Reconstruction of Filament Structure

Size: px
Start display at page:

Download "Reconstruction of Filament Structure"

Transcription

1 Reconstruction of Filament Structure Ruqi HUANG INRIA-Geometrica Joint work with Frédéric CHAZAL and Jian SUN 27/10/2014

2 Outline 1 Problem Statement Characterization of Dataset Formulation 2 Our Approaches Reeb Graph Geometrical Guarantee α Reeb Graph Topological Guarantee

3 We are interested in the dataset with underlying linear structure. Example Earthquake faults:

4 Outline 1 Problem Statement Characterization of Dataset Formulation 2 Our Approaches Reeb Graph Geometrical Guarantee α Reeb Graph Topological Guarantee

5 ɛ correspondence Let (X, d X ) and (Y, d Y ) be two metric spaces, an ɛ correspondence between them is a subset C X Y such that: for any x X, there exists y Y such that (x, y) C; for any y Y, there exists x X such that (x, y) C; for any (x, y), (x, y ) C, d X (x, x ) d Y (y, y ) ɛ.

6 ɛ correspondence Let (X, d X ) and (Y, d Y ) be two metric spaces, an ɛ correspondence between them is a subset C X Y such that: for any x X, there exists y Y such that (x, y) C; for any y Y, there exists x X such that (x, y) C; for any (x, y), (x, y ) C, d X (x, x ) d Y (y, y ) ɛ. Gromov-Hausdorff Distance d GH (X, Y ) = 1 2 inf {ɛ : there exists an ɛ correspondence between X and Y }

7 Problem Statement Input A compact path metric space (X, d X ), which is close to some unknown metric graph (G, d G ), meaning d GH (X, G ) < ɛ.

8 Problem Statement Input A compact path metric space (X, d X ), which is close to some unknown metric graph (G, d G ), meaning d GH (X, G ) < ɛ. Output A metric graph (G, d G ) as an approximation of (G, d G ).

9 Problem Statement Input A compact path metric space (X, d X ), which is close to some unknown metric graph (G, d G ), meaning d GH (X, G ) < ɛ. Output A metric graph (G, d G ) as an approximation of (G, d G ).

10 Outline 1 Problem Statement Characterization of Dataset Formulation 2 Our Approaches Reeb Graph Geometrical Guarantee α Reeb Graph Topological Guarantee

11 Definition Let (X, d X ) be a compact path metric. We set r X as a root point, let d(x) = d X (r, x) the distance function to r in X.

12 Definition Let (X, d X ) be a compact path metric. We set r X as a root point, let d(x) = d X (r, x) the distance function to r in X. Equivalence x y IFF d(x) = d(y) and x, y are in the same connected component of d 1 (d(x)).

13 Definition Let (X, d X ) be a compact path metric. We set r X as a root point, let d(x) = d X (r, x) the distance function to r in X. Equivalence x y IFF d(x) = d(y) and x, y are in the same connected component of d 1 (d(x)). Reeb Graph G = X \

14 v 10 v 9 Illustration v 8 v 7 v 3 v 2 r v 1 v 4 v 11 v 6 v5

15 Outline 1 Problem Statement Characterization of Dataset Formulation 2 Our Approaches Reeb Graph Geometrical Guarantee α Reeb Graph Topological Guarantee

16 Properties Let π : X G be π(x) = [x]. Then we consider correspondence (x, π(x)) X G.

17 Properties Let π : X G be π(x) = [x]. Then we consider correspondence (x, π(x)) X G. 1-Lipschitz: d X (x, y) d G (π(x), π(y));

18 Properties Let π : X G be π(x) = [x]. Then we consider correspondence (x, π(x)) X G. 1-Lipschitz: d X (x, y) d G (π(x), π(y)); d X (x, y) d G (π(x), π(y)) + 2(β 1 (G) + 1)M;

19 Properties Let π : X G be π(x) = [x]. Then we consider correspondence (x, π(x)) X G. 1-Lipschitz: d X (x, y) d G (π(x), π(y)); d X (x, y) d G (π(x), π(y)) + 2(β 1 (G) + 1)M; bounding the diameter of level-set, i.e. M = sup x X diam(d 1 (d(x))).

