Numeric-Symbolic Exact Rational Linear System Solver

Size: px
Start display at page:

Download "Numeric-Symbolic Exact Rational Linear System Solver"

Transcription

1 Numeric-Symbolic Exact Rational Linear System Solver B David Saunders, David Wood, and Bryan Youse University of Delaware June 10, 2011

2 Motivation Ax = b Given A Z m n and b Z m, compute x Q n Core problem specifics: Square m = n matrices Matrix entries of length d bits or fewer

3 Background Competing Approaches Purely Symbolic [Dixon, 1982] Solve system modulo p Use Hensel lifting to obtain a p-adic expansion of solution Rational reconstruction from p-adic approximants

4 Background Competing Approaches Purely Symbolic [Dixon, 1982] Solve system modulo p Use Hensel lifting to obtain a p-adic expansion of solution Rational reconstruction from p-adic approximants Numeric-Symbolic [Wan, 2006] Numeric iterative refinement to obtain dyadic number solution of high accuracy Specifically, 2 lg(h), the Hadamard bound of the input system Rational reconstruction from dyadic approximants

5 Fact If two rational numbers r 1 = a/b, r 2 = c/d are given in lowest terms, and r 1 r 2, then r 1 r 2 1/bd That is, though dense in the real number line, rational numbers with bound denominators are discrete

6 Fact If two rational numbers r 1 = a/b, r 2 = c/d are given in lowest terms, and r 1 r 2, then r 1 r 2 1/bd That is, though dense in the real number line, rational numbers with bound denominators are discrete A given real number r can be represented by a continued fraction: 1 r = a 0 +, where a i Z a a 2 + a 1 3 +

7 Iterative Refinement System

8 Iterative Refinement System Numeric Solver

9 Iterative Refinement System Numeric Solver approx soln

10 Iterative Refinement System Numeric Solver n: Update dyadic solution approx soln d: 2 k s

11 Iterative Refinement System Numeric Solver n: Update dyadic solution approx soln d: 2 k, k k + s s s

12 Iterative Refinement System Numeric Solver n: Update dyadic solution approx soln d: 2 k, k k + s s s

13 Iterative Refinement System Numeric Solver n: Update dyadic solution approx soln d: 2 k, k k + s s s enough accuracy?

14 Iterative Refinement System Numeric Solver n: Update dyadic solution approx soln d: 2 k, k k + s s s enough accuracy? yes Proceed to Rational Reconstruction

15 Iterative Refinement System n: Update dyadic solution Numeric Solver approx soln Apply matrix to soln d: 2 k, k k + s s s enough accuracy? yes no Proceed to Rational Reconstruction

16 Iterative Refinement System Obtain residual n: Update dyadic solution Numeric Solver approx soln Apply matrix to soln d: 2 k, k k + s s s enough accuracy? yes no Proceed to Rational Reconstruction

17 Iterative Refinement System Obtain residual amplify by s n: Update dyadic solution Numeric Solver approx soln Apply matrix to soln d: 2 k, k k + s s s enough accuracy? yes no Proceed to Rational Reconstruction

18 Iterative Refinement System Obtain residual n: Update dyadic solution Numeric Solver approx soln Apply matrix to soln d: 2 k, k k + s s s enough accuracy? yes no Proceed to Rational Reconstruction

19 Iterative Refinement System Obtain residual n: Update dyadic solution Numeric Solver approx soln Apply matrix to soln d: 2 k, k k + s s s enough accuracy? yes no Proceed to Rational Reconstruction

20 Iterative Refinement System Obtain residual n: Update dyadic solution Numeric Solver approx soln Apply matrix to soln d: 2 k, k k + s s s enough accuracy? yes no Proceed to Rational Reconstruction

21 Confirmed Continuation (Overlap) At each iteration, we scale our partial solution ˆx, then split into: ˆx int = ˆx 2 s ˆx frac = ˆx 2 s ˆx int

22 Confirmed Continuation (Overlap) At each iteration, we scale our partial solution ˆx, then split into: ˆx int = ˆx 2 s ˆx frac = ˆx 2 s ˆx int Before updating dyadic approximants, we confirm continuation of the iteration by verifying overlap between the current ˆx and the previous ˆx frac

23 Confirmed Continuation (Overlap) At each iteration, we scale our partial solution ˆx, then split into: ˆx int = ˆx 2 s ˆx frac = ˆx 2 s ˆx int Before updating dyadic approximants, we confirm continuation of the iteration by verifying overlap between the current ˆx and the previous ˆx frac max ˆx ˆx frac 1 ensures b bits of overlap 2 b One bit is (typically) sufficient

