Section 5.5. Greatest common factors

Size: px
Start display at page:

Download "Section 5.5. Greatest common factors"

Transcription

1 Section 5.5 Greatest common factors

2 Definition GCF The greatest common factor (GCF) is the largest factor common to both of the specified numbers. Ex. GCF(36,84) List factors 36:1,2,3,4,6,9,12,18,36 84:1,2,3,4,6,7,9,12,14,21,28,42,84 12 is the largest number to appear in each of these lists. So we say the greatest common denominator of 36 and 84 is 12 or GCF(36,84)=12.

3 Compute GCF An easier way to compute the GCF is to prime factor both numbers. Then take the most common prime factors and multiply. 36=2x2x3x3 84=2x2x3x7 There are two 2s and one 3 common to both, so GCF(36,84)=2x2x3=12. Why does this work??

4 GCF of 3+ numbers Find GCF(24,60,90). The factors of these are 24:1,2,3,4,6,8,12,24 60:1,2,3,4,5,6,10,12,15,30,60 90:1,2,3,5,6,9,10,15,18,30,45,90 6 is the greatest number common to all three of these lists.

5 GCF of 3+ numbers Find GCF(24,60,90) using prime factors. 24=2x2x2x3 60=2x2 x3 x5 90=2 x3x3x5 The only prime factors common to all three of these are 2 and 3, so the greatest common factor is 6.

6 Relatively prime When a pair of numbers have greatest common factor equal to one, they are called relatively prime.

7 Properties If a b, then GCF(a,b)=a. Why? If a=bq+r, then GCF(a,b)=GCF(b,r). To prove this, observe that a factor of a and b is also a factor of r. Similarly, a factor of b and r is also a factor of a.

8 Simplification Find GCF(348,72). Simplify by dividing: 348=4(72)+60. So GCF(348,72)=GCF(72,60). Simplify again: 72=1(60)+12. So GCF(72,60)=GCF(60,12). Now since 12 60, GCF(60,12)=12.

9 Euclidean Algor. By repeatedly dividing and taking remainders as in the previous example, we will always eventually get one number is a multiple of another, then the smaller number is the greatest common divisor. This process is called the Euclidean Algorithm.

10 Practice Use the Euclidean Algorithm to solve: GCF(91,52) GCF(812,336) GCF( ,59675) You can use a calculator.

11 Lemma 5.13 For any whole numbers, a and b, there is a multiple of a and a multiple of b which differ by GCF(a,b). Said another way, GCF(a,b)=ma-nb, for some positive integers m and n. This follows from the Euclidean Algorithm. Just keep track of where all of the numbers come from.

12 Lemma 5.13 For example, GCF(1785,546)= =3(546) =3(147) =1(105) =2(42)+21 Stop since Subtract each line 21=105-2(42) 42=147-1(105) 105=546-3(147) 147=1785-3(546)

13 Lemma =105-2(42) 42=147-1(105) 105=546-3(147) 147=1785-3(546)

14 Lemma =105-2(147-1(105)) 105=546-3(147) 147=1785-3(546)

15 Lemma =105-2(147)+2(105) 105=546-3(147) 147=1785-3(546)

16 Lemma =105-2(147)+2(105) 105=546-3(147) 147=1785-3(546)

17 Lemma =3(105)-2(147) 105=546-3(147) 147=1785-3(546)

18 Lemma =3(546-3(147))-2(147) 147=1785-3(546)

19 Lemma =3(546)-9(147)-2(147) 147=1785-3(546)

20 Lemma =3(546)-11(147) 147=1785-3(546)

21 Lemma =3(546)-11(1785-3(546))

22 Lemma =3(546)-11(1785)+33(546)

23 Lemma =-11(1785)+36(546)

24 Lemma 5.13 So we get that 21=36(546)-11(1785) Even if you don't remember this process, the idea is that all number come from some (linear) combination of the two numbers we start with.

25 Lemma 5.14 If p is a prime factor of ab, then p is a factor of either a or b. Proof: Suppose to the contrary that p does not divide a or b. Then GCF(p,a) can't be p. So it must be 1. So by Lemma 5.13, 1=mp-na. Multiplying both sides by b, we get b=mpb-nab. Now, p nab and p mpb, so p b, by the Divisibility Lemma. This contradicts our assumption. So it must instead be true that p divides either a or b.

26 5.14 & FTA Using Lemma 5.14, we can finally prove the uniqueness statement of the Fundamental Theorem of Arithmetic. Suppose you have two prime factorizations of a number a=(p1)(p2)...(pn)=(q1)(q2)...(qm) Then p1 a, so by Lemma 5.14, p1 qi, for some i. So cancel these terms and repeat. Eventually, we've matched all the primes.

