LP Decoding. LP Decoding: - LP relaxation for the Maximum-Likelihood (ML) decoding problem. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.

Size: px
Start display at page:

Download "LP Decoding. LP Decoding: - LP relaxation for the Maximum-Likelihood (ML) decoding problem. J. Feldman, D. Karger, M. Wainwright, LP Decoding p."

Transcription

1 LP Decoding Allerton, 2003 Jon Feldman Columbia University David Karger MIT Martin Wainwright UC Berkeley J. Feldman, D. Karger, M. Wainwright, LP Decoding p.1/18

2 LP Decoding Linear Programming (LP): - Finding a solution to a set of linear inequalities that optimizes a linear objective function. Integer Linear Programming (ILP): - LP where variables constrained to be integers. LP Relaxation: - Using an LP to find a good (approximate) solution to an ILP. LP Decoding: - LP relaxation for the Maximum-Likelihood (ML) decoding problem. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.2/18

3 LP Decoding Previous work on specific code families/constructions: - Turbo codes [FK, FOCS 02] [EH, A 03] [F 03]. - LDPC codes [FKW, CISS 03] [F 03]. - New iterative algs. [FKW, Allerton 02] [F 03]. This paper: general treatment of LP decoding, for any binary code, memoryless channel (BSC, AWGN). - Proper polytope (ML certificate). - LP pseudocodeword. - Fractional Distance. - Symmetric polytope (linear codes). J. Feldman, D. Karger, M. Wainwright, LP Decoding p.3/18

4 Maximum-Likelihood (ML) Decoding Log-likelihood ratio (LLR) of as a cost function: - - more likely more likely For any binary-input memoryless channel: ML DECODING: Given LLRs, find such that is minimized. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.4/18

5 Maximum-Likelihood (ML) Decoding min rtex ise ise Convex hull( ) CH( ) = convex hull of codewords; CH( ) ML Decoding: Minimize s.t. CH( ). Problem: CH( ) is too complex (not poly-size).. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.5/18

6 LP Decoding min Polytope ise ise pseudocodeword Convex hull( ) Proper relaxation polytope : Alg: Solve LP. If ML certificate property integral, output, else error.. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.6/18

7 LP Decoder Example ts Define polytope on variables : Is proper (does )? J. Feldman, D. Karger, M. Wainwright, LP Decoding p.7/18

8 LP Decoder Example ts Polytope: Vertices: J. Feldman, D. Karger, M. Wainwright, LP Decoding p.8/18

9 LP Decoding Success Conditions e e Objective function cases (e) (a) (b) (c) (d) pseudocodeword some other (a) No noise (b) Both succeed (c) ML succeed, LP fail (d) Both fail, detected (e) Both fail, undetected ) transmitted J. Feldman, D. Karger, M. Wainwright, LP Decoding p.9/18

10 LP Pseudocodewords In general, pseudocodewords are the set of possible results of a sub-optimal decoder : - PCWs codewords; - Algorithm finds min-cost PCW; - WER = Pr[ transmitted = min-cost PCW ]. Example: It. decoding in the BEC [Di et. al, 02]. - PCWs = stopping sets codewords; - Iterative decoding finds min-cost stopping set. LP Decoding: - PCWs = polytope vertices codewords - LP Decoder find min-cost polytope vertex. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.10/18

11 ts Unifying Other Known PCWs = trellis flow polytope [FK 02] Vertices(polytope ) = LDPC code polytope [FKW 03] Tail-biting trellis PCWs [FKMT 01] Rate-1/2 RA code promenades [EH 03] BEC stopping sets [DPRTU 02] PCWs of graph covers [KV 03] J. Feldman, D. Karger, M. Wainwright, LP Decoding p.11/18

12 Using PCWs for Performance Bounds Turbo code polytope [FK 02, F 03]: Theorem: if In BSC, AWGN, then WER, for any. - Bounds improved by [EH, Allerton 03]., LDPC code polytope [FKW, CISS 03]: For any graph with girth, left-degree : Theorem: LP decoding corrects errors (adversarial). - With log-girth, can correect errors. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.12/18