24 Rational Reconstruction Like rational reconstruction from p-adic digits, Euclidean remainder sequence used to recover exact solution from dyadic approximants

25 Rational Reconstruction Like rational reconstruction from p-adic digits, Euclidean remainder sequence used to recover exact solution from dyadic approximants P-adically a remainder sequence entry is (r i, s i, t i ), where r i = s i x + t i p k, the remainder r i is a numerator candidate and coefficient s i of the given residue x is a denominator candidate

26 Rational Reconstruction Like rational reconstruction from p-adic digits, Euclidean remainder sequence used to recover exact solution from dyadic approximants P-adically a remainder sequence entry is (r i, s i, t i ), where r i = s i x + t i p k, the remainder r i is a numerator candidate and coefficient s i of the given residue x is a denominator candidate Dyadically a remainder sequence entry is (r i, s i, t i ), where r i = s i x + t i 2 k, the remainder r i is a measure of error and coefficient s i of the given dyadic approximation x is a denominator candidate

27 Rational Reconstruction - single element example Example Solving Ax = b, suppose: x 1 = 9/17 the Hadamard bound for det(a) is h = 2 8 = 256 In general we need 2 lg(h) = 16 bits of approximation

28 Rational Reconstruction - single element example Example Solving Ax = b, suppose: x 1 = 9/17 the Hadamard bound for det(a) is h = 2 8 = 256 In general we need 2 lg(h) = 16 bits of approximation Dyadic approximation to 16 bits: n d = Stopping condition: a b n d 1 2d a b

29 Rational Reconstruction - single element example Example Solving Ax = b, suppose: x 1 = 9/17 the Hadamard bound for det(a) is h = 2 8 = 256 In general we need 2 lg(h) = 16 bits of approximation Dyadic approximation to 16 bits: n d = a b Stopping condition: a b n d 1 2d bn ad b 2

30 Rational Reconstruction - single element example Example Solving Ax = b, suppose: x 1 = 9/17 the Hadamard bound for det(a) is h = 2 8 = 256 In general we need 2 lg(h) = 16 bits of approximation Dyadic approximation to 16 bits: n d = a b Stopping condition: a b n d 1 2d bn ad b = 0 n + 1 d = 1 n + 0 d = 1 n + 1 d 3856 = 2 n + 1 d 3848 = 15 n + 8 d 8 = 17 n + 9 d

31 Output sensitivity (early termination) Dyadic approximation to 12 bits: n d = a b 4096 = 0 n + 1 d 2168 = 1 n + 0 d 1928 = 1 n + 1 d 240 = 2 n + 1 d 8 = 17 n + 9 d No random choice of prime, therefore no probabilistic early termination But guaranteed early termination in some cases Idea explored in-depth by Steffy [2010]

32 Vector rational reconstruction Suppose solution to Ax = b is (9/17, 3/11, 7/187) and we have computed the approximation to 12 bits: 2168,1117,

33 Vector rational reconstruction Suppose solution to Ax = b is (9/17, 3/11, 7/187) and we have computed the approximation to 12 bits: 2168,1117, x 1 : As we saw, 9/17 is found with certainty 17 = lcm of denominators so far

34 Vector rational reconstruction Suppose solution to Ax = b is (9/17, 3/11, 7/187) and we have computed the approximation to 12 bits: 2168,1117, x 1 : As we saw, 9/17 is found with certainty 17 = lcm of denominators so far x 2 : Try division once- failure ( 1491 = ) Find 3/11 with single element reconstruction 187 = lcm of denominators so far

35 Vector rational reconstruction Suppose solution to Ax = b is (9/17, 3/11, 7/187) and we have computed the approximation to 12 bits: 2168,1117, x 1 : As we saw, 9/17 is found with certainty 17 = lcm of denominators so far x 2 : Try division once- failure ( 1491 = ) Find 3/11 with single element reconstruction 187 = lcm of denominators so far x 3 : Try division once- success! ( 61 = ) 7/187 found with small enough remainder ( )

36 Performance 16 Relative Running Time Overlap Method on Zero-One systems Z vs Dixon Z vs Wan Matrix Order

37 Performance Relative Running Time: Overlap Dixon Q [27 11] R [38 30] Z [36 28] M [31 18] m S Matrix Order

38 Conclusion and Ongoing Work Overlap method results in consistently faster, more robust performance over algorithm predecessor

39 Conclusion and Ongoing Work Overlap method results in consistently faster, more robust performance over algorithm predecessor Output sensitive early termination is a proven avenue for runtime savings

40 Conclusion and Ongoing Work Overlap method results in consistently faster, more robust performance over algorithm predecessor Output sensitive early termination is a proven avenue for runtime savings Specialized numeric solvers fit easily into the framework

