University of Toronto Department of Mathematics

Size: px
Start display at page:

Download "University of Toronto Department of Mathematics"

Transcription

1 University of Toronto Department of Mathematics MAT332H1F, Graph Theory Midterm, October 21, 2014 Instructor: Kasra Rafi First Last Student Number Instructions: No aids allowed. Write solutions on the space provided. To receive full credit you must show all your work. If you run out of room for an answer, continue on the back of the page. This exam has 6 questions, for a total of 50 points. Problem # Grade Bonus Total

2 1. (8 points) Define the following terms and expressions: (a) bipartite A graph G is bipartite if the vertex set of G can be partitioned into two sets X and Y so that there every edge in G has one end in X and one end in Y. (b) induced subgraph And induces subgraph of G is a subgraph of G that is obtained from G by vertex deletion only. (c) isomorphic Two graphs G(V, E) and G (V, E ) are isomorphic if there are bisections θ : V V and η : E E so that x and y are ends points of an edge e E if and only of θ(x) and θ(y) are end points of η(e). (d) equivalence relation An equivalence relation elements of a set A is a relation that is (a) reflexive: a A, a a. (b) symmetric: a, b A, a b = b a. (c) transitive: a, b, c A, a b and b c = a c. Page 2 of 7 Please go on to the next page...

3 2. (12 points) Answer true of false. Justify your answer with an argument or a counter example. (a) False Every graph that is edge transitive is also vertex transitive. For example P 2, the path of length 2, is edge transitive but not vertex transitive. (b) False Every subgraph of a bipartite graph is bipartite. The graph with one vertex is the subgraph of every graph but it is not bi-partite. (Note: this is assuming that the sets X and Y in the definition of a bi-partite graphs are always non-empty which, we decided in class, is a matter of convention. The points were given to all students.) (c) True All spanning trees of a graph G have the same number of edges. Every spanning tree in a graph with n vertices has n 1 edges. (d) False Every tournament has a unique directed Hamilton path. For example, a tournament between 3 teams {A, B, C} where A beats B, B beats C and C beats A. Both A, B, C and B, C, A are Hamilton paths, Page 3 of 7 Please go on to the next page...

4 3. (10 points) Prove the following theorem from the book. Theorem 4.7. A graph is bipartite if and only if it contains no odd cycle. See the textbook. Page 4 of 7 Please go on to the next page...

5 4. (10 points) Which of these graphs are isomorphic? Either provide an isomorphism or prove they are not isomorphic. v 2 v 3 w 2 w 3 w 1 w 4 w 5 v 4 v 5 v 1 b 2 b 3 a 2 a 3 a 1 b 1 a 4 a 5 b 4 b 5 x 4 x 3 y 1 y y 0 2 y 3 x 2 x 1 x 5 x 6 They are all different. For example, we can count the number of 4 cycles in these graphs. The first one has no 4 cycles. The second one has five 4 cycles. The last one has two 4 cycles. Page 5 of 7 Please go on to the next page...

6 5. (10 points) By counting the number of branchings whose root lies in the m set of K m,n, show that t(k m,n ) = m n 1 n m 1. Let X be the m set and Y be the n set of K m,n. Every vertex of a branching, except for the root, has the in-degree one. Hence, a branching in K m,n has n arcs going from X to Y and (m 1) arcs going from Y to X. There are mn possibilities for an arc from X to Y. For the second arc we have m(n 1) possibilities since one vertex in Y has already an incoming arc. We can proceed this way; for the ith arcs we have m(n i) possibilities. Hence, there are a total of m n n! choices. But choosing these arcs in a different order would be equivalent. Which means every selection has been counted n! times. Therefore, there m n possibilities for the arcs going from X to Y. Similarly, we can select arcs going from Y to X. But no arc can end in the root. Hence, the first arc has n(m 1) possibilities, the second arcs and n(m 2) possibilities and the ith arc has n(m i) possibilities. The total number is n m 1 (m 1)!. But every selection has been counted (m 1)! times. So there are n m 1 possible choices for arcs going from Y to X. Thus, the number of possible branching of K m,n is m n n m 1. But each spanning tree of K m,n has m associated branching where the root is in the m set. Therefore, t(k m,n ) = mn n m 1 m = mn 1 n m 1. Page 6 of 7 Please go on to the next page...