27 5.14 & FTA Lemma 5.14 can be proven easily if you assume the Fundamental Theorem of Arithmetic. p ab, implies that p is a prime factor of ab. Each prime factor of ab must belong to a or b, by the uniqueness of factorizations. So we have (5.14) FTA and FTA (5.14). We say that (5.14) and FTA are logically equivalent. The validity of one implies the validity of the other. It is necessary to prove one without assuming the other in order to prove both.

28 LCM Related to the idea of the GCF is the idea of the least common multiple (LCM). For example, what is LCM(6,15)? List the multiples 6:6,12,18,24,30,36,42,48,60,... 15:15,30,45,60,75,... The two have common multiples, but 30 is the least common multiple. Note, we only consider positive multiples.

29 Existence of LCM Given two positive integers a and b, ab is a common multiple. So any two positive integers must have a least common multiple and it must be smallest than their product. (This helps us search.)

30 Common multiples A pair of positive integers have infinitely many common multiples. Why?

31 An identity The following identity is useful for computing the LCM: LCM(a,b)=ab/GCD(a,b) This is true because ab is the product of all prime factors of a times the product of all prime factors in b. The denominator cancels one of each prime that is repeated (between the two). This new number is still a multiple of each a and b. If we cancel any more though, we will no longer have a multiple of one of a or b, making it the least common multiple.

32 An identity For example consider LCM(12,60) 12=2*2*3 and 60=2*3*5 Any multiple of 12 must have for its prime factors two 2s and a 3, but it may have more. Any multiple of 60 must have for its prime factors a 2, a 3, and a 5, but it may have more. We might just list all of these. 2*2*3*2*3*5

33 An identity For example consider LCM(12,60) 12=2*2*3 and 60=2*3*5 Although 2*2*3*2*3*5 is a common multiple, it is not the least common multiple because we do not need both 3s. We also don't need a yellow 2 and a cyan 2. So we get a smaller (smallest) common multiple. 2*2*3*5

34 An identity For example consider LCM(12,60) 12=2*2*3 and 60=2*3*5 Now (2*2*3)*5=12*5 and 2*(2*3*5)=2*60 We can't get rid of any more factors and still have a multiple of both 12 and 60. So this is our least common multiple. We got it by dividing by all common prime factors. We saw earlier that the product of all common prime factors is the GCF.

35 Example Use the identity along with the Euclidean Algorithm to determine LCM(8361,75)

36 Exercise 1 Prove that if GCF(a,b)=1 and a c and b c, then (ab) c. Intuition: If GCF(a,b)=1, then LCM(a,b)=ab. Since c is a common multiple, we want to say that it is a multiple of the least common multiple. It is. It always will be. Lemma 5.13 helps us prove this.

37 Exercise 1 Prove that if GCF(a,b)=1 and a c and b c, then (ab) c. We can write c=ja, c=kb, and am-bn=1. Try multiplying both sides by jkab jkaabm-jkabbn=jkab So, ab(jkam-jkbn)=(ja)(kb) So, ab((ja)km-(kb)jn)=cc So, ab(ckm-cjn)=cc So, abc(km-jn)=cc Cancelling the c's gives us that ab*(integer)=c, as desired.

38 Exercise 2 Prove that if GCF(c,a)=1 and c (ab), then c b. Intuition: c (ab) means that all of the prime factors of c are in (ab). But GCF(c,a)=1 means that none of those primes are prime factors of a. So they must all be prime factors of b.

39 Exercise 2 Prove that if GCF(c,a)=1 and c (ab), then c b. We again use Lemma 5.13 cm-an=1 and ck=ab. If we start with cm-an=1 (we usually start here), we want a b to show up. Try multiplying both sides by b. cmb-abn=b Try making the other equation appear. cmb-(ab)n=b cmb-(ck)n=b. So c(mb-kn)=b.

40 Exercise recap We saw as a general rule, we can prove facts about the GCF by starting with Lemma 3.14 and manipulating.

41 Exercise 3 Prove that GCF(n,n+1)=1 for all n. What are some possible values for GCF(n,n+2)? GCF(n,n+6)?

42 What to know You should what the GCF and LCM are. You should be able to compute these using the Euclidean Algorithm and the identity. You should know the statements of Lemma 3.14 and 3.15, but do not need to know the proofs. You should be able to prove things about the GCF. Exercises 2 and 3 above are not unreasonable.

43 To try p. 130 #2,3,6,8,10,12 Modify Exercise 2 above to prove the following: Prove that if GCF(c,a)=d and c (ab), then c bd.