41 Conclusion and Ongoing Work Overlap method results in consistently faster, more robust performance over algorithm predecessor Output sensitive early termination is a proven avenue for runtime savings Specialized numeric solvers fit easily into the framework Work ongoing to incorporate highly-tuned direct (SuperLU) and iterative sparse solvers

42 The End

Rational numbers as decimals and as integer fractions

Rational numbers as decimals and as integer fractions Rational numbers as decimals and as integer fractions Given a rational number expressed as an integer fraction reduced to the lowest terms, the quotient of that fraction will be: an integer, if the denominator

More information

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018

CS 395T Lecture 12: Feature Matching and Bundle Adjustment. Qixing Huang October 10 st 2018 CS 395T Lecture 12: Feature Matching and Bundle Adjustment Qixing Huang October 10 st 2018 Lecture Overview Dense Feature Correspondences Bundle Adjustment in Structure-from-Motion Image Matching Algorithm

More information

Slide 1 / 180. Radicals and Rational Exponents

Slide 1 / 180. Radicals and Rational Exponents Slide 1 / 180 Radicals and Rational Exponents Slide 2 / 180 Roots and Radicals Table of Contents: Square Roots Intro to Cube Roots n th Roots Irrational Roots Rational Exponents Operations with Radicals

More information

FFPACK: Finite Field Linear Algebra Package

FFPACK: Finite Field Linear Algebra Package FFPACK: Finite Field Linear Algebra Package Jean-Guillaume Dumas, Pascal Giorgi and Clément Pernet pascal.giorgi@ens-lyon.fr, {Jean.Guillaume.Dumas, Clément.Pernet}@imag.fr P. Giorgi, J-G. Dumas & C. Pernet

More information

Code Generation for Embedded Convex Optimization

Code Generation for Embedded Convex Optimization Code Generation for Embedded Convex Optimization Jacob Mattingley Stanford University October 2010 Convex optimization Problems solvable reliably and efficiently Widely used in scheduling, finance, engineering

More information

Exercise 1.1. Page 1 of 22. Website: Mobile:

Exercise 1.1. Page 1 of 22. Website:    Mobile: Question 1: Exercise 1.1 Use Euclid s division algorithm to find the HCF of: (i) 135 and 225 Since 225 > 135, we apply the division lemma to 225 and 135 to obtain 225 = 135 1 + 90 Since remainder 90 0,

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College September 6, 2017 Outline Outline 1 Chapter 2: Data Abstraction Outline Chapter 2: Data Abstraction 1 Chapter 2: Data Abstraction

More information

Iterative Sparse Triangular Solves for Preconditioning

Iterative Sparse Triangular Solves for Preconditioning Euro-Par 2015, Vienna Aug 24-28, 2015 Iterative Sparse Triangular Solves for Preconditioning Hartwig Anzt, Edmond Chow and Jack Dongarra Incomplete Factorization Preconditioning Incomplete LU factorizations

More information

Introduction to Fractions

Introduction to Fractions Introduction to Fractions Fractions represent parts of a whole. The top part of a fraction is called the numerator, while the bottom part of a fraction is called the denominator. The denominator states

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

LSRN: A Parallel Iterative Solver for Strongly Over- or Under-Determined Systems

LSRN: A Parallel Iterative Solver for Strongly Over- or Under-Determined Systems LSRN: A Parallel Iterative Solver for Strongly Over- or Under-Determined Systems Xiangrui Meng Joint with Michael A. Saunders and Michael W. Mahoney Stanford University June 19, 2012 Meng, Saunders, Mahoney

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Rational number operations can often be simplified by converting mixed numbers to improper fractions Add EXAMPLE:

Rational number operations can often be simplified by converting mixed numbers to improper fractions Add EXAMPLE: Rational number operations can often be simplified by converting mixed numbers to improper fractions Add ( 2) EXAMPLE: 2 Multiply 1 Negative fractions can be written with the negative number in the numerator

More information

Section 5.5. Greatest common factors

Section 5.5. Greatest common factors Section 5.5 Greatest common factors Definition GCF The greatest common factor (GCF) is the largest factor common to both of the specified numbers. Ex. GCF(36,84) List factors 36:1,2,3,4,6,9,12,18,36 84:1,2,3,4,6,7,9,12,14,21,28,42,84

More information

EXAMPLE 1. Change each of the following fractions into decimals.