7 6. (Bonus Problem) Recall that a finite projective plane is a geometric configuration of points and lines in which: (i) any two points lie on exactly one line, (ii) any two lines meet in exactly one point, (iii) there are four points no three of which lie on a line. (This serves only to exclude trivial configurations.) Prove that, in a projective plane, there is a number k so that every line contains k vertices and every vertex has k lines passing through it. The main observation is that if a point X is not on a line l then the number of lines passing through X is the same as the number point on l. Let P, Q, R, S be the points so that no 3 are collinear. Let k be the number of points in the line P Q. Then every point not in P Q (for example R and S) has k lines passing through them. We need to show points on P Q also have this property. Let X be a point on P Q, say X Q. Then the lines passing through X is the same as points on any line not containing X, say P R, which the same as the number of lines passing through S which we have shown is equal to k. We have shown every points has k lines going through it. But every line l has a a point X that is not on it and the number of points on l is the same as the number of line passing through X which we have shown to be k. Page 7 of 7 End of exam.

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017

Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 (1/25) MA284 : Discrete Mathematics Week 8: The fundamentals of graph theory; Planar Graphs 25 and 27 October, 2017 1 Definitions 1. A graph 2. Paths and connected graphs 3. Complete graphs 4. Vertex degree

More information

Math 485, Graph Theory: Homework #3

Math 485, Graph Theory: Homework #3 Math 485, Graph Theory: Homework #3 Stephen G Simpson Due Monday, October 26, 2009 The assignment consists of Exercises 2129, 2135, 2137, 2218, 238, 2310, 2313, 2314, 2315 in the West textbook, plus the

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Midterm 1

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Midterm 1 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Midterm 1 PRINT Your Name:, (last) SIGN Your Name: (first) PRINT Your Student ID: CIRCLE your exam room: 1 Pimentel 141 Mccone

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

ON THE STRUCTURE OF SELF-COMPLEMENTARY GRAPHS ROBERT MOLINA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ALMA COLLEGE ABSTRACT

ON THE STRUCTURE OF SELF-COMPLEMENTARY GRAPHS ROBERT MOLINA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ALMA COLLEGE ABSTRACT ON THE STRUCTURE OF SELF-COMPLEMENTARY GRAPHS ROBERT MOLINA DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE ALMA COLLEGE ABSTRACT A graph G is self complementary if it is isomorphic to its complement G.

More information

Graph Theory Questions from Past Papers

Graph Theory Questions from Past Papers Graph Theory Questions from Past Papers Bilkent University, Laurence Barker, 19 October 2017 Do not forget to justify your answers in terms which could be understood by people who know the background theory

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

HW Graph Theory SOLUTIONS (hbovik)

HW Graph Theory SOLUTIONS (hbovik) Diestel 1.3: Let G be a graph containing a cycle C, and assume that G contains a path P of length at least k between two vertices of C. Show that G contains a cycle of length at least k. If C has length

More information

Matching Theory. Figure 1: Is this graph bipartite?

Matching Theory. Figure 1: Is this graph bipartite? Matching Theory 1 Introduction A matching M of a graph is a subset of E such that no two edges in M share a vertex; edges which have this property are called independent edges. A matching M is said to

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN TOMASZ LUCZAK AND FLORIAN PFENDER Abstract. We show that every 3-connected claw-free graph which contains no induced copy of P 11 is hamiltonian.

