Fractals in Nature. Ivan Sudakov. Mathematics Undergraduate Colloquium University of Utah 09/03/2014.

Size: px
Start display at page:

Download "Fractals in Nature. Ivan Sudakov. Mathematics Undergraduate Colloquium University of Utah 09/03/2014."

Transcription

1 Chesapeake Bay Mathematics Undergraduate Colloquium University of Utah 09/03/2014 Fractals in Nature Ivan Sudakov

2 References 1. W. Szemplinska-Stupnicka. Chaos Bifurcations and Fractals Around Us: a Brief Introduction. World Scientific, K. Falconer. Fractals. A Very Short Introduction. Oxford University Press, D.P. Feldman. Chaos and Fractals: An Elementary Introduction. Oxford University Press, M. Frantz & A. Crannell. Viewpoints: Mathematical Perspective and Fractal Geometry in Art. Princeton University Press, M. Novak et al. Thinking in Patterns. Fractals and Related Phenomena in Nature. World Scientific, B. Mandelbrot. The Fractal Geometry of Nature. Freeman and Company, M. F. Barnsley. Fractals Everywhere. Academic Press, S. Lovejoy. Area-Perimeter Relation for Rain and Cloud Areas // Science, 216 (4542), , J.R. Krummel et al. Landscape Patterns in a Disturbed Environment // Oikos, 48, , C. Hohenegger et al. Transition in the Fractal Geometry of Arctic Melt Ponds // Cryosphere, 6 (5), , 2012.

3 The Logistic System X next

4 Population Growth and the Gypsy Moth

5 Population Growth and the Gypsy Moth X next Next years population rate of growth = r X this years population

6 Population Growth and the Gypsy Moth X next Next years population rate of growth = r X this years population Human population growth curve

7 Population Growth and the Gypsy Moth Positive feedback Negative feedback X next = r X (1-X) The logistic function or logistic curve models the S-curve of growth of some set P. The initial stage of growth is approximately exponential; then, as competition arises, the growth slows, and at maturity, growth stops. Equilibrium state

8 Modeling an Evolutionary System X next : A Model of Deterministic Chaos (A.k.a. the Logistic or Verhulst Equation) X next = rx (1-X) X = population size - expressed as a fraction between 0 (extinction) and 1 (greatest conceivable population) X next is what happens at the next iteration or calculation of the equation. Or, it is the next generation r = rate of growth - that can be set higher or lower. It is the positive feedback. It is the tuning knob (1-X) acts like a regulator (the negative feedback), it keeps the growth within bounds since as X rises, 1-X falls

9 Modeling an Evolutionary System X next : A Model of Deterministic Chaos (A.k.a. the Logistic or Verhulst Equation) X next = rx (1-X) Logistic population ranges between 0 (extinction) and 1 (highest conceivable population) Iterated algorithm is calculated over and over Recursive the output of the last calculation is used as the basis of the next calculation

10

11 Value of X (Populaton size) X next and Deterministic Chaos Modeling an Evolutionary System.62 X next = rx (1-X) r = 2.7 Equilibrium state X =.02 and r = 2.7 X next = rx (1-X) X next = (2.7) (.02) (1-.02 =.98) X next =.0529 Number of Equation Iterations.62 Iteration X Value

12 But, what about these irregularities? Are they just meaningless noise, or do they mean something? Last run at 20 generations

13 Experimenting With X next and Deterministic Chaos X next = rx (1-X) A time-series diagram

14 r = 2.7

15 r = 2.9

16 r = 3.0

17 r = 3.1

18 r = 3.3

19 r = 3.4

20 r = 3.5

21 r = 3.6

22 r = 3.7

23 r = 3.8

24 r = 3.9

25 r = 4.0

26 r = 4.1

27 Learning Outcomes 1. Computational Viewpoint In a dynamic system the only way to know the outcome of an algorithm is to actually calculate it; there is no shorter description of its behavior. 2. Positive/Negative Feedback Behavior stems from the interplay of positive and negative feedbacks. 3. r Values Rate of Growth, or how hard the system is being pushed. High r means the system is dissipating lots of energy and/or information. 4. Deterministic does not equal Predictable At high r values the behavior of the system becomes inherently unpredictable.

28 Converting a Time Series Diagram Into a Bifurcation Diagram

29 Population Size = X This axis was a time series, but becomes... r Value r = 2.9 r = 2.7 X =.629 X =.655

30 It would be reasonable for population sizes in the gap to fall between those for r = 2.7 and r = 2.9 And for population size to drop as r drops r = 2.9 r = 2.7 X =.629 X =.655

31 split split split r = 3.3 r = 3.5 X =.48 &.82 X =.50,.87,.38,.82

32 r =

33 Population Size Modeling an Evolutionary System Bifurcation Diagram A Bifurcation is a change in basic behavior of a system Very Simple Behavior 1 st Bifurcation 3 rd Bifurcation 2 nd Bifurcation Very Complex Behavior r Values Rate of Growth

34 Population Size Modeling an Evolutionary System Bifurcation Diagram Why are some systems stable, reliable, predictable, and others are not? 1 st Bifurcation 3 rd Bifurcation 2 nd Bifurcation Refrigerators Computers Cars Airplanes Weather Climate Stock Market Human Behavior Because we engineer human-made systems to operate at low r r Values Rate of Growth

35 Learning Outcomes 5. Bifurcations Bifurcations are a change in the behavior of the system, the entire range of behaviors or a particular system can be shown in one bifurcation diagram. 6. Instability increases with r The harder the system is pushed, the higher the r value the more unstable and unpredictable its behavior becomes. This is seen in the bifurcation cascade: settling to one population value, splitting to 2, then 4, then 8, etc. population values, and finally visiting so many population values a pattern cannot be seen.