EXAMPLE 1. Change each of the following fractions into decimals. CHAPTER 1. THE ARITHMETIC OF NUMBERS 1.4 Decimal Notation Every rational number can be expressed using decimal notation. To change a fraction into its decimal equivalent, divide the numerator of the fraction

More information

Performance improvements to peer-to-peer file transfers using network coding

Performance improvements to peer-to-peer file transfers using network coding Performance improvements to peer-to-peer file transfers using network coding Aaron Kelley April 29, 2009 Mentor: Dr. David Sturgill Outline Introduction Network Coding Background Contributions Precomputation

More information

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS ADDING AND SUBTRACTING RATIONAL EXPRESSIONS To Add or Subtract Two Fractions, 0, 0 Example 1 a) Add b) Subtract a) b) The same principles apply when adding or subtracting rational expressions containing

More information

Lecture 17 Sparse Convex Optimization

Lecture 17 Sparse Convex Optimization Lecture 17 Sparse Convex Optimization Compressed sensing A short introduction to Compressed Sensing An imaging perspective 10 Mega Pixels Scene Image compression Picture Why do we compress images? Introduction

More information

Performance. frontend. iratrecon - rational reconstruction. sprem - sparse pseudo division

Performance. frontend. iratrecon - rational reconstruction. sprem - sparse pseudo division Performance frontend The frontend command is used extensively by Maple to map expressions to the domain of rational functions. It was rewritten for Maple 2017 to reduce time and memory usage. The typical

More information

6-2 Matrix Multiplication, Inverses and Determinants

6-2 Matrix Multiplication, Inverses and Determinants Find AB and BA, if possible. 4. A = B = A = ; B = A is a 2 1 matrix and B is a 1 4 matrix. Because the number of columns of A is equal to the number of rows of B, AB exists. To find the first entry of

More information

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample Lecture 9 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem: distribute data into k different groups

More information

CS231A Midterm Review. Friday 5/6/2016

CS231A Midterm Review. Friday 5/6/2016 CS231A Midterm Review Friday 5/6/2016 Outline General Logistics Camera Models Non-perspective cameras Calibration Single View Metrology Epipolar Geometry Structure from Motion Active Stereo and Volumetric

More information

Mathematics. Jaehyun Park. CS 97SI Stanford University. June 29, 2015

Mathematics. Jaehyun Park. CS 97SI Stanford University. June 29, 2015 Mathematics Jaehyun Park CS 97SI Stanford University June 29, 2015 Outline Algebra Number Theory Combinatorics Geometry Algebra 2 Sum of Powers n k=1 k 3 k 2 = 1 n(n + 1)(2n + 1) 6 = ( k ) 2 = ( 1 2 n(n

More information

CLASSIFICATION OF FRACTIONS 1. Proper Fraction : A Proper fraction is one whose numerator is less than its denominator. 1 eg., 3

CLASSIFICATION OF FRACTIONS 1. Proper Fraction : A Proper fraction is one whose numerator is less than its denominator. 1 eg., 3 CLASSIFICATION OF FRACTIONS. Proper Fraction : A Proper fraction is one whose numerator is less than its denominator. eg.,. Improper Fraction : An improper fraction is one whose numerator is equal to or

More information

Core Mathematics 1 Indices & Surds

Core Mathematics 1 Indices & Surds Regent College Maths Department Core Mathematics Indices & Surds Indices September 0 C Note Laws of indices for all rational exponents. The equivalence of We should already know from GCSE, the three Laws

More information

Section 3.1 Factors and Multiples of Whole Numbers:

Section 3.1 Factors and Multiples of Whole Numbers: Chapter Notes Math 0 Chapter : Factors and Products: Skill Builder: Some Divisibility Rules We can use rules to find out if a number is a factor of another. To find out if, 5, or 0 is a factor look at

More information

- 0.8.00-0.8. 7 ANSWERS: ) : ) : ) : ) : 8 RATIO WORD PROBLEM EXAMPLES: Ratio Compares two amounts or values; they can be written in ways. As a fraction With a colon : With words to A classroom has girls

More information

Performing Matrix Operations on the TI-83/84

Performing Matrix Operations on the TI-83/84 Page1 Performing Matrix Operations on the TI-83/84 While the layout of most TI-83/84 models are basically the same, of the things that can be different, one of those is the location of the Matrix key.

More information

SDP Memo 048: Two Dimensional Sparse Fourier Transform Algorithms

SDP Memo 048: Two Dimensional Sparse Fourier Transform Algorithms SDP Memo 048: Two Dimensional Sparse Fourier Transform Algorithms Document Number......................................................... SDP Memo 048 Document Type.....................................................................

More information

Integers are whole numbers; they include negative whole numbers and zero. For example -7, 0, 18 are integers, 1.5 is not.