20 Bounding M Since X is close to some underlying graph G, there is an upper bound for the level-set.

21 Bounding M Since X is close to some underlying graph G, there is an upper bound for the level-set. Theorem For any l > α, the diameter of any connected component L of d 1 [l α, l + α] satisfies: diam(l) 4(2 + N E,G (4(α + 2ɛ)))(α + 2ɛ) + ɛ N E,G (δ) is the number of edges of G with length small than δ.

22 Bounding M Since X is close to some underlying graph G, there is an upper bound for the level-set. Theorem For any l > α, the diameter of any connected component L of d 1 [l α, l + α] satisfies: diam(l) 4(2 + N E,G (4(α + 2ɛ)))(α + 2ɛ) + ɛ N E,G (δ) is the number of edges of G with length small than δ. Let α = 0, M (8N E,G (8ɛ) + 17)ɛ

23 Geometrical guarantee To conclude, we proved that: d GH (X, G) < (β 1 (G) + 1)(17 + 8N E,G (8ɛ))ɛ

24 Outline 1 Problem Statement Characterization of Dataset Formulation 2 Our Approaches Reeb Graph Geometrical Guarantee α Reeb Graph Topological Guarantee

25 α Reeb Graph We modify the equivalence relation to construct the α Reeb graph. Cover the range of d(x) with the intervals {I i } of length at most 2α, for example, I i = (iα, (i + 2)α), i = 0, 1, 2...;

26 α Reeb Graph We modify the equivalence relation to construct the α Reeb graph. Cover the range of d(x) with the intervals {I i } of length at most 2α, for example, I i = (iα, (i + 2)α), i = 0, 1, 2...; Define equivalence relationship x α y IFF d(x) = d(y) and x, y are in the same connected component of d 1 (I i );

27 α Reeb Graph We modify the equivalence relation to construct the α Reeb graph. Cover the range of d(x) with the intervals {I i } of length at most 2α, for example, I i = (iα, (i + 2)α), i = 0, 1, 2...; Define equivalence relationship x α y IFF d(x) = d(y) and x, y are in the same connected component of d 1 (I i ); G α = X / α.

28 Illustration I4 H 1 4 H 1 3 I3 I2 H 1 2 H 2 2 I0 I1 H 1 1 H 2 1 H d I H 1 0 V4 1 I4 V3 1 I3 V2 1 V2 2 I2 I2 V1 1 V1 2 I1 I1 V0 1 G I0 disjoint union of copies of intervals α-reeb graph

29 Geometrical Guarantee Similarly, we have: d GH (X, G α ) < (β 1 (G α ) + 1)(4(2 + N E,G (4(α + 2ɛ)))(α + 2ɛ) + ɛ)

30 Outline 1 Problem Statement Characterization of Dataset Formulation 2 Our Approaches Reeb Graph Geometrical Guarantee α Reeb Graph Topological Guarantee

31 Homotopy Equivalence Result Theorem Let r X, α > 60ɛ and I{[0, 2α), (iα, (i + 2)α) 1 i m} covers the segment [0, Diam(X )]. If no edges of G is shorter than L and no loops of G is shorter than 2L with L (17α + 9ɛ), then we have G α and G are homotopy equivalent.

32 Nerve Complex Let U = i A U i be a finite open covering of topological space T. Then the nerve complex of U, K, is a simplicial complex whose vertex set is A, and where a family {i 0, i 1,..., i k } spans a k simplex in K IFF U i0 U i1... U ik.