More information

Tutte s Theorem: How to draw a graph

Tutte s Theorem: How to draw a graph Spectral Graph Theory Lecture 15 Tutte s Theorem: How to draw a graph Daniel A. Spielman October 22, 2018 15.1 Overview We prove Tutte s theorem [Tut63], which shows how to use spring embeddings to obtain

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Math 778S Spectral Graph Theory Handout #2: Basic graph theory Math 778S Spectral Graph Theory Handout #: Basic graph theory Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved the Königsberg Bridge problem: Is it possible

More information

HOMEWORK 4 SOLUTIONS. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence,

HOMEWORK 4 SOLUTIONS. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence, HOMEWORK 4 SOLUTIONS (1) Determine the chromatic number of the Petersen graph. Solution: The Petersen graph contains a cycle of odd length as a subgraph. Hence, 3 χ(c 5 ) χ(p ). As the Petersen graph is

More information

MATH 139 W12 Review 1 Checklist 1. Exam Checklist. 1. Introduction to Predicates and Quantified Statements (chapters ).

MATH 139 W12 Review 1 Checklist 1. Exam Checklist. 1. Introduction to Predicates and Quantified Statements (chapters ). MATH 139 W12 Review 1 Checklist 1 Exam Checklist 1. Introduction to Predicates and Quantified Statements (chapters 3.1-3.4). universal and existential statements truth set negations of universal and existential

More information

Discrete Mathematics and Probability Theory Fall 2015 Rao Midterm 1

Discrete Mathematics and Probability Theory Fall 2015 Rao Midterm 1 CS 70 Discrete Mathematics and Probability Theory Fall 2015 Rao Midterm 1 PRINT Your Name:, (last) SIGN Your Name: (first) PRINT Your Student ID: CIRCLE your exam room: 2050 VLSB A1 Hearst Annex 120 Latimer

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 PRINT Your Name:, (last) READ AND SIGN The Honor Code: As a member of the UC Berkeley community, I act with honesty,

More information

Graph Theory: Introduction

Graph Theory: Introduction Graph Theory: Introduction Pallab Dasgupta, Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur pallab@cse.iitkgp.ernet.in Resources Copies of slides available at: http://www.facweb.iitkgp.ernet.in/~pallab

More information

Lecture 1: Examples, connectedness, paths and cycles

Lecture 1: Examples, connectedness, paths and cycles Lecture 1: Examples, connectedness, paths and cycles Anders Johansson 2011-10-22 lör Outline The course plan Examples and applications of graphs Relations The definition of graphs as relations Connectedness,

More information

CPCS Discrete Structures 1

CPCS Discrete Structures 1 Let us switch to a new topic: Graphs CPCS 222 - Discrete Structures 1 Introduction to Graphs Definition: A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

Characterizations of graph classes by forbidden configurations

Characterizations of graph classes by forbidden configurations Characterizations of graph classes by forbidden configurations Zdeněk Dvořák September 14, 2015 We consider graph classes that can be described by excluding some fixed configurations. Let us give some

More information

Module 11. Directed Graphs. Contents

Module 11. Directed Graphs. Contents Module 11 Directed Graphs Contents 11.1 Basic concepts......................... 256 Underlying graph of a digraph................ 257 Out-degrees and in-degrees.................. 258 Isomorphism..........................

More information

STUDENT NUMBER: MATH Final Exam. Lakehead University. April 13, Dr. Adam Van Tuyl

STUDENT NUMBER: MATH Final Exam. Lakehead University. April 13, Dr. Adam Van Tuyl Page 1 of 13 NAME: STUDENT NUMBER: MATH 1281 - Final Exam Lakehead University April 13, 2011 Dr. Adam Van Tuyl Instructions: Answer all questions in the space provided. If you need more room, answer on

More information

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class.

Lecture 19 Thursday, March 29. Examples of isomorphic, and non-isomorphic graphs will be given in class. CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 19 Thursday, March 29 GRAPH THEORY Graph isomorphism Definition 19.1 Two graphs G 1 = (V 1, E 1 ) and G 2 = (V 2, E 2 ) are isomorphic, write G 1 G

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecturer: Mgr. Tereza Kovářová, Ph.D. tereza.kovarova@vsb.cz Guarantor: doc. Mgr. Petr Kovář, Ph.D. Department of Applied Mathematics, VŠB Technical University of Ostrava About this

More information

Mock Exam. Juanjo Rué Discrete Mathematics II, Winter Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture.