36 Self- Similarity: Fractals

37 Universality Properties of Complex Evolutionary Systems Fractal Organization - X next patterns, within patterns, within patterns 1 Full Bifur cat ion Diagr am 2 Red box in 1 Stretched and Enlarged in 2 window opens on magnificat ion

38 Universality Properties of Complex Evolutionary Systems Fractal Organization - X next patterns, within patterns, within patterns 2 3 window opens on magnificat ion Red box in 2 Stretched and Enlarged in 3 window opens on magnificat ion

39 Universality Properties of Complex Evolutionary Systems Fractal Organization - X next patterns, within patterns, within patterns 3 4 window opens on magnificat ion Red box in 3 Stretched and Enlarged in 4 sm all r ed box is enlar ged on anot her page, and opens anot her window

40 Universality Properties of Complex Evolutionary Systems Fractal Organization - X next The closer we zoom in the patterns, within patterns, within patterns 4 more the detail we see, and Red box in 4 Stretched and Enlarged here. we see similar patterns repeated again and again. sm all r ed box is enlar ged on anot her page, and opens anot her window

41 This is Self Similarity Similarities at all scales of observation Patterns, within patterns, within patterns FRACTAL

42 Euclidean and Fractal Geometry Things that are fractal are characterized by two distinctive Dimension 0 characteristics: Dimension 1 Dimension Non-whole Dimensions Fractal Dimension = log N (number of similar pieces) log M (magnification factor) N M D Hexahedron Tet rahedron Oct ahedr on Dodecahedr on Icosahedron Dimension 0 Dimension 1 Dimension 2 Dimension 3 N = # of new pieces M = magnification D = dimension Fractal dimensions are never whole numbers D log log N M

43 Euclidean and Fractal Geometry Things that are fractal are characterized by two distinctive characteristics: 2. Generated by iteration Fractal objects are generated by iteration of an algorithm, or formula. The Koch Curve is an example, generated by 4 steps, which are then repeatediterated -over and over indefinitely, or as long as you want. Koch Curve First Iteration 1. Begin with a line 2. Divide line into thirds 3. Remove middle portion 4. Add two lines to form a triangle in middle third of original line Repeat Steps 1-4

44 Universality Fractal Geometry Koch Curve 2 nd Iteration 3 rd Iteration 4 th Iteration 5 th Iteration

45 Koch Curve Fractal Dimensions D = log N (number of new pieces) log log M (magnification: factor of finer resolution) = = log Koch's Curve has a dimension of

46 What you can see and understand... Depends on Your Scale of Observation

47 Fractal Temperature Patterns in Time 1,000 Year Record 20,000 Year Record zoomed to.. 20,000 Year Record

48 Fractal Temperature Patterns in Time 20,000 Year Record zoomed to.. 20,000 Year Record 450,000 Year Record

49 Universality Properties of Complex Evolutionary Systems Fractal Organization Sea Level Changes

50 Scale and Observation What you can measure depends on the scale of your ruler. The time you can resolve depends on the accuracy of your clock. The size of what you can see depends on the power of your measuring instrument; microscopes for small things, eyes, for intermediate things, telescopes for very distant things. The Earth events you can witness, or even the human species can witness, depends on how long you live. There is no typical or average size for events.

51 How Long is the Coast of Great Britain? It depends on the length of your ruler The red ruler measures a longer coastline.

52

53 How Long is the Coast of Great Britain? It depends on the length of your ruler The coast line is actually infinitely long Fractal Dimension =

54 Fractional dimension for the Eastern Shore of the Chesapeake Bay is 1.46

55

56 Procedure: Measure the projected cloud area A and the perimeter P of each cloud Define a linear size through l A Perimeter dimension define through: P ~ l D For ordinary Euclidean objects: log P Slope: D= 1 logl

57 Pioneered by Lovejoy (Science 1982) Area-perimeter analysis of projected cloud patterns using satellite and radar data Suggest a perimeter dimension D=4/3 ( 1.3) of projected clouds Instead of Consequences: Cloud perimeter is fractal and hence selfsimilar in a non-trivial way Makes it possible to ascribe a (quantitative) number that characterizes the structure Slope 4/3

58 Lena River Delta D=1.58 Yakut Permafrost Lakes D=1.84

59 (a) Fractal dimension (D) of forest patches in the vicinity of Natchez, Mississippi, as a function of patch size. (b) Section of the original map illustrating how small patches tend to be simple in shape. (c) Section of the original map illustrating the more complex shapes associated with the larger patches. Krummel et al. (1987) found that forest patches showed a distinct change in fractal dimension. The reason appears to be that small patches were woodlots whose boundary was affected by human management. the large patches were more complex because they tended to follow natural boundaries, such as topography.

60 61

61 Albedo reflected sunlight incident sunlight

62 Initial ponding Pond developing Pond freeze-up Pond peaked

63 Geometric features of sea ice are captured by the fractal dimensions D, defined by their perimeter P and area A: P ~ D A The complexity of melt ponds on sea ice increases, first gradually, then rapidly, as smaller ponds coalesce to form larger connected regions By analyzing area-perimeter data from many melt ponds, Hohenegger et al. (2012) found an unexpected separation of scales, where the pond fractal dimension D increases rapidly from 1 to 2 as the area crosses a critical value of approximately 100 m 2

64

65 Euclidean and Fractal Geometry Things that are fractal are characterized by two distinctive characteristics: 1. Non-whole Dimensions N M D Self similarity dimension Number of smaller self similar objects generated by the iterative process Magnification factor: number each new division must be multiplied by to yield size of original segment D = log N (number of new pieces) log M (Magnification: factor of finer resolution) How much we zoom in on or magnify each new piece to view it the same size as the original. 2. Generated by iteration