Integers are whole numbers; they include negative whole numbers and zero. For example -7, 0, 18 are integers, 1.5 is not. What is an INTEGER/NONINTEGER? Integers are whole numbers; they include negative whole numbers and zero. For example -7, 0, 18 are integers, 1.5 is not. What is a REAL/IMAGINARY number? A real number is

More information

CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS. Jaehyun Park

CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS. Jaehyun Park CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS Jaehyun Park Today s Lecture Algebra Number Theory Combinatorics (non-computational) Geometry Emphasis on how to compute Sum of Powers n k=1 k 2 = 1 6 n(n

More information

Fraction to Percents Change the fraction to a decimal (see above) and then change the decimal to a percent (see above).

Fraction to Percents Change the fraction to a decimal (see above) and then change the decimal to a percent (see above). PEMDAS This is an acronym for the order of operations. Order of operations is the order in which you complete problems with more than one operation. o P parenthesis o E exponents o M multiplication OR

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

Chapter 14: Matrix Iterative Methods

Chapter 14: Matrix Iterative Methods Chapter 14: Matrix Iterative Methods 14.1INTRODUCTION AND OBJECTIVES This chapter discusses how to solve linear systems of equations using iterative methods and it may be skipped on a first reading of

More information

Signal Reconstruction from Sparse Representations: An Introdu. Sensing

Signal Reconstruction from Sparse Representations: An Introdu. Sensing Signal Reconstruction from Sparse Representations: An Introduction to Compressed Sensing December 18, 2009 Digital Data Acquisition Suppose we want to acquire some real world signal digitally. Applications

More information

COMPETENCY 1.0 UNDERSTAND THE STRUCTURE OF THE BASE TEN NUMERATION SYSTEM AND NUMBER THEORY

COMPETENCY 1.0 UNDERSTAND THE STRUCTURE OF THE BASE TEN NUMERATION SYSTEM AND NUMBER THEORY SUBAREA I. NUMBERS AND OPERATIONS COMPETENCY.0 UNDERSTAND THE STRUCTURE OF THE BASE TEN NUMERATION SYSTEM AND NUMBER THEORY Skill. Analyze the structure of the base ten number system (e.g., decimal and

More information

Functional Programming Languages (FPL)

Functional Programming Languages (FPL) Functional Programming Languages (FPL) 1. Definitions... 2 2. Applications... 2 3. Examples... 3 4. FPL Characteristics:... 3 5. Lambda calculus (LC)... 4 6. Functions in FPLs... 7 7. Modern functional

More information

5.0 Perfect squares and Perfect Cubes

5.0 Perfect squares and Perfect Cubes 5.0 Perfect squares and Perfect Cubes A fast and efficient way to solve radicals is to recognize and know the perfect numbers. Perfect Squares 1 4 5 6 7 8 9 10 11 1 1 Perfect Cubes 1 4 5 6 7 8 9 10 1 14

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

Fractions. Dividing the numerator and denominator by the highest common element (or number) in them, we get the fraction in its lowest form.

Fractions. Dividing the numerator and denominator by the highest common element (or number) in them, we get the fraction in its lowest form. Fractions A fraction is a part of the whole (object, thing, region). It forms the part of basic aptitude of a person to have and idea of the parts of a population, group or territory. Civil servants must

More information

16 Rational Functions Worksheet

16 Rational Functions Worksheet 16 Rational Functions Worksheet Concepts: The Definition of a Rational Function Identifying Rational Functions Finding the Domain of a Rational Function The Big-Little Principle The Graphs of Rational

More information

Chapter 1: Number and Operations

Chapter 1: Number and Operations Chapter 1: Number and Operations 1.1 Order of operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply

More information

Rational Expressions Sections

Rational Expressions Sections Rational Expressions Sections Multiplying / Dividing Let s first review how we multiply and divide fractions. Multiplying / Dividing When multiplying/ dividing, do we have to have a common denominator?

More information

Math Glossary Numbers and Arithmetic

Math Glossary Numbers and Arithmetic Math Glossary Numbers and Arithmetic Version 0.1.1 September 1, 200 Next release: On or before September 0, 200. E-mail edu@ezlink.com for the latest version. Copyright 200 by Brad Jolly All Rights Reserved

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson. UNIT I STUDY GUIDE Number Theory and the Real Number System

Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson. UNIT I STUDY GUIDE Number Theory and the Real Number System UNIT I STUDY GUIDE Number Theory and the Real Number System Course Learning Outcomes for Unit I Upon completion of this unit, students should be able to: 2. Relate number theory, integer computation, and

More information

Radical Expressions LESSON. 36 Unit 1: Relationships between Quantities and Expressions

Radical Expressions LESSON. 36 Unit 1: Relationships between Quantities and Expressions LESSON 6 Radical Expressions UNDERSTAND You can use the following to simplify radical expressions. Product property of radicals: The square root of a product is equal to the square root of the factors.