Mock Exam. Juanjo Rué Discrete Mathematics II, Winter Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture. Mock Exam Juanjo Rué Discrete Mathematics II, Winter 2013-2014 Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture. Problem 1 (2 points): 1. State the definition of perfect graph

More information

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 Graphs (MTAT.05.080, 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402 homepage: http://courses.cs.ut.ee/2012/graafid (contains slides) For grade: Homework + three tests (during or after

More information

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph

Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) Web search views web pages as a graph Graphs and Trees Graphs and trees come up everywhere. We can view the internet as a graph (in many ways) who is connected to whom Web search views web pages as a graph Who points to whom Niche graphs (Ecology):

More information

MAS341 Graph Theory 2015 exam solutions

MAS341 Graph Theory 2015 exam solutions MAS4 Graph Theory 0 exam solutions Question (i)(a) Draw a graph with a vertex for each row and column of the framework; connect a row vertex to a column vertex if there is a brace where the row and column

More information

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam CS 441 Discrete Mathematics for CS Lecture 26 Graphs Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Final exam Saturday, April 26, 2014 at 10:00-11:50am The same classroom as lectures The exam

More information

CMPSCI 311: Introduction to Algorithms Practice Final Exam

CMPSCI 311: Introduction to Algorithms Practice Final Exam CMPSCI 311: Introduction to Algorithms Practice Final Exam Name: ID: Instructions: Answer the questions directly on the exam pages. Show all your work for each question. Providing more detail including

More information

Hamiltonian cycles in bipartite quadrangulations on the torus

Hamiltonian cycles in bipartite quadrangulations on the torus Hamiltonian cycles in bipartite quadrangulations on the torus Atsuhiro Nakamoto and Kenta Ozeki Abstract In this paper, we shall prove that every bipartite quadrangulation G on the torus admits a simple

More information

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below:

Chapter 4. Relations & Graphs. 4.1 Relations. Exercises For each of the relations specified below: Chapter 4 Relations & Graphs 4.1 Relations Definition: Let A and B be sets. A relation from A to B is a subset of A B. When we have a relation from A to A we often call it a relation on A. When we have

More information

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring

Math 443/543 Graph Theory Notes 5: Planar graphs and coloring Math 443/543 Graph Theory Notes 5: Planar graphs and coloring David Glickenstein October 10, 2014 1 Planar graphs The Three Houses and Three Utilities Problem: Given three houses and three utilities, can

More information

WUCT121. Discrete Mathematics. Graphs

WUCT121. Discrete Mathematics. Graphs WUCT121 Discrete Mathematics Graphs WUCT121 Graphs 1 Section 1. Graphs 1.1. Introduction Graphs are used in many fields that require analysis of routes between locations. These areas include communications,

More information

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK 1. Define Graph. 2. Define Simple graph. 3. Write few problems

More information

Math 170- Graph Theory Notes

Math 170- Graph Theory Notes 1 Math 170- Graph Theory Notes Michael Levet December 3, 2018 Notation: Let n be a positive integer. Denote [n] to be the set {1, 2,..., n}. So for example, [3] = {1, 2, 3}. To quote Bud Brown, Graph theory

More information

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics Foundations of Discrete Mathematics Chapters 9 By Dr. Dalia M. Gil, Ph.D. Graphs Graphs are discrete structures consisting of vertices and edges that connect these vertices. Graphs A graph is a pair (V,

More information

Varying Applications (examples)

Varying Applications (examples) Graph Theory Varying Applications (examples) Computer networks Distinguish between two chemical compounds with the same molecular formula but different structures Solve shortest path problems between cities

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MH 1301 DISCRETE MATHEMATICS TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MH 1301 DISCRETE MATHEMATICS TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2015-2016 MH 1301 DISCRETE MATHEMATICS May 2016 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FIVE (5) questions