Rational numbers as decimals and as integer fractions

Rational numbers as decimals and as integer fractions Rational numbers as decimals and as integer fractions Given a rational number expressed as an integer fraction reduced to the lowest terms, the quotient of that fraction will be: an integer, if the denominator

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

Prepared by Sa diyya Hendrickson. Package Summary

Prepared by Sa diyya Hendrickson. Package Summary Introduction Prepared by Sa diyya Hendrickson Name: Date: Package Summary Exponent Form and Basic Properties Order of Operations Using Divisibility Rules Finding Factors and Common Factors Primes, Prime

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

1 Elementary number theory

1 Elementary number theory 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...}, along with their most basic arithmetical and ordering properties.

More information

COMPETENCY 1.0 UNDERSTAND THE STRUCTURE OF THE BASE TEN NUMERATION SYSTEM AND NUMBER THEORY

COMPETENCY 1.0 UNDERSTAND THE STRUCTURE OF THE BASE TEN NUMERATION SYSTEM AND NUMBER THEORY SUBAREA I. NUMBERS AND OPERATIONS COMPETENCY.0 UNDERSTAND THE STRUCTURE OF THE BASE TEN NUMERATION SYSTEM AND NUMBER THEORY Skill. Analyze the structure of the base ten number system (e.g., decimal and

More information

Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson. UNIT I STUDY GUIDE Number Theory and the Real Number System

Course Learning Outcomes for Unit I. Reading Assignment. Unit Lesson. UNIT I STUDY GUIDE Number Theory and the Real Number System UNIT I STUDY GUIDE Number Theory and the Real Number System Course Learning Outcomes for Unit I Upon completion of this unit, students should be able to: 2. Relate number theory, integer computation, and

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

Math 10- Chapter 2 Review

Math 10- Chapter 2 Review Math 10- Chapter 2 Review [By Christy Chan, Irene Xu, and Henry Luan] Knowledge required for understanding this chapter: 1. Simple calculation skills: addition, subtraction, multiplication, and division

More information

MATH. Finding The Least Common Multiple of a Set of Numbers

MATH. Finding The Least Common Multiple of a Set of Numbers 5 Module 11 MATH Finding The Least Common Multiple of a Set of Numbers A DepEd-BEAM Distance Learning Program supported by the Australian Agency for International Development To the Learner Hi! Dear learner.

More information

Introduction to Fractions

Introduction to Fractions Introduction to Fractions Fractions represent parts of a whole. The top part of a fraction is called the numerator, while the bottom part of a fraction is called the denominator. The denominator states

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Copyright Cengage Learning. All rights reserved. SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All rights reserved.

More information

Exercise 1.1. Page 1 of 22. Website: Mobile:

Exercise 1.1. Page 1 of 22. Website:    Mobile: Question 1: Exercise 1.1 Use Euclid s division algorithm to find the HCF of: (i) 135 and 225 Since 225 > 135, we apply the division lemma to 225 and 135 to obtain 225 = 135 1 + 90 Since remainder 90 0,

More information

Fractions. There are several terms that are commonly used when working with fractions.

Fractions. There are several terms that are commonly used when working with fractions. Chapter 0 Review of Arithmetic Fractions There are several terms that are commonly used when working with fractions. Fraction: The ratio of two numbers. We use a division bar to show this ratio. The number

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers & Number Systems

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Numbers & Number Systems SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics Numbers & Number Systems Introduction Numbers and Their Properties Multiples and Factors The Division Algorithm Prime and Composite Numbers Prime Factors

More information

Integers are whole numbers; they include negative whole numbers and zero. For example -7, 0, 18 are integers, 1.5 is not.

Integers are whole numbers; they include negative whole numbers and zero. For example -7, 0, 18 are integers, 1.5 is not. What is an INTEGER/NONINTEGER? Integers are whole numbers; they include negative whole numbers and zero. For example -7, 0, 18 are integers, 1.5 is not. What is a REAL/IMAGINARY number? A real number is

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Wednesday, September 22, 2010. The syllabus will be sections 1.1 and 1.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive

More information

HOW TO DIVIDE: MCC6.NS.2 Fluently divide multi-digit numbers using the standard algorithm. WORD DEFINITION IN YOUR WORDS EXAMPLE

HOW TO DIVIDE: MCC6.NS.2 Fluently divide multi-digit numbers using the standard algorithm. WORD DEFINITION IN YOUR WORDS EXAMPLE MCC6.NS. Fluently divide multi-digit numbers using the standard algorithm. WORD DEFINITION IN YOUR WORDS EXAMPLE Dividend A number that is divided by another number. Divisor A number by which another number