More information

Lesson 9: Decimal Expansions of Fractions, Part 1

Lesson 9: Decimal Expansions of Fractions, Part 1 Classwork Opening Exercises 1 2 1. a. We know that the fraction can be written as a finite decimal because its denominator is a product of 2 s. Which power of 10 will allow us to easily write the fraction

More information

PreCalculus 300. Algebra 2 Review

PreCalculus 300. Algebra 2 Review PreCalculus 00 Algebra Review Algebra Review The following topics are a review of some of what you learned last year in Algebra. I will spend some time reviewing them in class. You are responsible for

More information

Computing the rank of big sparse matrices modulo p using gaussian elimination

Computing the rank of big sparse matrices modulo p using gaussian elimination Computing the rank of big sparse matrices modulo p using gaussian elimination Charles Bouillaguet 1 Claire Delaplace 2 12 CRIStAL, Université de Lille 2 IRISA, Université de Rennes 1 JNCF, 16 janvier 2017

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

6.3 ADDING and SUBTRACTING Rational Expressions REVIEW. When you ADD rational numbers (fractions): 1) Write each number with common denominator

6.3 ADDING and SUBTRACTING Rational Expressions REVIEW. When you ADD rational numbers (fractions): 1) Write each number with common denominator 6.3 ADDING and SUBTRACTING Rational REVIEW When you ADD rational numbers (fractions): 1) Write each number with common denominator 4 5 + 10 12 = 6.3 ADDING and SUBTRACTING Rational 4 5 + 10 12 = REVIEW

More information

Sparse & Redundant Representations and Their Applications in Signal and Image Processing

Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparseland: An Estimation Point of View Michael Elad The Computer Science Department The Technion Israel Institute

More information

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed cycles that cover all vertices of the graph. 1. Show that there

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers & Number Systems

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers & Number Systems SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics Numbers & Number Systems Introduction Numbers and Their Properties Multiples and Factors The Division Algorithm Prime and Composite Numbers Prime Factors

More information

( 3) ( 4 ) 1. Exponents and Radicals ( ) ( xy) 1. MATH 102 College Algebra. still holds when m = n, we are led to the result

( 3) ( 4 ) 1. Exponents and Radicals ( ) ( xy) 1. MATH 102 College Algebra. still holds when m = n, we are led to the result Exponents and Radicals ZERO & NEGATIVE EXPONENTS If we assume that the relation still holds when m = n, we are led to the result m m a m n 0 a = a = a. Consequently, = 1, a 0 n n a a a 0 = 1, a 0. Then

More information

ELEG Compressive Sensing and Sparse Signal Representations

ELEG Compressive Sensing and Sparse Signal Representations ELEG 867 - Compressive Sensing and Sparse Signal Representations Gonzalo R. Arce Depart. of Electrical and Computer Engineering University of Delaware Fall 211 Compressive Sensing G. Arce Fall, 211 1 /

More information

Section 2-7. Graphs of Rational Functions

Section 2-7. Graphs of Rational Functions Section 2-7 Graphs of Rational Functions Section 2-7 rational functions and domain transforming the reciprocal function finding horizontal and vertical asymptotes graphing a rational function analyzing

More information

Algebra II Radical Equations

Algebra II Radical Equations 1 Algebra II Radical Equations 2016-04-21 www.njctl.org 2 Table of Contents: Graphing Square Root Functions Working with Square Roots Irrational Roots Adding and Subtracting Radicals Multiplying Radicals

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation 1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation functions vertical line test function notation evaluate

More information

Math Circle Beginners Group October 18, 2015 Solutions

Math Circle Beginners Group October 18, 2015 Solutions Math Circle Beginners Group October 18, 2015 Solutions Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that

More information

Radicals - Mixed Index

Radicals - Mixed Index .7 Radicals - Mixed Index Knowing that a radical has the same properties as exponents (written as a ratio) allows us to manipulate radicals in new ways. One thing we are allowed to do is reduce, not just

More information

Parallel FFT Program Optimizations on Heterogeneous Computers

Parallel FFT Program Optimizations on Heterogeneous Computers Parallel FFT Program Optimizations on Heterogeneous Computers Shuo Chen, Xiaoming Li Department of Electrical and Computer Engineering University of Delaware, Newark, DE 19716 Outline Part I: A Hybrid

More information

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER. Towson, MD 21252

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER. Towson, MD 21252 REPORT DOCUMENTATION PAGE A~n-SR-AR - Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instruction 6 2 S data needed,

More information

Chapter 1 Section 1 Lesson: Solving Linear Equations

Chapter 1 Section 1 Lesson: Solving Linear Equations Introduction Linear equations are the simplest types of equations to solve. In a linear equation, all variables are to the first power only. All linear equations in one variable can be reduced to the form

More information

Limits at Infinity. as x, f (x)?