66 Euclidean and Fractal Geometry D = log N (number of new pieces) log M (Magnification: factor of finer resolution) How much we zoom in on or magnify each new piece to view it the same size as the original. Original object a line Divided into 3 new pieces = N Magnification Factor = 3 How much we have to magnify each piece to get object of original size N M D 3 = 3 1 Dimension =

67 Euclidean and Fractal Geometry D = log N (number of new pieces) log M (Magnification: factor of finer resolution) How much we zoom in on or magnify each new piece to view it the same size as the original. Original object Divided into 9 new pieces = N a square Magnification Factor = 9 How much we have to magnify each piece to get object of original size N M D 9 = 3 2 Dimension =

68 Euclidean and Fractal Geometry D = log N (number of new pieces) log M (magnification: factor of finer resolution) Original object How much we zoom in on or magnify each new piece to view it the same size as the original. Divided into 27 new pieces = N a cube Magnification Factor = 27 How much we have to magnify each piece to get object of original size N M D 27 = 3 3 Dimension =

69 Learning Outcomes 7. Self Similarity Self-similarity is patterns, within patterns, within patterns, so that you see complex detail at all scales of observation, all generated by an iterative process. 8. Fractal Geometry There is no typical or average size of events, or objects; they come nested inside each other, patterns within patterns within patterns, all generated by an iterative process. 9. Non-whole Number Dimensions Unlike Euclidian geometry (plane or solid geometry) most natural objects have non-whole number dimensions, something between, for example, 2 and 3.

ARi. Amalgamated Research Inc. What are fractals?

ARi. Amalgamated Research Inc. What are fractals? ARi www.arifractal.com What are fractals? Amalgamated Research Inc. A key characteristic of fractals is self-similarity. This means that similar structure is observed at many scales. Figure 1 illustrates

More information

Clouds, biological growth, and coastlines are

Clouds, biological growth, and coastlines are L A B 11 KOCH SNOWFLAKE Fractals Clouds, biological growth, and coastlines are examples of real-life phenomena that seem too complex to be described using typical mathematical functions or relationships.

More information

Fractals in Nature and Mathematics: From Simplicity to Complexity

Fractals in Nature and Mathematics: From Simplicity to Complexity Fractals in Nature and Mathematics: From Simplicity to Complexity Dr. R. L. Herman, UNCW Mathematics & Physics Fractals in Nature and Mathematics R. L. Herman OLLI STEM Society, Oct 13, 2017 1/41 Outline

More information

Fractal Geometry. LIACS Natural Computing Group Leiden University

Fractal Geometry. LIACS Natural Computing Group Leiden University Fractal Geometry Contents Introduction The Fractal Geometry of Nature Self-Similarity Some Pioneering Fractals Dimension and Fractal Dimension Cellular Automata Particle Systems Scope of Fractal Geometry

More information

Website.

Website. Admin stuff Questionnaire Name Email Math courses taken so far General academic trend (major) General interests What about Chaos interests you the most? What computing experience do you have? Website www.cse.ucsc.edu/classes/ams146/spring05/index.html

More information

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group

Fractal Geometry. Prof. Thomas Bäck Fractal Geometry 1. Natural Computing Group Fractal Geometry Prof. Thomas Bäck Fractal Geometry 1 Contents Introduction The Fractal Geometry of Nature - Self-Similarity - Some Pioneering Fractals - Dimension and Fractal Dimension Scope of Fractal

More information

Lecture 8: Modelling Urban Morphology:

Lecture 8: Modelling Urban Morphology: SCHOOL OF GEOGRAPHY Lecture 8: Modelling Urban Morphology: Fractal Geometry, Relations to CA, And Urban Form Outline What are Fractals? Definitions and Properties Scaling and Links to Fractal Patterns

More information

Session 27: Fractals - Handout

Session 27: Fractals - Handout Session 27: Fractals - Handout Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line. Benoit Mandelbrot (1924-2010)

More information

FRACTALS The term fractal was coined by mathematician Benoit Mandelbrot A fractal object, unlike a circle or any regular object, has complexity at all scales Natural Fractal Objects Natural fractals

More information

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every

<The von Koch Snowflake Investigation> properties of fractals is self-similarity. It means that we can magnify them many times and after every Jiwon MYP 5 Math Ewa Puzanowska 18th of Oct 2012 About Fractal... In geometry, a fractal is a shape made up of parts that are the same shape as itself and are of

More information

Fractal Coding. CS 6723 Image Processing Fall 2013

Fractal Coding. CS 6723 Image Processing Fall 2013 Fractal Coding CS 6723 Image Processing Fall 2013 Fractals and Image Processing The word Fractal less than 30 years by one of the history s most creative mathematician Benoit Mandelbrot Other contributors:

More information

Mathematics 350 Section 6.3 Introduction to Fractals

Mathematics 350 Section 6.3 Introduction to Fractals Mathematics 350 Section 6.3 Introduction to Fractals A fractal is generally "a rough or fragmented geometric shape that is self-similar, which means it can be split into parts, each of which is (at least

More information

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor.