33 Illustration I4 H 1 4 H 1 3 I3 I2 H 1 2 H 2 2 I0 I1 H 1 1 H 2 1 H d I H 1 0 V4 1 I4 V3 1 I3 V2 1 V2 2 I2 I2 V1 1 V1 2 I1 I1 V0 1 G I0 disjoint union of copies of intervals α-reeb graph

34 Nerve Complex Let U = i A U i be a finite open covering of topological space T. Then the nerve complex of U, K, is a simplicial complex whose vertex set is A, and where a family {i 0, i 1,..., i k } spans a k simplex in K IFF U i0 U i1... U ik. Nerve Lemma Further more, if all finite intersections of the open sets in the open covering are either empty or contractible, then T is homotopy equivalent to K.

35 Illustration I4 H 1 4 H 1 3 I3 I2 H 1 2 H 2 2 I0 I1 H 1 1 H 2 1 H d I H 1 0 V4 1 I4 V3 1 I3 V2 1 V2 2 I2 I2 V1 1 V1 2 I1 I1 V0 1 G I0 disjoint union of copies of intervals α-reeb graph

36 Correspondence between X and G Let (r, g r ) C(X, G ), b(g) = d G (g r, g). Define C(U) = {g : (x, g) C, x U X }(C(V ) is defined in the same way for V G ).

37 Correspondence between X and G Let (r, g r ) C(X, G ), b(g) = d G (g r, g). Define C(U) = {g : (x, g) C, x U X }(C(V ) is defined in the same way for V G ). Path Correspondence For x 1, x 2 X, if there is a path in d 1 (l, u) connecting them, then for g i, (x i, g i ) C, we can always find a path in b 1 (l 2ɛ, u + 2ɛ) connecting g 1, g 2.

38 New Open Covering of X Ṽ 2 Ṽ2 Ṽ 1 Ṽ1 Ṽ 3 Ṽ3 N(V 0 )

39 THE END Thanks for your attention. Questions?

Detection and approximation of linear structures in metric spaces

Detection and approximation of linear structures in metric spaces Stanford - July 12, 2012 MMDS 2012 Detection and approximation of linear structures in metric spaces Frédéric Chazal Geometrica group INRIA Saclay Joint work with M. Aanjaneya, D. Chen, M. Glisse, L. Guibas,

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference Sophia-Antipolis, January 2016 Winter School An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference Frédéric Chazal INRIA Saclay - Ile-de-France frederic.chazal@inria.fr

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

In class 75min: 2:55-4:10 Thu 9/30.

In class 75min: 2:55-4:10 Thu 9/30. MATH 4530 Topology. In class 75min: 2:55-4:10 Thu 9/30. Prelim I Solutions Problem 1: Consider the following topological spaces: (1) Z as a subspace of R with the finite complement topology (2) [0, π]

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by.

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by. Chapter 1 Geometry: Nuts and Bolts 1.1 Metric Spaces Definition 1.1.1. A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by (x, y) inf p. p:x

More information

Persistence stability for geometric complexes

Persistence stability for geometric complexes Lake Tahoe - December, 8 2012 NIPS workshop on Algebraic Topology and Machine Learning Persistence stability for geometric complexes Frédéric Chazal Joint work with Vin de Silva and Steve Oudot (+ on-going

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

New Results on the Stability of Persistence Diagrams

New Results on the Stability of Persistence Diagrams New Results on the Stability of Persistence Diagrams Primoz Skraba Jozef Stefan Institute TAGS - Linking Topology to Algebraic Geometry and Statistics joint work with Katharine Turner and D. Yogeshwaran

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

Clustering algorithms and introduction to persistent homology

Clustering algorithms and introduction to persistent homology Foundations of Geometric Methods in Data Analysis 2017-18 Clustering algorithms and introduction to persistent homology Frédéric Chazal INRIA Saclay - Ile-de-France frederic.chazal@inria.fr Introduction

More information

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

4. Definition: topological space, open set, topology, trivial topology, discrete topology. Topology Summary Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don t need to know the proof.