13 Fractional Distance Another way to define (classical) distance : - = min dist. between two integral vertices of. Fractional distance: - = min distance between an integral vertex and any other vertex of. - Lower bound on classical distance:. Theorem: In the binary symmetric channel, LP decoders can correct up to errors. Linear codes: Given facets of can be computed efficiently., fractional distance J. Feldman, D. Karger, M. Wainwright, LP Decoding p.13/18

14 Symmetric Polytopes for Linear Codes ML decoding: - If is linear, may assume - Simplifies analysis, notation. - Min-distance = min-weight. is transmitted. Same assumption can be made for iterative algorithms, since pseudocodewords obey symmetry. LP Decoding: Definition: Polytope is -symmetric if, for all and, we have (where Theorem: If polytope is proper and -symmetric, then WER of LP decoder using is independent of the transmitted codeword. ). J. Feldman, D. Karger, M. Wainwright, LP Decoding p.14/18

15 noise noise ll( ) Tightening the Relaxation If constraints are added to the polytope, the decoder can only improve. Original polytope Tightened polytope Generic tightening techniques [LS 91] [SA 90]. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.15/18

16 Using Lift-And-Project 10 0 WER Comparison: Random Rate-1/4 (3,4) LDPC Code LP Decoder Lift-and-project Decoder ML Decoder 10-1 Word Error Rate AWGN Signal-to-noise ratio (E b / N 0 in db) Length 36, left degree, right degree. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.16/18

17 Future Work New PCW-based performance bounds for turbo/ldpc polytopes? - Better turbo codes (rate-1/3 RA); - Other LDPC codes. New (better?) polytopes for turbo/ldpc codes? Using lifting procedures (generic, specialized) to tighten relaxation? Deeper connections to sum-product (belief-prop)? Improved running time over simplex/ellipsoid algorithm? LP decoding of new code families, channel models? J. Feldman, D. Karger, M. Wainwright, LP Decoding p.17/18

18 Performance Comparison WER Comparison: Random Rate-1/4 (3,4) LDPC Code Min-Sum Decoder LP Decoder Sum-Product Decoder ML Decoder Word Error Rate BSC Crossover Probability Length 60, left degree, right degree. J. Feldman, D. Karger, M. Wainwright, LP Decoding p.18/18

ITERATIVE decoders have gained widespread attention

ITERATIVE decoders have gained widespread attention IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 11, NOVEMBER 2007 4013 Pseudocodewords of Tanner Graphs Christine A. Kelley, Member, IEEE, and Deepak Sridhara, Member, IEEE Abstract This paper presents

More information

Guessing Facets: Polytope Structure and Improved LP Decoder

Guessing Facets: Polytope Structure and Improved LP Decoder Appeared in: International Symposium on Information Theory Seattle, WA; July 2006 Guessing Facets: Polytope Structure and Improved LP Decoder Alexandros G. Dimakis 1 and Martin J. Wainwright 1,2 1 Department

More information

Adaptive Linear Programming Decoding of Polar Codes

Adaptive Linear Programming Decoding of Polar Codes Adaptive Linear Programming Decoding of Polar Codes Veeresh Taranalli and Paul H. Siegel University of California, San Diego, La Jolla, CA 92093, USA Email: {vtaranalli, psiegel}@ucsd.edu Abstract Polar

More information

ML decoding via mixed-integer adaptive linear programming

ML decoding via mixed-integer adaptive linear programming ML decoding via mixed-integer adaptive linear programming Stark C. Draper Mitsubishi Electric Research Labs Cambridge, MA 02139 USA draper@merl.com Jonathan S. Yedidia Mitsubishi Electric Research Labs

More information

A Cutting Plane Method based on Redundant Rows for Improving Fractional Distance

A Cutting Plane Method based on Redundant Rows for Improving Fractional Distance A Cutting Plane Method based on Redundant Rows for Improving Fractional Distance Maoto Miwa, Tadashi Wadayama and Ichi Taumi Graduate School of Engineering Nagoya Institute of Technology, Goiso-cho, Showa-u,