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. First published: May 17th, 2015. Blair D. Macdonald Abstract The Koch snowflake

More information

Generation of 3D Fractal Images for Mandelbrot and Julia Sets

Generation of 3D Fractal Images for Mandelbrot and Julia Sets 178 Generation of 3D Fractal Images for Mandelbrot and Julia Sets Bulusu Rama #, Jibitesh Mishra * # Department of Computer Science and Engineering, MLR Institute of Technology Hyderabad, India 1 rama_bulusu@yahoo.com

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

Fractals. Materials. Pencil Paper Grid made of triangles

Fractals. Materials. Pencil Paper Grid made of triangles Fractals Overview: Fractals are new on the mathematics scene, however they are in your life every day. Cell phones use fractal antennas, doctors study fractal-based blood flow diagrams to search for cancerous

More information

Fractals: a way to represent natural objects

Fractals: a way to represent natural objects Fractals: a way to represent natural objects In spatial information systems there are two kinds of entity to model: natural earth features like terrain and coastlines; human-made objects like buildings

More information

8 th Grade Pre Algebra Pacing Guide 1 st Nine Weeks

8 th Grade Pre Algebra Pacing Guide 1 st Nine Weeks 8 th Grade Pre Algebra Pacing Guide 1 st Nine Weeks MS Objective CCSS Standard I Can Statements Included in MS Framework + Included in Phase 1 infusion Included in Phase 2 infusion 1a. Define, classify,

More information

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor.

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. First published: May 17th, 2015. Updated: October, 13th, 2015. Blair D. Macdonald

More information

Covering and Surrounding Extensions 1

Covering and Surrounding Extensions 1 Extensions 1 1. The Snowflake Curve. Begin with an equilateral triangle. Let s assume that each side of the triangle has length one. Remove the middle third of each line segment and replace it with two

More information

Keywords: fractals, Lorenz curve, Gini Coefficient, wealth distribution

Keywords: fractals, Lorenz curve, Gini Coefficient, wealth distribution Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. First published: May 17th, 2015. Updated: October, 14th, 2015. Blair D. Macdonald

More information

THE H FRACTAL SELF-SIMILARITY DIMENSION CALCULATION OF PARDIS TECHNOLOGY PARK IN TEHRAN (IRAN)

THE H FRACTAL SELF-SIMILARITY DIMENSION CALCULATION OF PARDIS TECHNOLOGY PARK IN TEHRAN (IRAN) THE H FRACTAL SELF-SIMILARITY DIMENSION CALCULATION OF PARDIS TECHNOLOGY PARK IN TEHRAN (IRAN) * Saeid Rahmatabadi, Shabnam Akbari Namdar and Maryam Singery Department of Architecture, College of Art and

More information

An Introduction to Fractals

An Introduction to Fractals An Introduction to Fractals Sarah Hardy December 10, 2018 Abstract Fractals can be defined as an infinitely complex pattern that is self-similar, that is contains replicas of itself of varying sizes, across

More information

Lecture 3: Some Strange Properties of Fractal Curves

Lecture 3: Some Strange Properties of Fractal Curves Lecture 3: Some Strange Properties of Fractal Curves I have been a stranger in a strange land. Exodus 2:22 1. Fractal Strangeness Fractals have a look and feel that is very different from ordinary curves.

More information

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor.

Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. Demonstrating Lorenz Wealth Distribution and Increasing Gini Coefficient with the Iterating (Koch Snowflake) Fractal Attractor. First published: May 17th, 2015. Updated: December, 13th, 2015. Blair D.

More information

In this lesson, students build fractals and track the growth of fractal measurements using tables and equations. Enduring Understanding

In this lesson, students build fractals and track the growth of fractal measurements using tables and equations. Enduring Understanding LessonTitle: Fractal Functions Alg 5.8 Utah State Core Standard and Indicators Algebra Standards 2, 4 Process Standards 1-5 Summary In this lesson, students build fractals and track the growth of fractal

More information

Images of some fractals

Images of some fractals Fun with Fractals Dr. Bori Mazzag Redwood Empire Mathematics Tournament March 25, 2006 Images of some fractals What are fractals, anyway? Important aspects of fractals: Self-similarity What are fractals,

More information

Mathematics Numbers: Percentages. Science and Mathematics Education Research Group

Mathematics Numbers: Percentages. Science and Mathematics Education Research Group F FA ACULTY C U L T Y OF O F EDUCATION E D U C A T I O N Department of Curriculum and Pedagogy Mathematics Numbers: Percentages Science and Mathematics Education Research Group Supported by UBC Teaching

More information

AN ALGORITHM TO GENERATE MODELS OF SNOWFLAKES

AN ALGORITHM TO GENERATE MODELS OF SNOWFLAKES AN ALGORITHM TO GENERATE MODELS OF SNOWFLAKES PHILIP CHUNG, COLIN BLOOMFIELD Abstract. In this paper we will describe our method of creating a computer algorithm to generate two-dimensional representations

More information

COMPUTER ANALYSIS OF FRACTAL SETS

COMPUTER ANALYSIS OF FRACTAL SETS Proceedings of the Czech Japanese Seminar in Applied Mathematics 2006 Czech Technical University in Prague, September 14-17, 2006 pp. 1 8 COMPUTER ANALYSIS OF FRACTAL SETS PETR PAUŠ1 Abstract. This article

More information

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions TEAMS National Competition High School Version Photometry Solution Manual 25 Questions Page 1 of 15 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

Folding the Dragon Curve Fractal

Folding the Dragon Curve Fractal Bridges 2017 Conference Proceedings Folding the Dragon Curve Fractal Natalija Budinski School "Petro Kuzmjak" Rusinska 63, 25233 Ruski Krstur, SERBIA nbudinski@yahoo.com Miroslav Novta Schneider Electric

More information

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity

Chapter 12: Fractal Geometry The Koch Snowflake and Self-Similarity Chapter 12: Fractal Geometry 12.1 The Koch Snowflake and Self-Similarity Geometric Fractal Our first example of a geometric fractal is a shape known as the Koch snowflake, named after the Swedish mathematician

More information

Scope and Sequence for the New Jersey Core Curriculum Content Standards

Scope and Sequence for the New Jersey Core Curriculum Content Standards Scope and Sequence for the New Jersey Core Curriculum Content Standards The following chart provides an overview of where within Prentice Hall Course 3 Mathematics each of the Cumulative Progress Indicators