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

A Tour of General Topology Chris Rogers June 29, 2010

A Tour of General Topology Chris Rogers June 29, 2010 A Tour of General Topology Chris Rogers June 29, 2010 1. The laundry list 1.1. Metric and topological spaces, open and closed sets. (1) metric space: open balls N ɛ (x), various metrics e.g. discrete metric,

More information

Lectures on Order and Topology

Lectures on Order and Topology Lectures on Order and Topology Antonino Salibra 17 November 2014 1 Topology: main definitions and notation Definition 1.1 A topological space X is a pair X = ( X, OX) where X is a nonempty set and OX is

More information

Introduction to Algebraic and Geometric Topology Week 5

Introduction to Algebraic and Geometric Topology Week 5 Introduction to Algebraic and Geometric Topology Week 5 Domingo Toledo University of Utah Fall 2017 Topology of Metric Spaces I (X, d) metric space. I Recall the definition of Open sets: Definition U

More information

Elementary Topology. Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way.

Elementary Topology. Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way. Elementary Topology Note: This problem list was written primarily by Phil Bowers and John Bryant. It has been edited by a few others along the way. Definition. properties: (i) T and X T, A topology on

More information

Lecture 1 Discrete Geometric Structures

Lecture 1 Discrete Geometric Structures Lecture 1 Discrete Geometric Structures Jean-Daniel Boissonnat Winter School on Computational Geometry and Topology University of Nice Sophia Antipolis January 23-27, 2017 Computational Geometry and Topology

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Real Analysis, 2nd Edition, G.B.Folland

Real Analysis, 2nd Edition, G.B.Folland Real Analysis, 2nd Edition, G.B.Folland Chapter 4 Point Set Topology Yung-Hsiang Huang 4.1 Topological Spaces 1. If card(x) 2, there is a topology on X that is T 0 but not T 1. 2. If X is an infinite set,

More information

Reflection groups 4. Mike Davis. May 19, Sao Paulo

Reflection groups 4. Mike Davis. May 19, Sao Paulo Reflection groups 4 Mike Davis Sao Paulo May 19, 2014 https://people.math.osu.edu/davis.12/slides.html 1 2 Exotic fundamental gps Nonsmoothable aspherical manifolds 3 Let (W, S) be a Coxeter system. S

More information

arxiv: v1 [math.st] 11 Oct 2017

arxiv: v1 [math.st] 11 Oct 2017 An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists Frédéric Chazal and Bertrand Michel October 12, 2017 arxiv:1710.04019v1 [math.st] 11 Oct 2017 Abstract

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Tamal K. Dey Department of Computer Science and Engineering The Ohio State University Dey (2014) Computational Topology CCCG

More information

Lecture 5: Simplicial Complex

Lecture 5: Simplicial Complex Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex.

More information

Lecture 11 COVERING SPACES

Lecture 11 COVERING SPACES Lecture 11 COVERING SPACES A covering space (or covering) is not a space, but a mapping of spaces (usually manifolds) which, locally, is a homeomorphism, but globally may be quite complicated. The simplest

More information

Homology and Persistent Homology Bootcamp Notes 2017

Homology and Persistent Homology Bootcamp Notes 2017 Homology and Persistent Homology Bootcamp Notes Summer@ICERM 2017 Melissa McGuirl September 19, 2017 1 Preface This bootcamp is intended to be a review session for the material covered in Week 1 of Summer@ICERM

More information

Combinatorics I (Lecture 36)

Combinatorics I (Lecture 36) Combinatorics I (Lecture 36) February 18, 2015 Our goal in this lecture (and the next) is to carry out the combinatorial steps in the proof of the main theorem of Part III. We begin by recalling some notation

More information

Notes on point set topology, Fall 2010

Notes on point set topology, Fall 2010 Notes on point set topology, Fall 2010 Stephan Stolz September 3, 2010 Contents 1 Pointset Topology 1 1.1 Metric spaces and topological spaces...................... 1 1.2 Constructions with topological