More information

Efficient Iterative LP Decoding of LDPC Codes with Alternating Direction Method of Multipliers

Efficient Iterative LP Decoding of LDPC Codes with Alternating Direction Method of Multipliers Efficient Iterative LP Decoding of LDPC Codes with Alternating Direction Method of Multipliers Xiaojie Zhang Samsung R&D America, Dallas, Texas 758 Email: eric.zhang@samsung.com Paul H. Siegel University

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 8, AUGUST

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 8, AUGUST IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 8, AUGUST 2009 3479 Guessing Facets: Polytope Structure Improved LP Decoder Alexros G. Dimakis, Student Member, IEEE, Amin A. Gohari, Student Member,

More information

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 2, FEBRUARY /$ IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 2, FEBRUARY /$ IEEE IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 2, FEBRUARY 2007 599 Results on Punctured Low-Density Parity-Check Codes and Improved Iterative Decoding Techniques Hossein Pishro-Nik, Member, IEEE,

More information

Error correction guarantees

Error correction guarantees Error correction guarantees Drawback of asymptotic analyses Valid only as long as the incoming messages are independent. (independence assumption) The messages are independent for l iterations only if

More information

Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes

Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes Xiaojie Zhang and Paul H. Siegel University of California, San Diego 1. Introduction Low-density parity-check (LDPC) codes

More information

5.3 Cutting plane methods and Gomory fractional cuts

5.3 Cutting plane methods and Gomory fractional cuts 5.3 Cutting plane methods and Gomory fractional cuts (ILP) min c T x s.t. Ax b x 0integer feasible region X Assumption: a ij, c j and b i integer. Observation: The feasible region of an ILP can be described

More information

Efficient Maximum-Likelihood Decoding of Linear Block Codes on Binary Memoryless Channels

Efficient Maximum-Likelihood Decoding of Linear Block Codes on Binary Memoryless Channels Efficient Maximum-Likelihood Decoding of Linear Block Codes on Binary Memoryless Channels arxiv:1403.4118v2 [cs.it] 28 Apr 2014 Michael Helmling, Eirik Rosnes, Stefan Ruzika, and Stefan Scholl Mathematical

More information

CRC Error Correction for Energy-Constrained Transmission

CRC Error Correction for Energy-Constrained Transmission CRC Error Correction for Energy-Constrained Transmission Evgeny Tsimbalo, Xenofon Fafoutis, Robert J Piechocki Communication Systems & Networks, University of Bristol, UK Email: {e.tsimbalo, xenofon.fafoutis,

More information

Minimum-Polytope-Based Linear Programming Decoder for LDPC Codes via ADMM Approach

Minimum-Polytope-Based Linear Programming Decoder for LDPC Codes via ADMM Approach Minimum-Polytope-Based Linear Programg Decoder for LDPC Codes via ADMM Approach Jing Bai, Yongchao Wang, Member, IEEE, Francis C. M. Lau, Senior Member, IEEE arxiv:90.07806v [cs.it] 23 Jan 209 Abstract

More information

Linear-Programming Decoding of Nonbinary Linear Codes Mark F. Flanagan, Member, IEEE, Vitaly Skachek, Member, IEEE, Eimear Byrne, and Marcus Greferath

Linear-Programming Decoding of Nonbinary Linear Codes Mark F. Flanagan, Member, IEEE, Vitaly Skachek, Member, IEEE, Eimear Byrne, and Marcus Greferath 4134 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 9, SEPTEMBER 2009 Linear-Programming Decoding of Nonbinary Linear Codes Mark F. Flanagan, Member, IEEE, Vitaly Skachek, Member, IEEE, Eimear Byrne,

More information

Towards Practical Minimum-Entropy Universal Decoding

Towards Practical Minimum-Entropy Universal Decoding Towards Practical Minimum-Entropy Universal Decoding Todd P. Coleman, Muriel Médard; Michelle Effros {colemant,medard}@mit.edu; effros@caltech.edu Massachusetts Institute of Technology; California Institute