Limits at Infinity. as x, f (x)? Limits at Infinity as x, f (x)? as x, f (x)? Let s look at... Let s look at... Let s look at... Definition of a Horizontal Asymptote: If Then the line y = L is called a horizontal asymptote of the graph

More information

CS 5803 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit. A.R. Hurson 323 CS Building, Missouri S&T

CS 5803 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit. A.R. Hurson 323 CS Building, Missouri S&T CS 5803 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit A.R. Hurson 323 CS Building, Missouri S&T hurson@mst.edu 1 Outline Motivation Design of a simple ALU How to design

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.7 Graphs of Rational Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze and

More information

6.3. Complex Fractions

6.3. Complex Fractions 6. Comple Fractions 1. Simplify comple fractions by simplifying the numerator and denominator (Method 1).. Simplify comple fractions by multiplying by a common denominator (Method ).. Compare the two methods

More information

SMP Based Solver For Large Binary Linear Systems

SMP Based Solver For Large Binary Linear Systems 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies SMP Based Solver For Large Binary Linear Systems Nikhil Jain, Brajesh Pande, Phalguni Gupta Indian Institute

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

n = 1 What problems are interesting when n is just 1?

n = 1 What problems are interesting when n is just 1? What if n=1??? n = 1 What problems are interesting when n is just 1? Sorting? No Median finding? No Addition? How long does it take to add one pair of numbers? Multiplication? How long does it take to

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Learning Log Title: CHAPTER 3: PORTIONS AND INTEGERS. Date: Lesson: Chapter 3: Portions and Integers

Learning Log Title: CHAPTER 3: PORTIONS AND INTEGERS. Date: Lesson: Chapter 3: Portions and Integers Chapter 3: Portions and Integers CHAPTER 3: PORTIONS AND INTEGERS Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 3: Portions and Integers Date: Lesson: Learning Log Title:

More information

The Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers Customizable software solver package Peter Sutor, Jr. Project Advisor: Professor Tom Goldstein April 27, 2016 1 / 28 Background The Dual Problem Consider

More information

Justify all your answers and write down all important steps. Unsupported answers will be disregarded.

Justify all your answers and write down all important steps. Unsupported answers will be disregarded. Numerical Analysis FMN011 2017/05/30 The exam lasts 5 hours and has 15 questions. A minimum of 35 points out of the total 70 are required to get a passing grade. These points will be added to those you

More information

Creating a new data type

Creating a new data type Appendix B Creating a new data type Object-oriented programming languages allow programmers to create new data types that behave much like built-in data types. We will explore this capability by building

More information

Classwork. Exercises Use long division to determine the decimal expansion of. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 7

Classwork. Exercises Use long division to determine the decimal expansion of. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 7 Classwork Exercises 1 5 1. Use long division to determine the decimal expansion of. 2. Use long division to determine the decimal expansion of. 3. Use long division to determine the decimal expansion of.

More information

NFC ACADEMY MATH 600 COURSE OVERVIEW

NFC ACADEMY MATH 600 COURSE OVERVIEW NFC ACADEMY MATH 600 COURSE OVERVIEW Math 600 is a full-year elementary math course focusing on number skills and numerical literacy, with an introduction to rational numbers and the skills needed for

More information

Geometry for Computer Vision

Geometry for Computer Vision Geometry for Computer Vision Lecture 5b Calibrated Multi View Geometry Per-Erik Forssén 1 Overview The 5-point Algorithm Structure from Motion Bundle Adjustment 2 Planar degeneracy In the uncalibrated

More information

A System of Image Matching and 3D Reconstruction

A System of Image Matching and 3D Reconstruction A System of Image Matching and 3D Reconstruction CS231A Project Report 1. Introduction Xianfeng Rui Given thousands of unordered images of photos with a variety of scenes in your gallery, you will find

More information

CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION

CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION CHAPTER 3 DISPARITY AND DEPTH MAP COMPUTATION In this chapter we will discuss the process of disparity computation. It plays an important role in our caricature system because all 3D coordinates of nodes

More information

Math 121. Graphing Rational Functions Fall 2016

Math 121. Graphing Rational Functions Fall 2016 Math 121. Graphing Rational Functions Fall 2016 1. Let x2 85 x 2 70. (a) State the domain of f, and simplify f if possible. (b) Find equations for the vertical asymptotes for the graph of f. (c) For each