More information

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012)

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Michael Tagare De Guzman January 31, 2012 4A. The Sorgenfrey Line The following material concerns the Sorgenfrey line, E, introduced in

More information

Data Analysis, Persistent homology and Computational Morse-Novikov theory

Data Analysis, Persistent homology and Computational Morse-Novikov theory Data Analysis, Persistent homology and Computational Morse-Novikov theory Dan Burghelea Department of mathematics Ohio State University, Columbuus, OH Bowling Green, November 2013 AMN theory (computational

More information

The Borsuk-Ulam theorem- A Combinatorial Proof

The Borsuk-Ulam theorem- A Combinatorial Proof The Borsuk-Ulam theorem- A Combinatorial Proof Shreejit Bandyopadhyay April 14, 2015 1 Introduction The Borsuk-Ulam theorem is perhaps among the results in algebraic topology having the greatest number

More information

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France A Multicover Nerve for Geometric Inference Don Sheehy INRIA Saclay, France Computational geometers use topology to certify geometric constructions. Computational geometers use topology to certify geometric

More information

Simplicial Objects and Homotopy Groups. J. Wu

Simplicial Objects and Homotopy Groups. J. Wu Simplicial Objects and Homotopy Groups J. Wu Department of Mathematics, National University of Singapore, Singapore E-mail address: matwuj@nus.edu.sg URL: www.math.nus.edu.sg/~matwujie Partially supported

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

MATH 54 - LECTURE 10

MATH 54 - LECTURE 10 MATH 54 - LECTURE 10 DAN CRYTSER The Universal Mapping Property First we note that each of the projection mappings π i : j X j X i is continuous when i X i is given the product topology (also if the product

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

Notes on categories, the subspace topology and the product topology

Notes on categories, the subspace topology and the product topology Notes on categories, the subspace topology and the product topology John Terilla Fall 2014 Contents 1 Introduction 1 2 A little category theory 1 3 The subspace topology 3 3.1 First characterization of

More information

Point-Set Topology II

Point-Set Topology II Point-Set Topology II Charles Staats September 14, 2010 1 More on Quotients Universal Property of Quotients. Let X be a topological space with equivalence relation. Suppose that f : X Y is continuous and

More information

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Arrangements in Computational Geometry An arrangement in R k is

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

A new homology for infinite graphs and metric continua

A new homology for infinite graphs and metric continua A new homology for infinite graphs and metric continua Technische Universität Graz and Mathematisches Seminar Universität Hamburg Bremen, 10.11.09 Cycle Space The cycle space C(G) of a finite graph: A

More information

Math 205B - Topology. Dr. Baez. January 19, Christopher Walker. p(x) = (cos(2πx), sin(2πx))

Math 205B - Topology. Dr. Baez. January 19, Christopher Walker. p(x) = (cos(2πx), sin(2πx)) Math 205B - Topology Dr. Baez January 19, 2007 Christopher Walker Theorem 53.1. The map p : R S 1 given by the equation is a covering map p(x) = (cos(2πx), sin(2πx)) Proof. First p is continuous since

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

On the Topology of Finite Metric Spaces

On the Topology of Finite Metric Spaces On the Topology of Finite Metric Spaces Meeting in Honor of Tom Goodwillie Dubrovnik Gunnar Carlsson, Stanford University June 27, 2014 Data has shape The shape matters Shape of Data Regression Shape of

More information

Section 13. Basis for a Topology

Section 13. Basis for a Topology 13. Basis for a Topology 1 Section 13. Basis for a Topology Note. In this section, we consider a basis for a topology on a set which is, in a sense, analogous to the basis for a vector space. Whereas a

More information

Western TDA Learning Seminar. June 7, 2018

Western TDA Learning Seminar. June 7, 2018 The The Western TDA Learning Seminar Department of Mathematics Western University June 7, 2018 The The is an important tool used in TDA for data visualization. Input point cloud; filter function; covering