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

LOW-density parity-check (LDPC) codes are widely

LOW-density parity-check (LDPC) codes are widely 1460 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 53, NO 4, APRIL 2007 Tree-Based Construction of LDPC Codes Having Good Pseudocodeword Weights Christine A Kelley, Member, IEEE, Deepak Sridhara, Member,

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Eric Xing Lecture 14, February 29, 2016 Reading: W & J Book Chapters Eric Xing @

More information

On the construction of Tanner graphs

On the construction of Tanner graphs On the construction of Tanner graphs Jesús Martínez Mateo Universidad Politécnica de Madrid Outline Introduction Low-density parity-check (LDPC) codes LDPC decoding Belief propagation based algorithms

More information

Finding Small Stopping Sets in the Tanner Graphs of LDPC Codes

Finding Small Stopping Sets in the Tanner Graphs of LDPC Codes Finding Small Stopping Sets in the Tanner Graphs of LDPC Codes Gerd Richter University of Ulm, Department of TAIT Albert-Einstein-Allee 43, D-89081 Ulm, Germany gerd.richter@uni-ulm.de Abstract The performance

More information

Multidimensional Decoding Networks for Trapping Set Analysis

Multidimensional Decoding Networks for Trapping Set Analysis Multidimensional Decoding Networks for Trapping Set Analysis Allison Beemer* and Christine A. Kelley University of Nebraska-Lincoln, Lincoln, NE, U.S.A. allison.beemer@huskers.unl.edu Abstract. We present

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Fundamentals of Integer Programming

Fundamentals of Integer Programming Fundamentals of Integer Programming Di Yuan Department of Information Technology, Uppsala University January 2018 Outline Definition of integer programming Formulating some classical problems with integer

More information

Check-hybrid GLDPC Codes Without Small Trapping Sets

Check-hybrid GLDPC Codes Without Small Trapping Sets Check-hybrid GLDPC Codes Without Small Trapping Sets Vida Ravanmehr Department of Electrical and Computer Engineering University of Arizona Tucson, AZ, 8572 Email: vravanmehr@ece.arizona.edu David Declercq

More information

Capacity-approaching Codes for Solid State Storages

Capacity-approaching Codes for Solid State Storages Capacity-approaching Codes for Solid State Storages Jeongseok Ha, Department of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Contents Capacity-Approach Codes Turbo

More information

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods

15.083J Integer Programming and Combinatorial Optimization Fall Enumerative Methods 5.8J Integer Programming and Combinatorial Optimization Fall 9 A knapsack problem Enumerative Methods Let s focus on maximization integer linear programs with only binary variables For example: a knapsack

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm Instructor: Shaddin Dughmi Outline 1 Recapping the Ellipsoid Method 2 Complexity of Convex Optimization

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Channel Decoding in Wireless Communication Systems using Deep Learning

Channel Decoding in Wireless Communication Systems using Deep Learning Channel Decoding in Wireless Communication Systems using Deep Learning Gaurang Naik 12/11/2017 Deep Learning Course Project Acknowledgements: Navneet Agrawal, TU Berlin Error Control Coding Wireless Communication

More information

Error Floors of LDPC Codes

Error Floors of LDPC Codes Error Floors of LDPC Codes Tom Richardson Flarion Technologies Bedminster, NJ 07921 tjr@flarion.com Abstract We introduce a computational technique that accurately predicts performance for a given LDPC

More information

6.856 Randomized Algorithms

6.856 Randomized Algorithms 6.856 Randomized Algorithms David Karger Handout #4, September 21, 2002 Homework 1 Solutions Problem 1 MR 1.8. (a) The min-cut algorithm given in class works because at each step it is very unlikely (probability

More information

Polar Codes for Noncoherent MIMO Signalling

Polar Codes for Noncoherent MIMO Signalling ICC Polar Codes for Noncoherent MIMO Signalling Philip R. Balogun, Ian Marsland, Ramy Gohary, and Halim Yanikomeroglu Department of Systems and Computer Engineering, Carleton University, Canada WCS IS6

More information

Embedding Formulations, Complexity and Representability for Unions of Convex Sets

