshark@olemiss.edu Atef Z. Elsherbeni atef@olemiss.edu Abstract

More information

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM

SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD-FEM 1 SIMULATION OF AN IMPLANTED PIFA FOR A CARDIAC PACEMAKER WITH EFIELD FDTD AND HYBRID FDTD- Introduction Medical Implanted Communication Service (MICS) has received a lot of attention recently. The MICS

More information

A fast solver for the Stokes equations with distributed forces in complex geometries 1

A fast solver for the Stokes equations with distributed forces in complex geometries 1 A fast solver for the Stokes equations with distributed forces in complex geometries George Biros, Lexing Ying, and Denis Zorin Courant Institute of Mathematical Sciences, New York University, New York

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Fast Spherical Filtering in the Broadband FMBEM using a nonequally

Fast Spherical Filtering in the Broadband FMBEM using a nonequally Fast Spherical Filtering in the Broadband FMBEM using a nonequally spaced FFT Daniel R. Wilkes (1) and Alec. J. Duncan (1) (1) Centre for Marine Science and Technology, Department of Imaging and Applied

More information

Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments

Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments M. Paszyński 1,3, D. Pardo 1,2, L. Demkowicz 1, C. Torres-Verdin 2 1 Institute for Computational Engineering and Sciences 2

More information

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms By:- Nitin Kamra Indian Institute of Technology, Delhi Advisor:- Prof. Ulrich Reude 1. Introduction to Linear

More information

Progress In Electromagnetics Research M, Vol. 20, 29 42, 2011

Progress In Electromagnetics Research M, Vol. 20, 29 42, 2011 Progress In Electromagnetics Research M, Vol. 20, 29 42, 2011 BEAM TRACING FOR FAST RCS PREDICTION OF ELECTRICALLY LARGE TARGETS H.-G. Park, H.-T. Kim, and K.-T. Kim * Department of Electrical Engineering,

More information

SEG/San Antonio 2007 Annual Meeting

SEG/San Antonio 2007 Annual Meeting Yaofeng He* and Ru-Shan Wu Modeling and Imaging Laboratory, Institute of Geophysics and Planetary Physics, University of California, Santa Cruz, CA, 95064, USA Summary A one-way and one-return boundary

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Diffusion Wavelets for Natural Image Analysis

Diffusion Wavelets for Natural Image Analysis Diffusion Wavelets for Natural Image Analysis Tyrus Berry December 16, 2011 Contents 1 Project Description 2 2 Introduction to Diffusion Wavelets 2 2.1 Diffusion Multiresolution............................

More information

Convergent Scattering Algorithms

Convergent Scattering Algorithms Convergent Scattering Algorithms Fatih Ecevit Bogazici University, Istanbul Joint work with: Fernando Reitich, University of Minnesota Integral Equation Formulations Radiation Condition: Single layer potential:

More information

Inverse Scattering. Brad Nelson 3/9/2012 Math 126 Final Project

Inverse Scattering. Brad Nelson 3/9/2012 Math 126 Final Project Inverse Scattering Brad Nelson /9/ Math 6 Final Project This paper investigates the ability to determine the boundary of an unknown object scattering waves using three different scenarios. In the first,

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Stability Analysis of the Muscl Method on General Unstructured Grids for Applications to Compressible Fluid Flow

Stability Analysis of the Muscl Method on General Unstructured Grids for Applications to Compressible Fluid Flow Stability Analysis of the Muscl Method on General Unstructured Grids for Applications to Compressible Fluid Flow F. Haider 1, B. Courbet 1, J.P. Croisille 2 1 Département de Simulation Numérique des Ecoulements

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

Questions. Numerical Methods for CSE Final Exam Prof. Rima Alaifari ETH Zürich, D-MATH. 22 January / 9

Questions. Numerical Methods for CSE Final Exam Prof. Rima Alaifari ETH Zürich, D-MATH. 22 January / 9 Questions Numerical Methods for CSE Final Exam Prof Rima Alaifari ETH Zürich, D-MATH 22 January 2018 1 / 9 1 Tridiagonal system solver (16pts) Important note: do not use built-in LSE solvers in this problem

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Continued Fraction Absorbing Boundary Conditions for Transient Elastic Wave Propagation Modeling

Continued Fraction Absorbing Boundary Conditions for Transient Elastic Wave Propagation Modeling Continued Fraction Absorbing Boundary Conditions for Transient Elastic Wave Propagation Modeling Md Anwar Zahid and Murthy N. Guddati 1 Summary This paper presents a novel absorbing boundary condition