More information

Vertex Deletion games with Parity rules

Vertex Deletion games with Parity rules Vertex Deletion games with Parity rules Richard J. Nowakowski 1 Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada rjn@mathstat.dal.ca Paul Ottaway Department of Mathematics,

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 4: Basic Concepts in Graph Theory Section 3: Trees 1 Review : Decision Tree (DT-Section 1) Root of the decision tree on the left: 1 Leaves of the

More information

Preimages of Small Geometric Cycles

Preimages of Small Geometric Cycles Preimages of Small Geometric Cycles Sally Cockburn Department of Mathematics Hamilton College, Clinton, NY scockbur@hamilton.edu Abstract A graph G is a homomorphic preimage of another graph H, or equivalently

More information

Hamilton paths & circuits. Gray codes. Hamilton Circuits. Planar Graphs. Hamilton circuits. 10 Nov 2015

Hamilton paths & circuits. Gray codes. Hamilton Circuits. Planar Graphs. Hamilton circuits. 10 Nov 2015 Hamilton paths & circuits Def. A path in a multigraph is a Hamilton path if it visits each vertex exactly once. Def. A circuit that is a Hamilton path is called a Hamilton circuit. Hamilton circuits Constructing

More information

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings.

HW Graph Theory Name (andrewid) - X. 1: Draw K 7 on a torus with no edge crossings. 1: Draw K 7 on a torus with no edge crossings. A quick calculation reveals that an embedding of K 7 on the torus is a -cell embedding. At that point, it is hard to go wrong if you start drawing C 3 faces,

More information

Ma/CS 6b Class 5: Graph Connectivity

Ma/CS 6b Class 5: Graph Connectivity Ma/CS 6b Class 5: Graph Connectivity By Adam Sheffer Communications Network We are given a set of routers and wish to connect pairs of them to obtain a connected communications network. The network should

More information

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar.

4. (a) Draw the Petersen graph. (b) Use Kuratowski s teorem to prove that the Petersen graph is non-planar. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Graph Theory Frist, KandMa, IT 010 10 1 Problem sheet 4 Exam questions Solve a subset of, say, four questions to the problem session on friday.

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Connected-homogeneous graphs

Connected-homogeneous graphs Connected-homogeneous graphs Robert Gray BIRS Workshop on Infinite Graphs October 2007 1 / 14 Homogeneous graphs Definition A graph Γ is called homogeneous if any isomorphism between finite induced subgraphs

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

MAT 145: PROBLEM SET 4

MAT 145: PROBLEM SET 4 MAT 145: PROBLEM SET 4 DUE TO FRIDAY FEB 22 Abstract. This problem set corresponds to the sixth week of the Combinatorics Course in the Winter Quarter 2019. It was posted online on Friday Feb 15 and is

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Midterm Practice Exam Sample Solutions

Midterm Practice Exam Sample Solutions Name: SID: CS 620 Theory of Computation Fall 2017 Instructor: Marc Pomplun Midterm Practice Exam Sample Solutions Duration: 1 hour and 15 minutes You only need your writing utensils to complete this exam.

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

CS 217 Algorithms and Complexity Homework Assignment 2

CS 217 Algorithms and Complexity Homework Assignment 2 CS 217 Algorithms and Complexity Homework Assignment 2 Shanghai Jiaotong University, Fall 2015 Handed out on 2015-10-19 Due on 2015-10-26 You can hand in your solution either as a printed file or hand-written

More information

ECS 20 Lecture 17b = Discussion D8 Fall Nov 2013 Phil Rogaway

ECS 20 Lecture 17b = Discussion D8 Fall Nov 2013 Phil Rogaway 1 ECS 20 Lecture 17b = Discussion D8 Fall 2013 25 Nov 2013 Phil Rogaway Today: Using discussion section to finish up graph theory. Much of these notes the same as those prepared for last lecture and the