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 7: Direct Proof Introduction 1. The statement below is true. Rewrite the

More information

Is the statement sufficient? If both x and y are odd, is xy odd? 1) xy 2 < 0. Odds & Evens. Positives & Negatives. Answer: Yes, xy is odd

Is the statement sufficient? If both x and y are odd, is xy odd? 1) xy 2 < 0. Odds & Evens. Positives & Negatives. Answer: Yes, xy is odd Is the statement sufficient? If both x and y are odd, is xy odd? Is x < 0? 1) xy 2 < 0 Positives & Negatives Answer: Yes, xy is odd Odd numbers can be represented as 2m + 1 or 2n + 1, where m and n are

More information

Math Circle Beginners Group October 18, 2015 Solutions

Math Circle Beginners Group October 18, 2015 Solutions Math Circle Beginners Group October 18, 2015 Solutions Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that

More information

FUNDAMENTAL ARITHMETIC

FUNDAMENTAL ARITHMETIC FUNDAMENTAL ARITHMETIC Prime Numbers Prime numbers are any whole numbers greater than that can only be divided by and itself. Below is the list of all prime numbers between and 00: Prime Factorization

More information

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal. Chapter 8 out of 7 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal 8 Matrices Definitions and Basic Operations Matrix algebra is also known

More information

CLASSIFICATION OF FRACTIONS 1. Proper Fraction : A Proper fraction is one whose numerator is less than its denominator. 1 eg., 3

CLASSIFICATION OF FRACTIONS 1. Proper Fraction : A Proper fraction is one whose numerator is less than its denominator. 1 eg., 3 CLASSIFICATION OF FRACTIONS. Proper Fraction : A Proper fraction is one whose numerator is less than its denominator. eg.,. Improper Fraction : An improper fraction is one whose numerator is equal to or

More information

What is a Fraction? A fraction is a part or piece of something. The way we write fractions tells us the size of the piece we are referring to

What is a Fraction? A fraction is a part or piece of something. The way we write fractions tells us the size of the piece we are referring to October 0, 0 What is a Fraction? A fraction is a part or piece of something. The way we write fractions tells us the size of the piece we are referring to ⅝ is the numerator is the denominator is the whole

More information

Section A Arithmetic ( 5) Exercise A

Section A Arithmetic ( 5) Exercise A Section A Arithmetic In the non-calculator section of the examination there might be times when you need to work with quite awkward numbers quickly and accurately. In particular you must be very familiar

More information

50 MATHCOUNTS LECTURES (6) OPERATIONS WITH DECIMALS

50 MATHCOUNTS LECTURES (6) OPERATIONS WITH DECIMALS BASIC KNOWLEDGE 1. Decimal representation: A decimal is used to represent a portion of whole. It contains three parts: an integer (which indicates the number of wholes), a decimal point (which separates

More information

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers Contents STRAND B: Number Theory Unit 7 Number System and Bases Student Text Contents Section 7. Number System 7.2 Binary Numbers 7.3 Adding and Subtracting Binary Numbers 7.4 Multiplying Binary Numbers

More information

Modular Arithmetic. Marizza Bailey. December 14, 2015

Modular Arithmetic. Marizza Bailey. December 14, 2015 Modular Arithmetic Marizza Bailey December 14, 2015 Introduction to Modular Arithmetic If someone asks you what day it is 145 days from now, what would you answer? Would you count 145 days, or find a quicker

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.8 Application: Algorithms Copyright Cengage Learning. All rights reserved. Application:

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic Randolph High School Math League 2014-2015 Page 1 1 Introduction Introduction to Modular Arithmetic Modular arithmetic is a topic residing under Number Theory, which roughly speaking is the study of integers

More information

Senior Math Circles Cryptography and Number Theory Week 1

Senior Math Circles Cryptography and Number Theory Week 1 Senior Math Circles Cryptography and Number Theory Week 1 Dale Brydon Feb. 2, 2014 1 One-Time Pads Cryptography deals with the problem of encoding a message in such a way that only the intended recipient

More information

Unit 1 Integers, Fractions & Order of Operations

Unit 1 Integers, Fractions & Order of Operations Unit 1 Integers, Fractions & Order of Operations In this unit I will learn Date: I have finished this work! I can do this on the test! Operations with positive and negative numbers The order of operations

More information

Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4.

Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. CHAPTER 8 Integers Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. Strategy 13 Use cases. This strategy may be appropriate when A problem can be

More information

Lesson 13: Exploring Factored Form

Lesson 13: Exploring Factored Form Opening Activity Below is a graph of the equation y = 6(x 3)(x + 2). It is also the graph of: y = 3(2x 6)(x + 2) y = 2(3x 9)(x + 2) y = 2(x 3)(3x + 6) y = 3(x 3)(2x + 4) y = (3x 9)(2x + 4) y = (2x 6)(3x

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

Section 3.1 Factors and Multiples of Whole Numbers:

Section 3.1 Factors and Multiples of Whole Numbers: Chapter Notes Math 0 Chapter : Factors and Products: Skill Builder: Some Divisibility Rules We can use rules to find out if a number is a factor of another. To find out if, 5, or 0 is a factor look at

More information

Module 7 Highlights. Mastered Reviewed. Sections ,

Module 7 Highlights. Mastered Reviewed. Sections , Sections 5.3 5.6, 6.1 6.6 Module 7 Highlights Andrea Hendricks Math 0098 Pre-college Algebra Topics Degree & leading coeff. of a univariate polynomial (5.3, Obj. 1) Simplifying a sum/diff. of two univariate

More information

Skill 1: Multiplying Polynomials

Skill 1: Multiplying Polynomials CS103 Spring 2018 Mathematical Prerequisites Although CS103 is primarily a math class, this course does not require any higher math as a prerequisite. The most advanced level of mathematics you'll need

More information

PreCalculus 300. Algebra 2 Review

PreCalculus 300. Algebra 2 Review PreCalculus 00 Algebra Review Algebra Review The following topics are a review of some of what you learned last year in Algebra. I will spend some time reviewing them in class. You are responsible for

More information

Rational Number is a number that can be written as a quotient of two integers. DECIMALS are special fractions whose denominators are powers of 10.

Rational Number is a number that can be written as a quotient of two integers. DECIMALS are special fractions whose denominators are powers of 10. PA Ch 5 Rational Expressions Rational Number is a number that can be written as a quotient of two integers. DECIMALS are special fractions whose denominators are powers of 0. Since decimals are special

More information

Math 7 Notes Unit 2B: Rational Numbers

Math 7 Notes Unit 2B: Rational Numbers Math 7 Notes Unit B: Rational Numbers Teachers Before we move to performing operations involving rational numbers, we must be certain our students have some basic understandings and skills. The following

More information

Divisibility Rules and Their Explanations

Divisibility Rules and Their Explanations Divisibility Rules and Their Explanations Increase Your Number Sense These divisibility rules apply to determining the divisibility of a positive integer (1, 2, 3, ) by another positive integer or 0 (although

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

Week - 01 Lecture - 03 Euclid's Algorithm for gcd. Let us continue with our running example of gcd to explore more issues involved with program.

Week - 01 Lecture - 03 Euclid's Algorithm for gcd. Let us continue with our running example of gcd to explore more issues involved with program. Programming, Data Structures and Algorithms in Python Prof. Madhavan Mukund Department of Computer Science and Engineering Indian Institute of Technology, Madras Week - 01 Lecture - 03 Euclid's Algorithm

More information

Rational Numbers CHAPTER Introduction

Rational Numbers CHAPTER Introduction RATIONAL NUMBERS Rational Numbers CHAPTER. Introduction In Mathematics, we frequently come across simple equations to be solved. For example, the equation x + () is solved when x, because this value of

More information

Intro to Maths for CS: Fractions: Numerical and Algebraic

Intro to Maths for CS: Fractions: Numerical and Algebraic Intro to Maths for CS: Fractions: Numerical and Algebraic Joshua Knowles School of Computer Science, University of Birmingham Term 1, 2015-16 (Slides by John Barnden) Textbook Parts Programme F.1, section

More information

MAT 090 Brian Killough s Instructor Notes Strayer University

MAT 090 Brian Killough s Instructor Notes Strayer University MAT 090 Brian Killough s Instructor Notes Strayer University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

Module 2 Congruence Arithmetic pages 39 54

Module 2 Congruence Arithmetic pages 39 54 Module 2 Congruence Arithmetic pages 9 5 Here are some excellent websites that can help you on this topic: http://mathcentral.uregina.ca/qq/database/qq.09.98/kupper1.html http://nrich.maths.org/public.viewer.php?obj_id=50

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b.

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b. Section 2.3 Rational Numbers A rational number is a number that may be written in the form a b for any integer a and any nonzero integer b. Why is division by zero undefined? For example, we know that

More information

9 abcd = dcba b + 90c = c + 10b b = 10c.