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

ALF USER GUIDE. Date: September

ALF USER GUIDE. Date: September ALF USER GUIDE R. VERFÜRTH Contents 1. Introduction 1 2. User interface 2 3. Domain and initial grid 3 4. Differential equation 9 5. Discretization 12 6. Solver 12 7. Mesh refinement 14 8. Number of nodes

More information

A comparison of parallel rank-structured solvers

A comparison of parallel rank-structured solvers A comparison of parallel rank-structured solvers François-Henry Rouet Livermore Software Technology Corporation, Lawrence Berkeley National Laboratory Joint work with: - LSTC: J. Anton, C. Ashcraft, C.

More information

Estimating normal vectors and curvatures by centroid weights

Estimating normal vectors and curvatures by centroid weights Computer Aided Geometric Design 21 (2004) 447 458 www.elsevier.com/locate/cagd Estimating normal vectors and curvatures by centroid weights Sheng-Gwo Chen, Jyh-Yang Wu Department of Mathematics, National

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Research Article Prediction Model of Coating Growth Rate for Varied Dip-Angle Spraying Based on Gaussian Sum Model

Research Article Prediction Model of Coating Growth Rate for Varied Dip-Angle Spraying Based on Gaussian Sum Model Mathematical Problems in Engineering Volume 16, Article ID 93647, 7 pages http://dx.doi.org/.1155/16/93647 Research Article Prediction Model of Coating Growth Rate for Varied Dip-Angle Spraying Based on

More information

Adaptive Isogeometric Analysis by Local h-refinement with T-splines

Adaptive Isogeometric Analysis by Local h-refinement with T-splines Adaptive Isogeometric Analysis by Local h-refinement with T-splines Michael Dörfel 1, Bert Jüttler 2, Bernd Simeon 1 1 TU Munich, Germany 2 JKU Linz, Austria SIMAI, Minisymposium M13 Outline Preliminaries:

More information

Outline Introduction Problem Formulation Proposed Solution Applications Conclusion. Compressed Sensing. David L Donoho Presented by: Nitesh Shroff

Outline Introduction Problem Formulation Proposed Solution Applications Conclusion. Compressed Sensing. David L Donoho Presented by: Nitesh Shroff Compressed Sensing David L Donoho Presented by: Nitesh Shroff University of Maryland Outline 1 Introduction Compressed Sensing 2 Problem Formulation Sparse Signal Problem Statement 3 Proposed Solution

More information

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001)

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001) An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (000/001) Summary The objectives of this project were as follows: 1) Investigate iterative

More information

COSC6365. Introduction to HPC. Lecture 21. Lennart Johnsson Department of Computer Science

COSC6365. Introduction to HPC. Lecture 21. Lennart Johnsson Department of Computer Science Introduction to HPC Lecture 21 Department of Computer Science Most slides from UC Berkeley CS 267 Spring 2011, Lecture 12, Dense Linear Algebra (part 2), Parallel Gaussian Elimination. Jim Demmel Dense

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Linear Equation Systems Iterative Methods

Linear Equation Systems Iterative Methods Linear Equation Systems Iterative Methods Content Iterative Methods Jacobi Iterative Method Gauss Seidel Iterative Method Iterative Methods Iterative methods are those that produce a sequence of successive

More information

Efficient Higher-Order Analysis of Electromagnetic Scattering of Objects in Half-Space by Domain Decomposition Method with a Hybrid Solver

Efficient Higher-Order Analysis of Electromagnetic Scattering of Objects in Half-Space by Domain Decomposition Method with a Hybrid Solver Progress In Electromagnetics Research C, Vol. 68, 201 209, 2016 Efficient Higher-Order Analysis of Electromagnetic Scattering of Objects in Half-Space by Domain Decomposition Method with a Hybrid Solver

More information

A Level Set-Based Topology Optimization Method For Three-Dimensional Acoustic Problems Using Fast Multipole Boundary Element Method

A Level Set-Based Topology Optimization Method For Three-Dimensional Acoustic Problems Using Fast Multipole Boundary Element Method 9 th World Congress on Structural and Multidisciplinary Optimization June 13-17, 2011, Shizuoka, Japan A Level Set-Based Topology Optimization Method For Three-imensional Acoustic Problems Using Fast Multipole