More information

CS4800: Algorithms & Data Jonathan Ullman

CS4800: Algorithms & Data Jonathan Ullman CS4800: Algorithms & Data Jonathan Ullman Lecture 12: Graph Search: BFS Applications, DFS Feb 20, 2018 BFS Review BFS Algorithm: Input: source node! " # =! " % = all neighbors of " # " & = all neighbors

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

On the subgraphs of the (2 )-grid

On the subgraphs of the (2 )-grid R u t c o r Research R e p o r t On the subgraphs of the (2 )-grid Josep Díaz a Marcin Kamiński b Dimitrios M. Thilikos c RRR 18 2007, May 2007 RUTCOR Rutgers Center for Operations Research Rutgers University

More information

CONNECTIVITY AND NETWORKS

CONNECTIVITY AND NETWORKS CONNECTIVITY AND NETWORKS We begin with the definition of a few symbols, two of which can cause great confusion, especially when hand-written. Consider a graph G. (G) the degree of the vertex with smallest

More information

A note on the subgraphs of the (2 )-grid

A note on the subgraphs of the (2 )-grid A note on the subgraphs of the (2 )-grid Josep Díaz a,2,1 a Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya Campus Nord, Edifici Ω, c/ Jordi Girona Salgado 1-3,

More information

On median graphs and median grid graphs

On median graphs and median grid graphs On median graphs and median grid graphs Sandi Klavžar 1 Department of Mathematics, PEF, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia e-mail: sandi.klavzar@uni-lj.si Riste Škrekovski

More information

Combinatorial Gems. Po-Shen Loh. June 2009

Combinatorial Gems. Po-Shen Loh. June 2009 Combinatorial Gems Po-Shen Loh June 2009 Although this lecture does not contain many offical Olympiad problems, the arguments which are used are all common elements of Olympiad problem solving. Some of

More information

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I.

EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS. Jordan Journal of Mathematics and Statistics (JJMS) 8(2), 2015, pp I. EDGE MAXIMAL GRAPHS CONTAINING NO SPECIFIC WHEELS M.S.A. BATAINEH (1), M.M.M. JARADAT (2) AND A.M.M. JARADAT (3) A. Let k 4 be a positive integer. Let G(n; W k ) denote the class of graphs on n vertices

More information

Exercises for Discrete Maths

Exercises for Discrete Maths Exercises for Discrete Maths Discrete Maths Teacher: Alessandro Artale Teaching Assistants: Elena Botoeva, Daniele Porello http://www.inf.unibz.it/~artale/dml/dml.htm Week 6 Computer Science Free University

More information

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm

Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Computing intersections in a set of line segments: the Bentley-Ottmann algorithm Michiel Smid October 14, 2003 1 Introduction In these notes, we introduce a powerful technique for solving geometric problems.

More information

Assignment 1 Introduction to Graph Theory CO342

Assignment 1 Introduction to Graph Theory CO342 Assignment 1 Introduction to Graph Theory CO342 This assignment will be marked out of a total of thirty points, and is due on Thursday 18th May at 10am in class. Throughout the assignment, the graphs are

More information

Ma/CS 6b Class 4: Matchings in General Graphs

Ma/CS 6b Class 4: Matchings in General Graphs Ma/CS 6b Class 4: Matchings in General Graphs By Adam Sheffer Reminder: Hall's Marriage Theorem Theorem. Let G = V 1 V 2, E be a bipartite graph. There exists a matching of size V 1 in G if and only if

More information

Cyclic matching sequencibility of graphs

Cyclic matching sequencibility of graphs AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 53 (01), Pages 45 56 Cyclic matching sequencibility of graphs Richard A. Brualdi Kathleen P. Kiernan Seth A. Meyer Department of Mathematics University of Wisconsin

More information

Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies

Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies Improved upper and lower bounds on the feedback vertex numbers of grids and butterflies Florent R. Madelaine and Iain A. Stewart Department of Computer Science, Durham University, Science Labs, South Road,