More information

Math Content

Math Content 2013-2014 Math Content PATHWAY TO ALGEBRA I Hundreds and Tens Tens and Ones Comparing Whole Numbers Adding and Subtracting 10 and 100 Ten More, Ten Less Adding with Tens and Ones Subtracting with Tens

More information

Fractal Analysis. By: Mahnaz EtehadTavakol

Fractal Analysis. By: Mahnaz EtehadTavakol Fractal Analysis By: Mahnaz EtehadTavakol A fractal a non-regular geometric shape can be split into parts which posses self similarity Naturally Occurring Fractal A special type of broccoli, this cruciferous

More information

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability 7 Fractions GRADE 7 FRACTIONS continue to develop proficiency by using fractions in mental strategies and in selecting and justifying use; develop proficiency in adding and subtracting simple fractions;

More information

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008

Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 Fractal Image Coding (IFS) Nimrod Peleg Update: Mar. 2008 What is a fractal? A fractal is a geometric figure, often characterized as being self-similar : irregular, fractured, fragmented, or loosely connected

More information

1a. Define, classify, and order rational and irrational numbers and their subsets. (DOK 1)

1a. Define, classify, and order rational and irrational numbers and their subsets. (DOK 1) 1a. Define, classify, and order rational and irrational numbers and their subsets. (DOK 1) 1b. Formulate and solve standard and reallife problems involving addition, subtraction, multiplication, and division

More information

College and Career Readiness Practice Workbooks. Series Crosswalks. Math. Science. Social Studies Reading

College and Career Readiness Practice Workbooks. Series Crosswalks. Math. Science. Social Studies Reading Social Studies Reading Science Writing Math College and Career Readiness Practice Workbooks Series Crosswalks Introduction McGraw-Hill Education s College and Career Readiness Practice Workbooks align

More information

COASTLINES AND FRACTAL GEOMETRY: ESTIMATING LENGTH AND GENERATING ISLANDS. Miranda Bradshaw Dallas Pullen Math 365 Wright 5/8/12

COASTLINES AND FRACTAL GEOMETRY: ESTIMATING LENGTH AND GENERATING ISLANDS. Miranda Bradshaw Dallas Pullen Math 365 Wright 5/8/12 COASTLINES AND FRACTAL GEOMETRY: ESTIMATING LENGTH AND GENERATING ISLANDS Miranda Bradshaw Dallas Pullen Math 365 Wright 5/8/12 Introduction The first connections that were made between coastlines and

More information

Simi imilar Shapes lar Shapes Nesting Squares Poly lyhedr hedra and E a and Euler ler s Form s Formula ula

Simi imilar Shapes lar Shapes Nesting Squares Poly lyhedr hedra and E a and Euler ler s Form s Formula ula TABLE OF CONTENTS Introduction......................................................... 5 Teacher s Notes....................................................... 6 NCTM Standards Alignment Chart......................................

More information

Solid models and fractals

Solid models and fractals Solid models and fractals COM3404 Richard Everson School of Engineering, Computer Science and Mathematics University of Exeter R.M.Everson@exeter.ac.uk http://www.secamlocal.ex.ac.uk/studyres/com304 Richard

More information

Using the Best of Both!

Using the Best of Both! Using the Best of Both! A Guide to Using Connected Mathematics 2 with Prentice Hall Mathematics Courses 1, 2, 3 2012, and Algebra Readiness MatBro111707BestOfBothPH10&CMP2.indd 1 6/7/11 11:59 AM Using

More information

MAADHYAM. Nurturing Gifted Minds. Printed Under Gifted Education Abhiyaan An Initiative By The Office Of Principal Scientific Advisor To The

MAADHYAM. Nurturing Gifted Minds. Printed Under Gifted Education Abhiyaan An Initiative By The Office Of Principal Scientific Advisor To The MAADHYAM Nurturing Gifted Minds Printed Under Gifted Education Abhiyaan An Initiative By The Office Of Principal Scientific Advisor To The 1 Government Of India INTRODUCTION TO FRACTALS When you see a

More information

DIOCESE OF HARRISBURG MATHEMATICS CURRICULUM GRADE 8

DIOCESE OF HARRISBURG MATHEMATICS CURRICULUM GRADE 8 MATHEMATICS CURRICULUM GRADE 8 8A Numbers and Operations 1. Demonstrate an numbers, ways of representing numbers, relationships among numbers and number systems. 2. Compute accurately and fluently. a.

More information

Filling Space with Random Line Segments

Filling Space with Random Line Segments Filling Space with Random Line Segments John Shier Abstract. The use of a nonintersecting random search algorithm with objects having zero width ("measure zero") is explored. The line length in the units

More information

GTPS Curriculum Mathematics Grade 8

GTPS Curriculum Mathematics Grade 8 4.2.8.B2 Use iterative procedures to generate geometric patterns: Fractals (e.g., the Koch Snowflake); Self-similarity; Construction of initial stages; Patterns in successive stages (e.g., number of triangles

More information

FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE

FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE ISSN 2320-9143 40 International Journal of Advance Research, IJOAR.org Volume 1, Issue 3, March 2013, Online: ISSN 2320-9143 FRACTAL: A SET WHICH IS LARGER THAN THE UNIVERSE Soumya Prakash Sahu, Indian

More information

Chapel Hill Math Circle: Symmetry and Fractals

Chapel Hill Math Circle: Symmetry and Fractals Chapel Hill Math Circle: Symmetry and Fractals 10/7/17 1 Introduction This worksheet will explore symmetry. To mathematicians, a symmetry of an object is, roughly speaking, a transformation that does not

More information

Prime Time (Factors and Multiples)

Prime Time (Factors and Multiples) CONFIDENCE LEVEL: Prime Time Knowledge Map for 6 th Grade Math Prime Time (Factors and Multiples). A factor is a whole numbers that is multiplied by another whole number to get a product. (Ex: x 5 = ;

More information

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna.