Embedding Formulations, Complexity and Representability for Unions of Convex Sets , Complexity and Representability for Unions of Convex Sets Juan Pablo Vielma Massachusetts Institute of Technology CMO-BIRS Workshop: Modern Techniques in Discrete Optimization: Mathematics, Algorithms

More information

LDPC Code Ensembles that Universally Achieve Capacity under Belief Propagation Decoding

LDPC Code Ensembles that Universally Achieve Capacity under Belief Propagation Decoding LDPC Code Ensembles that Universally Achieve Capacity under Belief Propagation Decoding A Simple Derivation Anatoly Khina Tel Aviv University Joint work with: Yair Yona, UCLA Uri Erez, Tel Aviv University

More information

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018

CS 580: Algorithm Design and Analysis. Jeremiah Blocki Purdue University Spring 2018 CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

More information

An Introduction to LP Relaxations for MAP Inference

An Introduction to LP Relaxations for MAP Inference An Introduction to LP Relaxations for MAP Inference Adrian Weller MLSALT4 Lecture Feb 27, 2017 With thanks to David Sontag (NYU) for use of some of his slides and illustrations For more information, see

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/cot6936_s12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

More information

LDPC Code Ensembles that Universally Achieve Capacity under Belief Propagation Decoding

LDPC Code Ensembles that Universally Achieve Capacity under Belief Propagation Decoding LDPC Code Ensembles that Universally Achieve Capacity under Belief Propagation Decoding A Simple Derivation Anatoly Khina Caltech Joint work with: Yair Yona, UCLA Uri Erez, Tel Aviv University PARADISE

More information

LINEAR Programming (LP) decoding is a rather new

LINEAR Programming (LP) decoding is a rather new A Reduced-Complexity Projection Algorithm for ADMM-based LP Decoding Florian Gensheimer, Tobias Dietz, Kira Kraft, Student Member, IEEE, Stefan Ruzika, and Norbert Wehn, Senior Member, IEEE arxiv:90.030v

More information

The Ascendance of the Dual Simplex Method: A Geometric View

The Ascendance of the Dual Simplex Method: A Geometric View The Ascendance of the Dual Simplex Method: A Geometric View Robert Fourer 4er@ampl.com AMPL Optimization Inc. www.ampl.com +1 773-336-AMPL U.S.-Mexico Workshop on Optimization and Its Applications Huatulco

More information

Outline. Basic ARQ schemes. S Capacity enhancement methods for radio interface ARQ Schemes. Classification of error control strategies

Outline. Basic ARQ schemes. S Capacity enhancement methods for radio interface ARQ Schemes. Classification of error control strategies ARQ Schemes, March 26 24 ARQ Schemes, March 26 24 2 Outline Classification of error control strategies S-7263 Capacity enhancement methods for radio interface ARQ Schemes Markku Liinaharja March 25, 24

More information

Minimum Weight Constrained Forest Problems. Problem Definition

Minimum Weight Constrained Forest Problems. Problem Definition Slide 1 s Xiaoyun Ji, John E. Mitchell Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY, USA jix@rpi.edu, mitchj@rpi.edu 2005 Optimization Days Montreal, Canada May 09, 2005

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

S Capacity enhancement methods for radio interface ARQ Schemes

S Capacity enhancement methods for radio interface ARQ Schemes ARQ Schemes, March 26 2004 1 S-72.630 Capacity enhancement methods for radio interface ARQ Schemes Markku Liinaharja March 25, 2004 ARQ Schemes, March 26 2004 2 Outline Classification of error control

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

Deep Learning-Aided Trainable Projected Gradient Decoding for LDPC Codes

Deep Learning-Aided Trainable Projected Gradient Decoding for LDPC Codes Deep Learning-Aided Trainable Projected Gradient Decoding for LDPC Codes Tadashi Wadayama and Satoshi Takabe Nagoya Institute of Technology, Gokiso, Nagoya, Aichi, 466-8555, Japan, {wadayama, s takabe}@nitech.ac.jp

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1. Overview In this book, we present a generalized framework for formulating hard combinatorial optimization problems (COPs) as polynomial-sized linear programs. The perspective