More information

Surfaces Beyond Classification

Surfaces Beyond Classification Chapter XII Surfaces Beyond Classification In most of the textbooks which present topological classification of compact surfaces the classification is the top result. However the topology of 2- manifolds

More information

or else take their intersection. Now define

or else take their intersection. Now define Samuel Lee Algebraic Topology Homework #5 May 10, 2016 Problem 1: ( 1.3: #3). Let p : X X be a covering space with p 1 (x) finite and nonempty for all x X. Show that X is compact Hausdorff if and only

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

Randomized Algorithms 2017A - Lecture 10 Metric Embeddings into Random Trees

Randomized Algorithms 2017A - Lecture 10 Metric Embeddings into Random Trees Randomized Algorithms 2017A - Lecture 10 Metric Embeddings into Random Trees Lior Kamma 1 Introduction Embeddings and Distortion An embedding of a metric space (X, d X ) into a metric space (Y, d Y ) is

More information

2 A topological interlude

2 A topological interlude 2 A topological interlude 2.1 Topological spaces Recall that a topological space is a set X with a topology: a collection T of subsets of X, known as open sets, such that and X are open, and finite intersections

More information

Trees in Dynamics and Probability

Trees in Dynamics and Probability Trees in Dynamics and Probability Mario Bonk (UCLA) joint work with Huy Tran (TU Berlin) and with Daniel Meyer (U. Liverpool) New Developments in Complex Analysis and Function Theory University of Crete,

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Algorithmic Semi-algebraic Geometry and its applications Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Introduction: Three problems 1. Plan the motion of

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Coxeter Groups and CAT(0) metrics

Coxeter Groups and CAT(0) metrics Peking University June 25, 2008 http://www.math.ohio-state.edu/ mdavis/ The plan: First, explain Gromov s notion of a nonpositively curved metric on a polyhedral complex. Then give a simple combinatorial

More information

INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY INTRODUCTION TO TOPOLOGY MARTINA ROVELLI These notes are an outline of the topics covered in class, and are not substitutive of the lectures, where (most) proofs are provided and examples are discussed

More information

A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns.

A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns. III.2 Convex Set Systems 53 III.2 Convex Set Systems A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns. Nerves. Let F be a finite

More information

TOPOLOGY CHECKLIST - SPRING 2010

TOPOLOGY CHECKLIST - SPRING 2010 TOPOLOGY CHECKLIST - SPRING 2010 The list below serves as an indication of what we have covered in our course on topology. (It was written in a hurry, so there is a high risk of some mistake being made

More information

Digital straight lines in the Khalimsky plane

Digital straight lines in the Khalimsky plane Digital straight lines in the Khalimsky plane Erik Melin Uppsala University, Department of Mathematics Box 480, SE-751 06 Uppsala, Sweden melin@math.uu.se http://www.math.uu.se/~melin September 2003 Abstract

More information

Metric and metrizable spaces

Metric and metrizable spaces Metric and metrizable spaces These notes discuss the same topic as Sections 20 and 2 of Munkres book; some notions (Symmetric, -metric, Ψ-spaces...) are not discussed in Munkres book.. Symmetric, -metric,

More information

Lecture : Topological Space

Lecture : Topological Space Example of Lecture : Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Example of 1 2 3 Example of 4 5 6 Example of I Topological spaces and continuous

More information

Walheer Barnabé. Topics in Mathematics Practical Session 2 - Topology & Convex

Walheer Barnabé. Topics in Mathematics Practical Session 2 - Topology & Convex Topics in Mathematics Practical Session 2 - Topology & Convex Sets Outline (i) Set membership and set operations (ii) Closed and open balls/sets (iii) Points (iv) Sets (v) Convex Sets Set Membership and

More information

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Compact Sets James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2017 Outline 1 Closed Sets 2 Compactness 3 Homework Closed Sets

More information

Topology problem set Integration workshop 2010

Topology problem set Integration workshop 2010 Topology problem set Integration workshop 2010 July 28, 2010 1 Topological spaces and Continuous functions 1.1 If T 1 and T 2 are two topologies on X, show that (X, T 1 T 2 ) is also a topological space.