Fractals. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna. Fractals Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ 2 Geometric Objects Man-made objects are geometrically simple (e.g., rectangles,

More information

Some geometries to describe nature

Some geometries to describe nature Some geometries to describe nature Christiane Rousseau Since ancient times, the development of mathematics has been inspired, at least in part, by the need to provide models in other sciences, and that

More information

Muskogee Public Schools Curriculum Map, Math, Grade 8

Muskogee Public Schools Curriculum Map, Math, Grade 8 Muskogee Public Schools Curriculum Map, 2010-2011 Math, Grade 8 The Test Blueprint reflects the degree to which each PASS Standard and Objective is represented on the test. Page1 1 st Nine Standard 1:

More information

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013

Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Fractals: Self-Similarity and Fractal Dimension Math 198, Spring 2013 Background Fractal geometry is one of the most important developments in mathematics in the second half of the 20th century. Fractals

More information

Gentle Introduction to Fractals

Gentle Introduction to Fractals Gentle Introduction to Fractals www.nclab.com Contents 1 Fractals Basics 1 1.1 Concept................................................ 1 1.2 History................................................ 2 1.3

More information

Course of study- Algebra Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by

Course of study- Algebra Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by Course of study- Algebra 1-2 1. Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by students in Grades 9 and 10, but since all students must

More information

Houghton Mifflin MATHEMATICS Level 5 correlated to NCTM Standard

Houghton Mifflin MATHEMATICS Level 5 correlated to NCTM Standard s 2000 Number and Operations Standard Understand numbers, ways of representing numbers, relationships among numbers, and number systems understand the place-value structure of the TE: 4 5, 8 11, 14 17,

More information

Note: Levels A-I respresent Grade Levels K-8; Florida - Grade 7 -Math Standards /Benchmarks PLATO Courseware Covering Florida - Grade 7 - Math

Note: Levels A-I respresent Grade Levels K-8; Florida - Grade 7 -Math Standards /Benchmarks PLATO Courseware Covering Florida - Grade 7 - Math Note: Levels A-I respresent Grade Levels K-8; - Grade 7 -Math Standards /Benchmarks 2005 PLATO Courseware Covering - Grade 7 - Math Number Sense, Concepts, and Operations Standard 1: The student understands

More information

Scientific Calculation and Visualization

Scientific Calculation and Visualization Scientific Calculation and Visualization Topic Iteration Method for Fractal 2 Classical Electrodynamics Contents A First Look at Quantum Physics. Fractals.2 History of Fractal.3 Iteration Method for Fractal.4

More information

Hei nz-ottopeitgen. Hartmut Jürgens Dietmar Sau pe. Chaos and Fractals. New Frontiers of Science

Hei nz-ottopeitgen. Hartmut Jürgens Dietmar Sau pe. Chaos and Fractals. New Frontiers of Science Hei nz-ottopeitgen Hartmut Jürgens Dietmar Sau pe Chaos and Fractals New Frontiers of Science Preface Authors VU X I Foreword 1 Mitchell J. Feigenbaum Introduction: Causality Principle, Deterministic

More information

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions

TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions TEAMS National Competition Middle School Version Photometry Solution Manual 25 Questions Page 1 of 14 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

Big Ideas. Objects can be transferred in an infinite number of ways. Transformations can be described and analyzed mathematically.

Big Ideas. Objects can be transferred in an infinite number of ways. Transformations can be described and analyzed mathematically. Big Ideas Numbers, measures, expressions, equations, and inequalities can represent mathematical situations and structures in many equivalent forms. Objects can be transferred in an infinite number of

More information

Anadarko Public Schools MATH Power Standards

Anadarko Public Schools MATH Power Standards Anadarko Public Schools MATH Power Standards Kindergarten 1. Say the number name sequence forward and backward beginning from a given number within the known sequence (counting on, spiral) 2. Write numbers

More information

Numerical Computing: An Introduction

Numerical Computing: An Introduction Numerical Computing: An Introduction Gyula Horváth Horvath@inf.u-szeged.hu Tom Verhoeff T.Verhoeff@TUE.NL University of Szeged Hungary Eindhoven University of Technology The Netherlands Numerical Computing

More information

Fixed Point Iterative Techniques An Application to Fractals

Fixed Point Iterative Techniques An Application to Fractals Fixed Point Iterative Techniques An Application to Fractals Narayan Partap 1 and Prof. Renu Chugh 2 1 Amity Institute of Applied Sciences, Amity University, Noida, India 2 Department of Mathematics, M.D.

More information

Seventh Grade Mathematics Content Standards and Objectives

Seventh Grade Mathematics Content Standards and Objectives Seventh Grade Mathematics Content Standards and Objectives Standard 1: Number and Operations beyond the field of mathematics, students will M.S.7.1 demonstrate understanding of numbers, ways of representing

More information

Algebra 2 Semester 1 (#2221)

Algebra 2 Semester 1 (#2221) Instructional Materials for WCSD Math Common Finals The Instructional Materials are for student and teacher use and are aligned to the 2016-2017 Course Guides for the following course: Algebra 2 Semester

More information

Suggested Foundation Topics for Paper 2

Suggested Foundation Topics for Paper 2 Suggested Foundation Topics for Paper 2 Number N a N b N b N c N d Add, subtract, multiply and divide any positive and negative integers Order decimals and integers Order rational numbers Use the concepts

More information

Similarities and Differences Or Compare and Contrast

Similarities and Differences Or Compare and Contrast Similarities and Differences Or Compare and Contrast Research has shown that identifying similarities and differences can produce significant gains in student achievement. For it to be effective it must