More information

A. Incorrect! To simplify this expression you need to find the product of 7 and 4, not the sum.

A. Incorrect! To simplify this expression you need to find the product of 7 and 4, not the sum. Problem Solving Drill 05: Exponents and Radicals Question No. 1 of 10 Question 1. Simplify: 7u v 4u 3 v 6 Question #01 (A) 11u 5 v 7 (B) 8u 6 v 6 (C) 8u 5 v 7 (D) 8u 3 v 9 To simplify this expression you

More information

50 MATHCOUNTS LECTURES (6) OPERATIONS WITH DECIMALS

50 MATHCOUNTS LECTURES (6) OPERATIONS WITH DECIMALS BASIC KNOWLEDGE 1. Decimal representation: A decimal is used to represent a portion of whole. It contains three parts: an integer (which indicates the number of wholes), a decimal point (which separates

More information

ALGEBRA 2 W/ TRIGONOMETRY MIDTERM REVIEW

ALGEBRA 2 W/ TRIGONOMETRY MIDTERM REVIEW Name: Block: ALGEBRA W/ TRIGONOMETRY MIDTERM REVIEW Algebra 1 Review Find Slope and Rate of Change Graph Equations of Lines Write Equations of Lines Absolute Value Functions Transformations Piecewise Functions

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic Randolph High School Math League 2014-2015 Page 1 1 Introduction Introduction to Modular Arithmetic Modular arithmetic is a topic residing under Number Theory, which roughly speaking is the study of integers

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

Algebra II Chapter 8 Part 2: Rational Functions

Algebra II Chapter 8 Part 2: Rational Functions Algebra II Chapter 8 Part 2: Rational Functions Chapter 8 Lesson 4 Multiply and Divide Rational Functions Vocabulary Words to Review: Reciprocal The rules of fractions DO NOT change! *When adding and subtracting,

More information

CS 261 Data Structures. Big-Oh Analysis: A Review

CS 261 Data Structures. Big-Oh Analysis: A Review CS 261 Data Structures Big-Oh Analysis: A Review Big-Oh: Purpose How can we characterize the runtime or space usage of an algorithm? We want a method that: doesn t depend upon hardware used (e.g., PC,

More information

Structurally Random Matrices

Structurally Random Matrices Fast Compressive Sampling Using Structurally Random Matrices Presented by: Thong Do (thongdo@jhu.edu) The Johns Hopkins University A joint work with Prof. Trac Tran, The Johns Hopkins University it Dr.

More information

1 Training/Validation/Testing

1 Training/Validation/Testing CPSC 340 Final (Fall 2015) Name: Student Number: Please enter your information above, turn off cellphones, space yourselves out throughout the room, and wait until the official start of the exam to begin.

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

2-4 Graphing Rational Functions

2-4 Graphing Rational Functions 2-4 Graphing Rational Functions Factor What are the zeros? What are the end behaviors? How to identify the intercepts, asymptotes, and end behavior of a rational function. How to sketch the graph of a

More information

5.6 Rational Equations

5.6 Rational Equations 5.6 Rational Equations Now that we have a good handle on all of the various operations on rational expressions, we want to turn our attention to solving equations that contain rational expressions. The

More information

TOURNAMENT OF THE TOWNS, Glossary

TOURNAMENT OF THE TOWNS, Glossary TOURNAMENT OF THE TOWNS, 2003 2004 Glossary Absolute value The size of a number with its + or sign removed. The absolute value of 3.2 is 3.2, the absolute value of +4.6 is 4.6. We write this: 3.2 = 3.2

More information

Section 5.4 Properties of Rational Functions

Section 5.4 Properties of Rational Functions Rational Function A rational function is a function of the form R(xx) = P(xx), where P(xx)and Q(xx) are polynomial Q(xx) functions and Q(xx) 0. Domain is the set of all real numbers xx except the value(s)

More information

7-1 Introduction to Decimals

7-1 Introduction to Decimals 7-1 Introduction to Decimals Place Value 12.345678 Place Value 12.345678 Place Value 12.345678 tens Place Value 12.345678 units tens Place Value 12.345678 decimal point units tens Place Value 12.345678

More information

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1

LAPACK. Linear Algebra PACKage. Janice Giudice David Knezevic 1 LAPACK Linear Algebra PACKage 1 Janice Giudice David Knezevic 1 Motivating Question Recalling from last week... Level 1 BLAS: vectors ops Level 2 BLAS: matrix-vectors ops 2 2 O( n ) flops on O( n ) data

More information