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 2: Convex Sets EC 51 MATHEMATICAL METHODS FOR ECONOMICS Lecture : Convex Sets Murat YILMAZ Boğaziçi University In this section, we focus on convex sets, separating hyperplane theorems and Farkas Lemma. And as an application

More information

HAMILTON CYCLES IN RANDOM LIFTS OF COMPLETE GRAPHS

HAMILTON CYCLES IN RANDOM LIFTS OF COMPLETE GRAPHS HAMILTON CYCLES IN RANDOM LIFTS OF COMPLETE GRAPHS TOMASZ LUCZAK, LUKASZ WITKOWSKI, AND MARCIN WITKOWSKI Abstract. We study asymptotic properties of random lifts a model of random graph introduced by Amit

More information

Geometric Data. Goal: describe the structure of the geometry underlying the data, for interpretation or summary

Geometric Data. Goal: describe the structure of the geometry underlying the data, for interpretation or summary Geometric Data - ma recherche s inscrit dans le contexte de l analyse exploratoire des donnees, dont l obj Input: point cloud equipped with a metric or (dis-)similarity measure data point image/patch,

More information

The Cyclic Cycle Complex of a Surface

The Cyclic Cycle Complex of a Surface The Cyclic Cycle Complex of a Surface Allen Hatcher A recent paper [BBM] by Bestvina, Bux, and Margalit contains a construction of a cell complex that gives a combinatorial model for the collection of

More information

Topology - I. Michael Shulman WOMP 2004

Topology - I. Michael Shulman WOMP 2004 Topology - I Michael Shulman WOMP 2004 1 Topological Spaces There are many different ways to define a topological space; the most common one is as follows: Definition 1.1 A topological space (often just

More information

751 Problem Set I JWR. Due Sep 28, 2004

751 Problem Set I JWR. Due Sep 28, 2004 751 Problem Set I JWR Due Sep 28, 2004 Exercise 1. For any space X define an equivalence relation by x y iff here is a path γ : I X with γ(0) = x and γ(1) = y. The equivalence classes are called the path

More information

Final Exam, F11PE Solutions, Topology, Autumn 2011

Final Exam, F11PE Solutions, Topology, Autumn 2011 Final Exam, F11PE Solutions, Topology, Autumn 2011 Question 1 (i) Given a metric space (X, d), define what it means for a set to be open in the associated metric topology. Solution: A set U X is open if,

More information

Wait-Free Computability for General Tasks

Wait-Free Computability for General Tasks Wait-Free Computability for General Tasks Companion slides for Distributed Computing Through Combinatorial Topology Maurice Herlihy & Dmitry Kozlov & Sergio Rajsbaum 1 Road Map Inherently colored tasks

More information

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia Notes on metric spaces and topology Math 309: Topics in geometry Dale Rolfsen University of British Columbia Let X be a set; we ll generally refer to its elements as points. A distance function, or metric

More information

THE GROWTH DEGREE OF VERTEX REPLACEMENT RULES

THE GROWTH DEGREE OF VERTEX REPLACEMENT RULES THE GROWTH DEGREE OF VERTEX REPLACEMENT RULES JOSEPH P. PREVITE AND MICHELLE PREVITE 1. Introduction. 2. Vertex Replacement Rules. 3. Marked Graphs Definition 3.1. A marked graph (G, p) is a graph with