9 abcd = dcba b + 90c = c + 10b b = 10c. In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

What is a Fraction? Fractions. One Way To Remember Numerator = North / 16. Example. What Fraction is Shaded? 9/16/16. Fraction = Part of a Whole

What is a Fraction? Fractions. One Way To Remember Numerator = North / 16. Example. What Fraction is Shaded? 9/16/16. Fraction = Part of a Whole // Fractions Pages What is a Fraction? Fraction Part of a Whole Top Number? Bottom Number? Page Numerator tells how many parts you have Denominator tells how many parts are in the whole Note: the fraction

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

1. Let n be a positive number. a. When we divide a decimal number, n, by 10, how are the numeral and the quotient related?

1. Let n be a positive number. a. When we divide a decimal number, n, by 10, how are the numeral and the quotient related? Black Converting between Fractions and Decimals Unit Number Patterns and Fractions. Let n be a positive number. When we divide a decimal number, n, by 0, how are the numeral and the quotient related?.

More information

NUMBER SENSE AND OPERATIONS. Competency 0001 Understand the structure of numeration systems and multiple representations of numbers.

NUMBER SENSE AND OPERATIONS. Competency 0001 Understand the structure of numeration systems and multiple representations of numbers. SUBAREA I. NUMBER SENSE AND OPERATIONS Competency 0001 Understand the structure of numeration systems and multiple representations of numbers. Prime numbers are numbers that can only be factored into 1

More information

1 5 Integer Operations

1 5 Integer Operations 1 5 Integer Operations Positive and Negative Integers A glance through any newspaper shows that many quantities are expressed using negative numbers. For example, negative numbers show below-zero temperatures.

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All

More information

Add the fractions by first finding. f + D U C

Add the fractions by first finding. f + D U C Add the fractions by first finding the LCD. U + C U C (Circle the LCD) Rewrite the fractions using the LCD and then add. Remember to reduce the answer if you can. Add the fractions by first finding M the

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

College Prep Algebra II Summer Packet

College Prep Algebra II Summer Packet Name: College Prep Algebra II Summer Packet This packet is an optional review which is highly recommended before entering CP Algebra II. It provides practice for necessary Algebra I topics. Remember: When

More information

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard.

2. Draw a non-isosceles triangle. Now make a template of this triangle out of cardstock or cardboard. Tessellations The figure at the left shows a tiled floor. Because the floor is entirely covered by the tiles we call this arrangement a tessellation of the plane. A regular tessellation occurs when: The

More information

Adding and subtracting rational expressions is quite similar to adding and subtracting rational numbers (fractions).

Adding and subtracting rational expressions is quite similar to adding and subtracting rational numbers (fractions). 7.2: Adding and Subtracting Rational Expressions, Simplifying Complex Fractions Adding and subtracting rational expressions is quite similar to adding and subtracting rational numbers (fractions). Adding

More information

Mathematics Background

Mathematics Background Finding Area and Distance Students work in this Unit develops a fundamentally important relationship connecting geometry and algebra: the Pythagorean Theorem. The presentation of ideas in the Unit reflects

More information

Non-context-Free Languages. CS215, Lecture 5 c

Non-context-Free Languages. CS215, Lecture 5 c Non-context-Free Languages CS215 Lecture 5 c 2007 1 The Pumping Lemma Theorem (Pumping Lemma) Let be context-free There exists a positive integer divided into five pieces Proof for for each and Let and

More information

Solutions to the Second Midterm Exam

Solutions to the Second Midterm Exam CS/Math 240: Intro to Discrete Math 3/27/2011 Instructor: Dieter van Melkebeek Solutions to the Second Midterm Exam Problem 1 This question deals with the following implementation of binary search. Function

More information

Algebra II Radical Equations

Algebra II Radical Equations 1 Algebra II Radical Equations 2016-04-21 www.njctl.org 2 Table of Contents: Graphing Square Root Functions Working with Square Roots Irrational Roots Adding and Subtracting Radicals Multiplying Radicals

More information

UCT Algorithm Circle: Number Theory

UCT Algorithm Circle: Number Theory UCT Algorithm Circle: 7 April 2011 Outline Primes and Prime Factorisation 1 Primes and Prime Factorisation 2 3 4 Some revision (hopefully) What is a prime number? An integer greater than 1 whose only factors

More information

Loops / Repetition Statements

Loops / Repetition Statements Loops / Repetition Statements Repetition statements allow us to execute a statement multiple times Often they are referred to as loops C has three kinds of repetition statements: the while loop the for

More information

Modular Arithmetic. is just the set of remainders we can get when we divide integers by n