More information

CSE 21 Spring 2016 Homework 5. Instructions

CSE 21 Spring 2016 Homework 5. Instructions CSE 21 Spring 2016 Homework 5 Instructions Homework should be done in groups of one to three people. You are free to change group members at any time throughout the quarter. Problems should be solved together,

More information

Graph Theory Day Four

Graph Theory Day Four Graph Theory Day Four February 8, 018 1 Connected Recall from last class, we discussed methods for proving a graph was connected. Our two methods were 1) Based on the definition, given any u, v V(G), there

More information

2 hours THE UNIVERSITY OF MANCHESTER. 23 May :45 11:45

2 hours THE UNIVERSITY OF MANCHESTER. 23 May :45 11:45 2 hours MAT20902 TE UNIVERSITY OF MANCESTER DISCRETE MATEMATICS 23 May 2018 9:45 11:45 Answer ALL TREE questions in Section A (30 marks in total). Answer TWO of the TREE questions in Section B (50 marks

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman M. S. Ramanujan Saket Saurabh Abstract It is well known that in a bipartite (and more generally in a König) graph, the size of the minimum vertex cover is

More information

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor

[Ramalingam, 4(12): December 2017] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH S. Sethu Ramalingam * 1, I. Keerthi Asir 2 and S. Athisayanathan 3 *1,2 & 3 Department of Mathematics,

More information

8 Matroid Intersection

8 Matroid Intersection 8 Matroid Intersection 8.1 Definition and examples 8.2 Matroid Intersection Algorithm 8.1 Definitions Given two matroids M 1 = (X, I 1 ) and M 2 = (X, I 2 ) on the same set X, their intersection is M 1

More information

CMSC Honors Discrete Mathematics

CMSC Honors Discrete Mathematics CMSC 27130 Honors Discrete Mathematics Lectures by Alexander Razborov Notes by Justin Lubin The University of Chicago, Autumn 2017 1 Contents I Number Theory 4 1 The Euclidean Algorithm 4 2 Mathematical

More information

Description of grading scheme and advice for final exam (and HW, quizzes, etc).

Description of grading scheme and advice for final exam (and HW, quizzes, etc). The median for this midterm was 72.25. This isn t bad considering how many of you did not know definitions. I expect grades to improve on the final exam if you learn definitions (make flashcards) and follow

More information

The Probabilistic Method

The Probabilistic Method The Probabilistic Method Po-Shen Loh June 2010 1 Warm-up 1. (Russia 1996/4 In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes.

Answers to specimen paper questions. Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Answers to specimen paper questions Most of the answers below go into rather more detail than is really needed. Please let me know of any mistakes. Question 1. (a) The degree of a vertex x is the number

More information

Graph Theory Mini-course

Graph Theory Mini-course Graph Theory Mini-course Anthony Varilly PROMYS, Boston University, Boston, MA 02215 Abstract Intuitively speaking, a graph is a collection of dots and lines joining some of these dots. Many problems in

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

Rigidity, connectivity and graph decompositions

Rigidity, connectivity and graph decompositions First Prev Next Last Rigidity, connectivity and graph decompositions Brigitte Servatius Herman Servatius Worcester Polytechnic Institute Page 1 of 100 First Prev Next Last Page 2 of 100 We say that a framework

More information

MC302 GRAPH THEORY SOLUTIONS TO HOMEWORK #1 9/19/13 68 points + 6 extra credit points

MC302 GRAPH THEORY SOLUTIONS TO HOMEWORK #1 9/19/13 68 points + 6 extra credit points MC02 GRAPH THEORY SOLUTIONS TO HOMEWORK #1 9/19/1 68 points + 6 extra credit points 1. [CH] p. 1, #1... a. In each case, for the two graphs you say are isomorphic, justify it by labeling their vertices

More information

14 More Graphs: Euler Tours and Hamilton Cycles

14 More Graphs: Euler Tours and Hamilton Cycles 14 More Graphs: Euler Tours and Hamilton Cycles 14.1 Degrees The degree of a vertex is the number of edges coming out of it. The following is sometimes called the First Theorem of Graph Theory : Lemma

More information