More information

arxiv: v1 [math.co] 12 Aug 2018

arxiv: v1 [math.co] 12 Aug 2018 CONVEX UNION REPRESENTABILITY AND CONVEX CODES R. AMZI JEFFS AND ISABELLA NOVIK arxiv:1808.03992v1 [math.co] 12 Aug 2018 Abstract. We introduce and investigate d-convex union representable complexes: the

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

A Multicover Nerve for Geometric Inference

A Multicover Nerve for Geometric Inference A Multicover Nerve for Geometric Inference Donald R. Sheehy Abstract We show that filtering the barycentric decomposition of a Čech complex by the cardinality of the vertices captures precisely the topology

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1 Notes on Topology Andrew Forrester January 28, 2009 Contents 1 Notation 1 2 The Big Picture 1 3 Fundamental Concepts 2 4 Topological Spaces and Topologies 2 4.1 Topological Spaces.........................................

More information

A Geometric Perspective on Sparse Filtrations

A Geometric Perspective on Sparse Filtrations CCCG 2015, Kingston, Ontario, August 10 12, 2015 A Geometric Perspective on Sparse Filtrations Nicholas J. Cavanna Mahmoodreza Jahanseir Donald R. Sheehy Abstract We present a geometric perspective on

More information

T. Background material: Topology

T. Background material: Topology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 T. Background material: Topology For convenience this is an overview of basic topological ideas which will be used in the course. This material

More information

Sets of Endpoints of Chainable Continua

Sets of Endpoints of Chainable Continua Volume 32, 2008 Pages 31 35 http://topology.auburn.edu/tp/ Sets of Endpoints of Chainable Continua by Julien Doucet Electronically published on March 29, 2008 Topology Proceedings Web: http://topology.auburn.edu/tp/

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Math 734 Aug 22, Differential Geometry Fall 2002, USC

Math 734 Aug 22, Differential Geometry Fall 2002, USC Math 734 Aug 22, 2002 1 Differential Geometry Fall 2002, USC Lecture Notes 1 1 Topological Manifolds The basic objects of study in this class are manifolds. Roughly speaking, these are objects which locally

More information

Approximate Algorithms for Touring a Sequence of Polygons

Approximate Algorithms for Touring a Sequence of Polygons Approximate Algorithms for Touring a Sequence of Polygons Fajie Li 1 and Reinhard Klette 2 1 Institute for Mathematics and Computing Science, University of Groningen P.O. Box 800, 9700 AV Groningen, The

More information

HW Graph Theory SOLUTIONS (hbovik)

HW Graph Theory SOLUTIONS (hbovik) Diestel 1.3: Let G be a graph containing a cycle C, and assume that G contains a path P of length at least k between two vertices of C. Show that G contains a cycle of length at least k. If C has length

More information

arxiv: v1 [math.gt] 16 Aug 2016

arxiv: v1 [math.gt] 16 Aug 2016 THE GROMOV BOUNDARY OF THE RAY GRAPH JULIETTE BAVARD AND ALDEN WALKER arxiv:1608.04475v1 [math.gt] 16 Aug 2016 Abstract. The ray graph is a Gromov-hyperbolic graph on which the mapping class group of the

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

Topological space - Wikipedia, the free encyclopedia

Topological space - Wikipedia, the free encyclopedia Page 1 of 6 Topological space From Wikipedia, the free encyclopedia Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity.

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

Persistent Homology and Nested Dissection

Persistent Homology and Nested Dissection Persistent Homology and Nested Dissection Don Sheehy University of Connecticut joint work with Michael Kerber and Primoz Skraba A Topological Data Analysis Pipeline A Topological Data Analysis Pipeline

More information

Cartesian Products of Graphs and Metric Spaces

Cartesian Products of Graphs and Metric Spaces Europ. J. Combinatorics (2000) 21, 847 851 Article No. 10.1006/eujc.2000.0401 Available online at http://www.idealibrary.com on Cartesian Products of Graphs and Metric Spaces S. AVGUSTINOVICH AND D. FON-DER-FLAASS

More information