Modular Arithmetic. is just the set of remainders we can get when we divide integers by n 20181004 Modular Arithmetic We are accustomed to performing arithmetic on infinite sets of numbers. But sometimes we need to perform arithmetic on a finite set, and we need it to make sense and be consistent

More information

For Module 2 SKILLS CHECKLIST. Fraction Notation. George Hartas, MS. Educational Assistant for Mathematics Remediation MAT 025 Instructor

For Module 2 SKILLS CHECKLIST. Fraction Notation. George Hartas, MS. Educational Assistant for Mathematics Remediation MAT 025 Instructor Last Updated: // SKILLS CHECKLIST For Module Fraction Notation By George Hartas, MS Educational Assistant for Mathematics Remediation MAT 0 Instructor Assignment, Section. Divisibility SKILL: Determine

More information

3.1 Dividing a Whole into Fractional Parts. 3.1 Dividing a Set into Fractional Parts. 3.2 Identifying Parts of Wholes.

3.1 Dividing a Whole into Fractional Parts. 3.1 Dividing a Set into Fractional Parts. 3.2 Identifying Parts of Wholes. . Dividing a Whole into Fractional Parts Fraction: represents a part of a whole object or unit Numerator: (top number) represents number of parts of the whole Denominator: (bottom number) represents how

More information

Algebra2go: Working with Fractions and Mixed Numbers

Algebra2go: Working with Fractions and Mixed Numbers Algebrago: Working with Fractions and Mixed Numbers Algebrago Review of Fractions. Understand Fractions on a Number Line Fractions are used to represent quantities between the whole numbers on a number

More information

Objective A Identify the numerator and the denominator of a fraction. When the numerator is less than the denominator, it is a(n) fraction.

Objective A Identify the numerator and the denominator of a fraction. When the numerator is less than the denominator, it is a(n) fraction. Prealgebra Seventh Edition, Elayn Martin-Gay Sec. 4. Section 4. Introduction to Fractions and Mixed Numbers Complete the outline as you view Lecture Video 4.. Pause the video as needed to fill in all blanks.

More information

Odd-Numbered Answers to Exercise Set 1.1: Numbers

Odd-Numbered Answers to Exercise Set 1.1: Numbers Odd-Numbered Answers to Exercise Set.: Numbers. (a) Composite;,,, Prime Neither (d) Neither (e) Composite;,,,,,. (a) 0. 0. 0. (d) 0. (e) 0. (f) 0. (g) 0. (h) 0. (i) 0.9 = (j). (since = ) 9 9 (k). (since

More information

ARITHMETIC EXPRESSION

ARITHMETIC EXPRESSION Section 1: Expression & Terms MATH LEVEL 2 LESSON PLAN 1 ARITHMETIC EXPRESSION 2017 Copyright Vinay Agarwala, Revised: 10/31/17 1. An arithmetic expression is made up of numbers joined by addition (+),

More information

Algebra II Chapter 8 Part 2: Rational Functions

Algebra II Chapter 8 Part 2: Rational Functions Algebra II Chapter 8 Part 2: Rational Functions Chapter 8 Lesson 4 Multiply and Divide Rational Functions Vocabulary Words to Review: Reciprocal The rules of fractions DO NOT change! *When adding and subtracting,

More information

Building Equivalent Fractions, the Least Common Denominator, and Ordering Fractions

Building Equivalent Fractions, the Least Common Denominator, and Ordering Fractions Section. PRE-ACTIVITY PREPARATION Building Equivalent Fractions, the Least Common Denominator, and Ordering Fractions You have learned that a fraction might be written in an equivalent form by reducing

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

0001 Understand the structure of numeration systems and multiple representations of numbers. Example: Factor 30 into prime factors.

0001 Understand the structure of numeration systems and multiple representations of numbers. Example: Factor 30 into prime factors. NUMBER SENSE AND OPERATIONS 0001 Understand the structure of numeration systems and multiple representations of numbers. Prime numbers are numbers that can only be factored into 1 and the number itself.

More information

Math 2 Coordinate Geometry Part 2 Lines & Systems of Equations

Math 2 Coordinate Geometry Part 2 Lines & Systems of Equations Name: Math 2 Coordinate Geometry Part 2 Lines & Systems of Equations Date: USING TWO POINTS TO FIND THE SLOPE - REVIEW In mathematics, the slope of a line is often called m. We can find the slope if we

More information

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic Chapter 3: Theory of Modular Arithmetic 1 Chapter 3: Theory of Modular Arithmetic SECTION A Introduction to Congruences By the end of this section you will be able to deduce properties of large positive

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS ADDING AND SUBTRACTING RATIONAL EXPRESSIONS To Add or Subtract Two Fractions, 0, 0 Example 1 a) Add b) Subtract a) b) The same principles apply when adding or subtracting rational expressions containing