More information

Graph Coloring Facets from a Constraint Programming Formulation

Graph Coloring Facets from a Constraint Programming Formulation Graph Coloring Facets from a Constraint Programming Formulation David Bergman J. N. Hooker Carnegie Mellon University INFORMS 2011 Motivation 0-1 variables often encode choices that can be represented

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 14: Combinatorial Problems as Linear Programs I Instructor: Shaddin Dughmi Announcements Posted solutions to HW1 Today: Combinatorial problems

More information

SCORE EQUIVALENCE & POLYHEDRAL APPROACHES TO LEARNING BAYESIAN NETWORKS

SCORE EQUIVALENCE & POLYHEDRAL APPROACHES TO LEARNING BAYESIAN NETWORKS SCORE EQUIVALENCE & POLYHEDRAL APPROACHES TO LEARNING BAYESIAN NETWORKS David Haws*, James Cussens, Milan Studeny IBM Watson dchaws@gmail.com University of York, Deramore Lane, York, YO10 5GE, UK The Institute

More information

CS369G: Algorithmic Techniques for Big Data Spring

CS369G: Algorithmic Techniques for Big Data Spring CS369G: Algorithmic Techniques for Big Data Spring 2015-2016 Lecture 11: l 0 -Sampling and Introduction to Graph Streaming Prof. Moses Charikar Scribe: Austin Benson 1 Overview We present and analyze the

More information

Complexity-Optimized Low-Density Parity-Check Codes

Complexity-Optimized Low-Density Parity-Check Codes Complexity-Optimized Low-Density Parity-Check Codes Masoud Ardakani Department of Electrical & Computer Engineering University of Alberta, ardakani@ece.ualberta.ca Benjamin Smith, Wei Yu, Frank R. Kschischang

More information

392D: Coding for the AWGN Channel Wednesday, March 21, 2007 Stanford, Winter 2007 Handout #26. Final exam solutions

392D: Coding for the AWGN Channel Wednesday, March 21, 2007 Stanford, Winter 2007 Handout #26. Final exam solutions 92D: Coding for the AWGN Channel Wednesday, March 2, 27 Stanford, Winter 27 Handout #26 Problem F. (8 points) (Lexicodes) Final exam solutions In this problem, we will see that a simple greedy algorithm

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

Project 1. Implementation. Massachusetts Institute of Technology : Error Correcting Codes Laboratory March 4, 2004 Professor Daniel A.

Project 1. Implementation. Massachusetts Institute of Technology : Error Correcting Codes Laboratory March 4, 2004 Professor Daniel A. Massachusetts Institute of Technology Handout 18.413: Error Correcting Codes Laboratory March 4, 2004 Professor Daniel A. Spielman Project 1 In this project, you are going to implement the simplest low

More information

THEORY OF LINEAR AND INTEGER PROGRAMMING

THEORY OF LINEAR AND INTEGER PROGRAMMING THEORY OF LINEAR AND INTEGER PROGRAMMING ALEXANDER SCHRIJVER Centrum voor Wiskunde en Informatica, Amsterdam A Wiley-Inter science Publication JOHN WILEY & SONS^ Chichester New York Weinheim Brisbane Singapore

More information

Graph based codes for distributed storage systems

Graph based codes for distributed storage systems /23 Graph based codes for distributed storage systems July 2, 25 Christine Kelley University of Nebraska-Lincoln Joint work with Allison Beemer and Carolyn Mayer Combinatorics and Computer Algebra, COCOA

More information

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh

Lecture 3. Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets. Tepper School of Business Carnegie Mellon University, Pittsburgh Lecture 3 Corner Polyhedron, Intersection Cuts, Maximal Lattice-Free Convex Sets Gérard Cornuéjols Tepper School of Business Carnegie Mellon University, Pittsburgh January 2016 Mixed Integer Linear Programming

More information

A List Heuristic for Vertex Cover

A List Heuristic for Vertex Cover A List Heuristic for Vertex Cover Happy Birthday Vasek! David Avis McGill University Tomokazu Imamura Kyoto University Operations Research Letters (to appear) Online: http://cgm.cs.mcgill.ca/ avis revised:

More information

ELG3175 Introduction to Communication Systems. Introduction to Error Control Coding

ELG3175 Introduction to Communication Systems. Introduction to Error Control Coding ELG375 Introduction to Communication Systems Introduction to Error Control Coding Types of Error Control Codes Block Codes Linear Hamming, LDPC Non-Linear Cyclic BCH, RS Convolutional Codes Turbo Codes

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

6.962 Graduate Seminar in Communications Turbo-Like Codes: Structure, Design Criteria, and Variations

6.962 Graduate Seminar in Communications Turbo-Like Codes: Structure, Design Criteria, and Variations 6.962 Graduate Seminar in Communications Turbo-Like Codes: Structure, Design Criteria, and Variations Presenter: J. Nicholas Laneman October 18, 2000 1 Summary Broadening our treatment of capacity-approaching

More information

LDPC Codes a brief Tutorial

LDPC Codes a brief Tutorial LDPC Codes a brief Tutorial Bernhard M.J. Leiner, Stud.ID.: 53418L bleiner@gmail.com April 8, 2005 1 Introduction Low-density parity-check (LDPC) codes are a class of linear block LDPC codes. The name

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi Convex Programming and Efficiency In this lecture, we formalize convex programming problem, discuss what it means to solve it efficiently

More information

11.1 Facility Location

11.1 Facility Location CS787: Advanced Algorithms Scribe: Amanda Burton, Leah Kluegel Lecturer: Shuchi Chawla Topic: Facility Location ctd., Linear Programming Date: October 8, 2007 Today we conclude the discussion of local

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

On combining chase-2 and sum-product algorithms for LDPC codes

On combining chase-2 and sum-product algorithms for LDPC codes University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2012 On combining chase-2 and sum-product algorithms

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

Code Design in the Short Block Length Regime

Code Design in the Short Block Length Regime October 8, 2014 Code Design in the Short Block Length Regime Gianluigi Liva, gianluigi.liva@dlr.de Institute for Communications and Navigation German Aerospace Center, DLR Outline 1 Introduction 2 Overview:

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems Convex polyhedra Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017 Ábrahám

More information

Modeling and Analysis of Hybrid Systems

Modeling and Analysis of Hybrid Systems Modeling and Analysis of Hybrid Systems 6. Convex polyhedra Prof. Dr. Erika Ábrahám Informatik 2 - LuFG Theory of Hybrid Systems RWTH Aachen University Szeged, Hungary, 27 September - 06 October 2017 Ábrahám

More information

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, June 8, Solutions to Practice Final Examination (Spring 2016)

UCSD ECE154C Handout #21 Prof. Young-Han Kim Thursday, June 8, Solutions to Practice Final Examination (Spring 2016) UCSD ECE54C Handout #2 Prof. Young-Han Kim Thursday, June 8, 27 Solutions to Practice Final Examination (Spring 26) There are 4 problems, each problem with multiple parts, each part worth points. Your

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

Real life Problem. Review

Real life Problem. Review Linear Programming The Modelling Cycle in Decision Maths Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution

More information

Lifts of convex sets and cone factorizations

Lifts of convex sets and cone factorizations Lifts of convex sets and cone factorizations João Gouveia Universidade de Coimbra 20 Dec 2012 - CORE - Université Catholique de Louvain with Pablo Parrilo (MIT) and Rekha Thomas (U.Washington) Lifts of

More information

Integer Programming Chapter 9

Integer Programming Chapter 9 Integer Programming Chapter 9 University of Chicago Booth School of Business Kipp Martin October 25, 2017 1 / 40 Outline Key Concepts MILP Set Monoids LP set Relaxation of MILP Set Formulation Quality

More information

Low complexity FEC Systems for Satellite Communication

Low complexity FEC Systems for Satellite Communication Low complexity FEC Systems for Satellite Communication Ashwani Singh Navtel Systems 2 Rue Muette, 27000,Houville La Branche, France Tel: +33 237 25 71 86 E-mail: ashwani.singh@navtelsystems.com Henry Chandran