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah

Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah Summary In this paper we present a new approach to the interpretation

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Introduction to Finite Element Analysis using ANSYS

Introduction to Finite Element Analysis using ANSYS Introduction to Finite Element Analysis using ANSYS Sasi Kumar Tippabhotla PhD Candidate Xtreme Photovoltaics (XPV) Lab EPD, SUTD Disclaimer: The material and simulations (using Ansys student version)

More information

Mathematical Analysis of Google PageRank

Mathematical Analysis of Google PageRank INRIA Sophia Antipolis, France Ranking Answers to User Query Ranking Answers to User Query How a search engine should sort the retrieved answers? Possible solutions: (a) use the frequency of the searched

More information

Generalized trace ratio optimization and applications

Generalized trace ratio optimization and applications Generalized trace ratio optimization and applications Mohammed Bellalij, Saïd Hanafi, Rita Macedo and Raca Todosijevic University of Valenciennes, France PGMO Days, 2-4 October 2013 ENSTA ParisTech PGMO

More information

STUDY OF A DIRECT SAMPLING METHOD FOR THE INVERSE MEDIUM SCATTERING PROBLEM

STUDY OF A DIRECT SAMPLING METHOD FOR THE INVERSE MEDIUM SCATTERING PROBLEM Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports - Open Dissertations, Master's Theses and Master's Reports 2014 STUDY OF A DIRECT SAMPLING

More information

Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes

Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes Menelaos I. Karavelas joint work with Eleni Tzanaki University of Crete & FO.R.T.H. OrbiCG/ Workshop on Computational

More information

MULTI-OUTPUT LEAST SQUARE SUPPORT VECTOR MACHINE FOR THE RECONSTRUCTION OF PERFECT ELECTRIC CONDUCTOR BELOW ROUGH SURFACE

MULTI-OUTPUT LEAST SQUARE SUPPORT VECTOR MACHINE FOR THE RECONSTRUCTION OF PERFECT ELECTRIC CONDUCTOR BELOW ROUGH SURFACE Progress In Electromagnetics Research M, Vol. 30, 117 128, 2013 MULTI-OUTPUT LEAST SQUARE SUPPORT VECTOR MACHINE FOR THE RECONSTRUCTION OF PERFECT ELECTRIC CONDUCTOR BELOW ROUGH SURFACE Jiliang Cai 1,

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Technische Universiteit Delft. Acceleration of the Multi Level Fast Multipole Algorithm on a Graphics Processing Unit C. Wagenaar

Technische Universiteit Delft. Acceleration of the Multi Level Fast Multipole Algorithm on a Graphics Processing Unit C. Wagenaar Technische Universiteit Delft Acceleration of the Multi Level Fast Multipole Algorithm on a Graphics Processing Unit C. Wagenaar Acceleration of the Multi Level Fast Multipole Algorithm on a Graphics

More information

Implementation of PML in the Depth-oriented Extended Forward Modeling

Implementation of PML in the Depth-oriented Extended Forward Modeling Implementation of PML in the Depth-oriented Extended Forward Modeling Lei Fu, William W. Symes The Rice Inversion Project (TRIP) April 19, 2013 Lei Fu, William W. Symes (TRIP) PML in Extended modeling

More information

On the order of accuracy and numerical performance of two classes of finite volume WENO schemes

On the order of accuracy and numerical performance of two classes of finite volume WENO schemes On the order of accuracy and numerical performance of two classes of finite volume WENO schemes Rui Zhang, Mengping Zhang and Chi-Wang Shu November 29, 29 Abstract In this paper we consider two commonly

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2009 Advanced Computer Graphics Project details and tools 1 Project Topics Computer Animation Geometric Modeling Computational Photography Image processing 2 Optimization All projects

More information

Persistent Homology and Nested Dissection

Persistent Homology and Nested Dissection Persistent Homology and Nested Dissection Don Sheehy University of Connecticut joint work with Michael Kerber and Primoz Skraba A Topological Data Analysis Pipeline A Topological Data Analysis Pipeline

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Exam Design and Analysis of Algorithms for Parallel Computer Systems 9 15 at ÖP3

Exam Design and Analysis of Algorithms for Parallel Computer Systems 9 15 at ÖP3 UMEÅ UNIVERSITET Institutionen för datavetenskap Lars Karlsson, Bo Kågström och Mikael Rännar Design and Analysis of Algorithms for Parallel Computer Systems VT2009 June 2, 2009 Exam Design and Analysis