More information

LET S GET STARTED WITH NUMBERS. Xin Li Math Circle, Spring 2018 University of Central Florida

LET S GET STARTED WITH NUMBERS. Xin Li Math Circle, Spring 2018 University of Central Florida LET S GET STARTED WITH NUMBERS Xin Li Math Circle, Spring 2018 University of Central Florida WHAT IS A NUMBER? Give me an example of a number Give me an example of a natural number Give me an example of

More information

Fundamental Graph Algorithms Part Three

Fundamental Graph Algorithms Part Three Fundamental Graph Algorithms Part Three Outline for Today Topological Sorting, Part II How can we quickly compute a topological ordering on a DAG? Connected Components How do we find the pieces of an undirected

More information

Introduction to Programming in C Department of Computer Science and Engineering\ Lecture No. #02 Introduction: GCD

Introduction to Programming in C Department of Computer Science and Engineering\ Lecture No. #02 Introduction: GCD Introduction to Programming in C Department of Computer Science and Engineering\ Lecture No. #02 Introduction: GCD In this session, we will write another algorithm to solve a mathematical problem. If you

More information

Lesson 24: Multiplying and Dividing Rational Expressions

Lesson 24: Multiplying and Dividing Rational Expressions Lesson 24: Multiplying and Dividing Rational Expressions Student Outcomes Students multiply and divide rational expressions and simplify using equivalent expressions. Lesson Notes This lesson quickly reviews

More information

Math 1125 Daily Calendar Spring 2016

Math 1125 Daily Calendar Spring 2016 Math 1125 Daily Calendar Spring 2016 Date Topic and Activity Text 1/11 1-1 correspondence, counting In Class: Shepherd s Necklace Place value 2.1 1/12 In Class: A Place of Value Place value, continued

More information

Example: Which of the following expressions must be an even integer if x is an integer? a. x + 5

Example: Which of the following expressions must be an even integer if x is an integer? a. x + 5 8th Grade Honors Basic Operations Part 1 1 NUMBER DEFINITIONS UNDEFINED On the ACT, when something is divided by zero, it is considered undefined. For example, the expression a bc is undefined if either

More information

Key Terms. Writing Algebraic Expressions. Example

Key Terms. Writing Algebraic Expressions. Example Chapter 6 Summary Key Terms variable (6.1) algebraic expression (6.1) evaluate an algebraic expression (6.1) Distributive Property of Multiplication over Addition (6.2) Distributive Property of Multiplication

More information

Summer 2013 Modules 9-13

Summer 2013 Modules 9-13 Summer 201 Modules 9-1 Mastering the Fundamentals Chris Millett Copyright 201 All rights reserved. Written permission must be secured from the author to use or reproduce any part of this book. Academic

More information

Chapter 4. Number Theory. 4.1 Factors and multiples

Chapter 4. Number Theory. 4.1 Factors and multiples Chapter 4 Number Theory We ve now covered most of the basic techniques for writing proofs. So we re going to start applying them to specific topics in mathematics, starting with number theory. Number theory

More information

Student Success Center Arithmetic Study Guide for the ACCUPLACER (CPT)

Student Success Center Arithmetic Study Guide for the ACCUPLACER (CPT) Fractions Terms Numerator: which tells how many parts you have (the number on top) Denominator: which tells how many parts in the whole (the number on the bottom) is parts have a dot out of Proper fraction:

More information

Gateway Regional School District VERTICAL ALIGNMENT OF MATHEMATICS STANDARDS Grades 3-6

Gateway Regional School District VERTICAL ALIGNMENT OF MATHEMATICS STANDARDS Grades 3-6 NUMBER SENSE & OPERATIONS 3.N.1 Exhibit an understanding of the values of the digits in the base ten number system by reading, modeling, writing, comparing, and ordering whole numbers through 9,999. Our

More information

Fraction to Percents Change the fraction to a decimal (see above) and then change the decimal to a percent (see above).

Fraction to Percents Change the fraction to a decimal (see above) and then change the decimal to a percent (see above). PEMDAS This is an acronym for the order of operations. Order of operations is the order in which you complete problems with more than one operation. o P parenthesis o E exponents o M multiplication OR

More information

MITOCW watch?v=kvtlwgctwn4

MITOCW watch?v=kvtlwgctwn4 MITOCW watch?v=kvtlwgctwn4 PROFESSOR: The idea of congruence was introduced to the world by Gauss in the early 18th century. You've heard of him before, I think. He's responsible for some work on magnetism

More information