More information

Geometry Regents Lomac Date 3/17 due 3/18 3D: Area and Dissection 9.1R. A point has no measure because a point represents a

Geometry Regents Lomac Date 3/17 due 3/18 3D: Area and Dissection 9.1R. A point has no measure because a point represents a Geometry Regents Lomac 2015-2016 Date 3/17 due 3/18 3D: Area and Dissection Name Per LO: I can define area, find area, and explain dissection it relates to area and volume. DO NOW On the back of this packet

More information

Stat 45: Our Fractal World? Topics for Today. Lecture 1: Getting Started. David Donoho Statistics Department Stanford University. Sierpinski Gaskets

Stat 45: Our Fractal World? Topics for Today. Lecture 1: Getting Started. David Donoho Statistics Department Stanford University. Sierpinski Gaskets Stat 45N: Our Fractal World? Lecture 1 1 Stat 45N: Our Fractal World? Lecture 1 2 Stat 45: Our Fractal World? Topics for Today Lecture 1: Getting Started What Are They? David Donoho Statistics Department

More information

r the COR d e s 3 A lg e b r a Alabama Pathways

r the COR d e s 3 A lg e b r a Alabama Pathways BUI LT fo COM r the MON COR E Gra 2013 2014 d e s 3 A lg e b r a Alabama Pathways I Grade 3 Operations and Algebraic Thinking Operations and Algebraic Thinking Operations and Algebraic Thinking Number

More information

Use Math to Solve Problems and Communicate. Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Use Math to Solve Problems and Communicate. Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Number Sense M.1.1 Connect and count number words and numerals from 0-999 to the quantities they represent. M.2.1 Connect and count number words and numerals from 0-1,000,000 to the quantities they represent.

More information

Prep 8 Year: Pre-Algebra Textbook: Larson, Boswell, Kanold & Stiff. Pre-Algebra. Common Core Edition Holt McDougal, 2012.

Prep 8 Year: Pre-Algebra Textbook: Larson, Boswell, Kanold & Stiff. Pre-Algebra. Common Core Edition Holt McDougal, 2012. Prep 8 Year: Pre-Algebra Textbook: Larson, Boswell, Kanold & Stiff. Pre-Algebra. Common Core Edition Holt McDougal, 2012. Course Description: The students entering prep year have differing ranges of exposure

More information

CMP Book: Investigation Number Objective: PASS: 1.1 Describe data distributions and display in line and bar graphs

CMP Book: Investigation Number Objective: PASS: 1.1 Describe data distributions and display in line and bar graphs Data About Us (6th Grade) (Statistics) 1.1 Describe data distributions and display in line and bar graphs. 6.5.1 1.2, 1.3, 1.4 Analyze data using range, mode, and median. 6.5.3 Display data in tables,

More information

DOWNLOAD PDF BIG IDEAS MATH VERTICAL SHRINK OF A PARABOLA

DOWNLOAD PDF BIG IDEAS MATH VERTICAL SHRINK OF A PARABOLA Chapter 1 : BioMath: Transformation of Graphs Use the results in part (a) to identify the vertex of the parabola. c. Find a vertical line on your graph paper so that when you fold the paper, the left portion

More information

APS Sixth Grade Math District Benchmark Assessment NM Math Standards Alignment

APS Sixth Grade Math District Benchmark Assessment NM Math Standards Alignment SIXTH GRADE NM STANDARDS Strand: NUMBER AND OPERATIONS Standard: Students will understand numerical concepts and mathematical operations. 5-8 Benchmark N.: Understand numbers, ways of representing numbers,

More information

Oklahoma Learning Pathways

Oklahoma Learning Pathways BUI L F OKL ORT AHO MA 2015 2016 Oklahoma Learning Pathways Table of Contents Grade 3...3 Grade 4...5 Grade 5...8 Grade 6... 11 Grade 7... 15 Grade 8... 19 Algebra Readiness...22 Algebra I...25 Geometry...28

More information

34.2: Two Types of Image

34.2: Two Types of Image Chapter 34 Images 34.2: Two Types of Image For you to see an object, your eye intercepts some of the light rays spreading from the object and then redirect them onto the retina at the rear of the eye.

More information

Osinga, HM., & Krauskopf, B. (Accepted/In press). The Lorenz manifold: Crochet and curvature.

Osinga, HM., & Krauskopf, B. (Accepted/In press). The Lorenz manifold: Crochet and curvature. Osinga, HM., & Krauskopf, B. (Accepted/In press). The Lorenz manifold: Crochet and curvature. Early version, also known as pre-print Link to publication record in Explore Bristol Research PDF-document

More information

Performance Level Descriptors. Mathematics

Performance Level Descriptors. Mathematics Performance Level Descriptors Grade 3 Well Students rarely, Understand that our number system is based on combinations of 1s, 10s, and 100s (place value, compare, order, decompose, and combine using addition)

More information

8 th Grade Mathematics Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the

8 th Grade Mathematics Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 8 th Grade Mathematics Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13. This document is designed to help North Carolina educators

More information

1.2 Characteristics of Function Graphs

1.2 Characteristics of Function Graphs 1.2 Characteristics of Function Graphs Essential Question: What are some of the attributes of a function, and how are they related to the function s graph? Resource Locker Explore Identifying Attributes

More information

PITSCO Math Individualized Prescriptive Lessons (IPLs)

PITSCO Math Individualized Prescriptive Lessons (IPLs) Orientation Integers 10-10 Orientation I 20-10 Speaking Math Define common math vocabulary. Explore the four basic operations and their solutions. Form equations and expressions. 20-20 Place Value Define