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Frédéric Giroire FG Simplex 1/11 Motivation Goal: Find good solutions for difficult problems (NP-hard). Be able to quantify the goodness of the given solution. Presentation of

More information

A Review on Analysis on Codes using Different Algorithms

A Review on Analysis on Codes using Different Algorithms A Review on Analysis on Codes using Different Algorithms Devansh Vats Gaurav Kochar Rakesh Joon (ECE/GITAM/MDU) (ECE/GITAM/MDU) (HOD-ECE/GITAM/MDU) Abstract-Turbo codes are a new class of forward error

More information

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms

ACO Comprehensive Exam October 12 and 13, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Given a simple directed graph G = (V, E), a cycle cover is a set of vertex-disjoint directed cycles that cover all vertices of the graph. 1. Show that there

More information

An SDP Approach to Multi-level Crossing Minimization

An SDP Approach to Multi-level Crossing Minimization An SDP Approach to Multi-level Crossing Minimization P. Hungerländer joint work with M. Chimani, M. Jünger, P. Mutzel University of Klagenfurt - Department of Mathematics 15th Combinatorial Optimization

More information

Exact and Approximate Algorithms for ML Decoding on Tail-Biting Trellises

Exact and Approximate Algorithms for ML Decoding on Tail-Biting Trellises Exact and Approximate Algorithms for ML Decoding on Tail-Biting Trellises Priti Shankar A.S. Madhu Aditya Nori IISc-CSA-TR-2005-3 http://archive.csa.iisc.ernet.in/tr/2005/3/ Computer Science and Automation

More information

Convergence Analysis of Iterative Threshold Decoding Process

Convergence Analysis of Iterative Threshold Decoding Process Journal of Computer and Communications, 2016, 4, 98-107 http://www.scirp.org/journal/jcc ISSN Online: 2327-5227 ISSN Print: 2327-5219 Convergence Analysis of Iterative Threshold Decoding Process Mohammed

More information

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage).

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage). Linear Programming Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory: Feasible Set, Vertices, Existence of Solutions. Equivalent formulations. Outline

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

HIGH THROUGHPUT LOW POWER DECODER ARCHITECTURES FOR LOW DENSITY PARITY CHECK CODES

HIGH THROUGHPUT LOW POWER DECODER ARCHITECTURES FOR LOW DENSITY PARITY CHECK CODES HIGH THROUGHPUT LOW POWER DECODER ARCHITECTURES FOR LOW DENSITY PARITY CHECK CODES A Dissertation by ANAND MANIVANNAN SELVARATHINAM Submitted to the Office of Graduate Studies of Texas A&M University in

More information

The Simplex Algorithm for LP, and an Open Problem

The Simplex Algorithm for LP, and an Open Problem The Simplex Algorithm for LP, and an Open Problem Linear Programming: General Formulation Inputs: real-valued m x n matrix A, and vectors c in R n and b in R m Output: n-dimensional vector x There is one

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Optimization of Design. Lecturer:Dung-An Wang Lecture 8

Optimization of Design. Lecturer:Dung-An Wang Lecture 8 Optimization of Design Lecturer:Dung-An Wang Lecture 8 Lecture outline Reading: Ch8 of text Today s lecture 2 8.1 LINEAR FUNCTIONS Cost Function Constraints 3 8.2 The standard LP problem Only equality

More information

Research Interests Optimization:

Research Interests Optimization: Mitchell: Research interests 1 Research Interests Optimization: looking for the best solution from among a number of candidates. Prototypical optimization problem: min f(x) subject to g(x) 0 x X IR n Here,

More information

THE DESIGN OF STRUCTURED REGULAR LDPC CODES WITH LARGE GIRTH. Haotian Zhang and José M. F. Moura

THE DESIGN OF STRUCTURED REGULAR LDPC CODES WITH LARGE GIRTH. Haotian Zhang and José M. F. Moura THE DESIGN OF STRUCTURED REGULAR LDPC CODES WITH LARGE GIRTH Haotian Zhang and José M. F. Moura Department of Electrical and Computer Engineering Carnegie Mellon University, Pittsburgh, PA 523 {haotian,

More information