More information

FAST EVALUATION OF THE RAYLEIGH INTEGRAL AND APPLICATIONS TO INVERSE ACOUSTICS

FAST EVALUATION OF THE RAYLEIGH INTEGRAL AND APPLICATIONS TO INVERSE ACOUSTICS FAST EVALUATION OF THE RAYLEIGH INTEGRAL AND APPLICATIONS TO INVERSE ACOUSTICS J. W. Wind 1, Y H. Wijnant 1 and A. de Boer 1 1 Department of Engeneering Technology, University of Twente P.O. Box 217, 7500

More information

Fast Multipole and Related Algorithms

Fast Multipole and Related Algorithms Fast Multipole and Related Algorithms Ramani Duraiswami University of Maryland, College Park http://www.umiacs.umd.edu/~ramani Joint work with Nail A. Gumerov Efficiency by exploiting symmetry and A general

More information

Unlabeled equivalence for matroids representable over finite fields

Unlabeled equivalence for matroids representable over finite fields Unlabeled equivalence for matroids representable over finite fields November 16, 2012 S. R. Kingan Department of Mathematics Brooklyn College, City University of New York 2900 Bedford Avenue Brooklyn,

More information

A scalable H-matrix approach for the solution of boundary integral equations on multi-gpu clusters

A scalable H-matrix approach for the solution of boundary integral equations on multi-gpu clusters A scalable H-matrix approach for the solution of boundary integral equations on multi-gpu clusters H. Harbrecht and P. Zaspel Departement Mathematik und Informatik Preprint No. 2018-11 Fachbereich Mathematik

More information

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean

PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS. Ioana Chiorean 5 Kragujevac J. Math. 25 (2003) 5 18. PARALLEL METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS Ioana Chiorean Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania (Received May 28,

More information

A ray-based IPDG method for high-frequency time-domain acoustic wave propagation in inhomogeneous media

A ray-based IPDG method for high-frequency time-domain acoustic wave propagation in inhomogeneous media A ray-based IPDG method for high-frequency time-domain acoustic wave propagation in inhomogeneous media Eric T. Chung Chi Yeung Lam Jianliang Qian arxiv:1704.06916v1 [math.na] 23 Apr 2017 October 15, 2018

More information

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics On a nested refinement of anisotropic tetrahedral grids under Hessian metrics Shangyou Zhang Abstract Anisotropic grids, having drastically different grid sizes in different directions, are efficient and

More information

Lecture 11: Randomized Least-squares Approximation in Practice. 11 Randomized Least-squares Approximation in Practice

Lecture 11: Randomized Least-squares Approximation in Practice. 11 Randomized Least-squares Approximation in Practice Stat60/CS94: Randomized Algorithms for Matrices and Data Lecture 11-10/09/013 Lecture 11: Randomized Least-squares Approximation in Practice Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these

More information

PROGRAMMING OF MULTIGRID METHODS

PROGRAMMING OF MULTIGRID METHODS PROGRAMMING OF MULTIGRID METHODS LONG CHEN In this note, we explain the implementation detail of multigrid methods. We will use the approach by space decomposition and subspace correction method; see Chapter:

More information

LMS Virtual.Lab Boundary Elements Acoustics

LMS Virtual.Lab Boundary Elements Acoustics Answers for industry LMS Virtual.Lab Boundary Elements Acoustics [VL-VAM.35.2] 13.1 Benefits Accurate modelling of infinite domain acoustic problems Fast and efficient solvers Modeling effort is limited

More information

19 Total internal reflection (TIR) and evanescent

19 Total internal reflection (TIR) and evanescent 19 Total internal reflection (TIR) and evanescent waves Consider a TE- or TM-polarized wave (or a superposition) incident on an interface at x =0surface as depicted in the margin at an incidence angle.

More information

Numerical methods in plasmonics. The method of finite elements

Numerical methods in plasmonics. The method of finite elements Numerical methods in plasmonics The method of finite elements Outline Why numerical methods The method of finite elements FDTD Method Examples How do we understand the world? We understand the world through

More information

Transfinite Interpolation Based Analysis

Transfinite Interpolation Based Analysis Transfinite Interpolation Based Analysis Nathan Collier 1 V.M. Calo 1 Javier Principe 2 1 King Abdullah University of Science and Technology 2 International Center for Numerical Methods in Engineering

More information