More information

Course Overview Course Length Materials Prerequisites Course Outline

Course Overview Course Length Materials Prerequisites Course Outline MTH113: Pre-Algebra Course Overview Course Length Materials Prerequisites Course Outline COURSE OVERVIEW In this course, students take a broader look at computational and problem-solving skills while learning

More information

pagina 1 van 5 Location: Food for Thought > The Particle > Unification into a fractal dimension Blaze Labs Research Menu Home Food for Thought EHD Thrusters New Energy Research Experiments Links Contact

More information

Name: Tutor s

Name: Tutor s Name: Tutor s Email: Bring a couple, just in case! Necessary Equipment: Black Pen Pencil Rubber Pencil Sharpener Scientific Calculator Ruler Protractor (Pair of) Compasses 018 AQA Exam Dates Paper 1 4

More information

Exploring Fractals through Geometry and Algebra. Kelly Deckelman Ben Eggleston Laura Mckenzie Patricia Parker-Davis Deanna Voss

Exploring Fractals through Geometry and Algebra. Kelly Deckelman Ben Eggleston Laura Mckenzie Patricia Parker-Davis Deanna Voss Exploring Fractals through Geometry and Algebra Kelly Deckelman Ben Eggleston Laura Mckenzie Patricia Parker-Davis Deanna Voss Learning Objective and skills practiced Students will: Learn the three criteria

More information

Big Mathematical Ideas and Understandings

Big Mathematical Ideas and Understandings Big Mathematical Ideas and Understandings A Big Idea is a statement of an idea that is central to the learning of mathematics, one that links numerous mathematical understandings into a coherent whole.

More information

Course Title: Math 7 Grade Level: 7

Course Title: Math 7 Grade Level: 7 Content Area: Mathematics Course Title: Math 7 Grade Level: 7 Integers Rational Numbers and Equations Expressions and Equations Marking Period 1 Inequalities Ratio and Proportion Marking Period 2 Percents

More information

CURRICULUM UNIT MAP 1 ST QUARTER

CURRICULUM UNIT MAP 1 ST QUARTER 1 ST QUARTER Unit 1: Pre- Algebra Basics I WEEK 1-2 OBJECTIVES Apply properties for operations to positive rational numbers and integers Write products of like bases in exponential form Identify and use

More information

4 th Grade CRCT Study Guide

4 th Grade CRCT Study Guide 4 th Grade CRCT Study Guide Numbers and Operations 43% millions Place Value Whole numbers Hundred thousands Ten thousands thousands hundreds tens ones 7, 5 2 3, 8 2 5 Seven million, five hundred twenty-three

More information

Middle School Math Course 2

Middle School Math Course 2 Middle School Math Course 2 Correlation of the ALEKS course Middle School Math Course 2 to the Indiana Academic Standards for Mathematics Grade 7 (2014) 1: NUMBER SENSE = ALEKS course topic that addresses

More information

Prentice Hall. Connected Mathematics 2, 7th Grade Units Mississippi Mathematics Framework 2007 Revised, Grade 7

Prentice Hall. Connected Mathematics 2, 7th Grade Units Mississippi Mathematics Framework 2007 Revised, Grade 7 Prentice Hall Connected Mathematics 2, 7th Grade Units 2006 C O R R E L A T E D T O Mississippi Mathematics Framework 2007 Revised, Grade 7 NUMBER AND OPERATIONS 1. Apply concepts of rational numbers and

More information

Standards Level by Objective Hits Goals Objs # of objs by % w/in std Title Level Mean S.D. Concurr.

Standards Level by Objective Hits Goals Objs # of objs by % w/in std Title Level Mean S.D. Concurr. Table 9. Categorical Concurrence Between Standards and Assessment as Rated by Six Reviewers Florida Grade 9 athematics Number of Assessment Items - Standards evel by Objective Hits Cat. Goals Objs # of

More information

Prentice Hall Mathematics: Pre-Algebra 2004 Correlated to: The Pennsylvania Math Assessment Anchors and Eligible Content (Grade 11)

Prentice Hall Mathematics: Pre-Algebra 2004 Correlated to: The Pennsylvania Math Assessment Anchors and Eligible Content (Grade 11) AND M11.A Numbers and Operations M11.A.1 Demonstrate an understanding of numbers, ways of representing numbers, relationships among numbers and number systems. SE/TE: 2, 11, 18-22, 25, 27-29, 32-34, 44,

More information

KS4 Curriculum Plan Maths HIGHER TIER Year 9 Autumn Term 1 Unit 1: Number

KS4 Curriculum Plan Maths HIGHER TIER Year 9 Autumn Term 1 Unit 1: Number KS4 Curriculum Plan Maths HIGHER TIER Year 9 Autumn Term 1 Unit 1: Number 1.1 Number problems and reasoning 1.2 Place value and estimating 1.3 HCF and LCM 1.4 Calculating with powers (indices) 1.5 Zero,

More information

Outline. Solid models and fractals. Constructive solid geometry. Constructive solid geometry COM3404. Richard Everson

Outline. Solid models and fractals. Constructive solid geometry. Constructive solid geometry COM3404. Richard Everson Outline Solid models and fractals COM School of Engineering, Computer Science and Mathematics University of Exeter Constructive solid geometry Fractals Dimension s Landscape generation L-systems R.M.Everson@exeter.ac.uk

More information

Journal of Applied Mathematics and Computation (JAMC), 2018, 2(1), 13-20

Journal of Applied Mathematics and Computation (JAMC), 2018, 2(1), 13-20 Journal of Applied Mathematics and Computation (JAMC), 2018, 2(1), 13-20 http://www.hillpublisher.org/journal/jamc ISSN Online:2576-0645 ISSN Print:2576-0653 Generation of Fractal Vessel Structure Functions

More information