Geometric Data. Goal: describe the structure of the geometry underlying the data, for interpretation or summary

Size: px
Start display at page:

Download "Geometric Data. Goal: describe the structure of the geometry underlying the data, for interpretation or summary"

Transcription

1 Geometric Data - ma recherche s inscrit dans le contexte de l analyse exploratoire des donnees, dont l obj Input: point cloud equipped with a metric or (dis-)similarity measure data point image/patch, geometric shape, protein conformation, patient, LinkedIn user...

2 Geometric Data - ma recherche s inscrit dans le contexte de l analyse exploratoire des donnees, dont l obj Input: point cloud equipped with a metric or (dis-)similarity measure data point image/patch, geometric shape, protein conformation, patient, LinkedIn user... Goal: describe the structure of the geometry underlying the data, for interpretation or summary

3 Geometric Data - ma recherche s inscrit dans le contexte de l analyse exploratoire des donnees, dont l obj Input: point cloud equipped with a metric or (dis-)similarity measure data point image/patch, geometric shape, protein conformation, patient, LinkedIn user... Goal: describe the structure of the geometry underlying the data, for interpretation or summary

4 Mathematical framework geometric data set / underlying space compact metric space ambient / extrinsic distance intrinsic distance 2

5 Mathematical framework geometric data set / underlying space compact metric space distance between compact metric spaces Gromov-Hausdorff (GH) distance Z γx X γy Y 2

6 Mathematical framework geometric data set / underlying space compact metric space Euclidean distance distance between compact metric spaces Gromov-Hausdorff (GH) distance dgh = 2

7 Mathematical framework geometric data set / underlying space compact metric space Euclidean distance distance between compact metric spaces Gromov-Hausdorff (GH) distance dgh > 2

8 Mathematical framework geometric data set / underlying space compact metric space geodesic distance distance between compact metric spaces Gromov-Hausdorff (GH) distance dgh = 2

9 Mathematical framework geometric data set / underlying space compact metric space distance between compact metric spaces Gromov-Hausdorff (GH) distance descriptor persistence diagram (choose the filtration) - multi-scale reflects the structure of the shape across scales - global/local attached to the whole shape / to a base point(s) - stable variations with GH-distance and base point location are controlled 2

10 Why use descriptors isometries GH distance hard to compute [Bronstein 2, Kimmel 26] [Mémoli 27] shape space descriptors space [Agarwal [Agarwal et al. et 25] al. 25] show that it is NP-hard to approximate the GH distance within a factor equality distance easy to compute 3

11 Why use descriptors isometries GH distance hard to compute [Bronstein 2, Kimmel 26] [Mémoli 27] shape space descriptors space [Agarwal [Agarwal et al. et 25] al. 25] show that it is NP-hard to approximate the GH distance within a factor Ideally, descriptors distance = GH distance equality distance easy to compute 3

12 Why use descriptors isometries GH distance hard to compute [Bronstein 2, Kimmel 26] [Mémoli 27] shape space descriptors space [Agarwal [Agarwal et al. et 25] al. 25] show that it is NP-hard to approximate the GH distance within a factor Ideally, descriptors distance = GH distance In reality, equality distance easy to compute 3

13 Why use descriptors Some descriptors for images / 3d shapes / metric spaces: diameter curvature (mean, Gaussian, sectional) shape context (distribution of distances) [Agarwal et al. 25] show that it is NP-hard to approximate the GH distance within a factor heat kernel signature (heat diffusion) wave kernel signature (Maxwell s equations) spin image (local neighborhood parametrization) SIFT features (local distribution of gradient orientations) etc. 3

14 Why use descriptors Some descriptors for images / 3d shapes / metric spaces: diameter curvature (mean, Gaussian, sectional) shape context (distribution of distances) [Agarwal et al. 25] show that it is NP-hard to approximate the GH distance within a factor heat kernel signature (heat diffusion) wave kernel signature (Maxwell s equations) spin image (local neighborhood parametrization) SIFT features (local distribution of gradient orientations) etc. geometry statistics 3

15 Menu. Global topological descriptors 2. Local topological descriptors 45

16 Global topological descriptors Input: a compact metric space (X, d X ) ThisDescriptor: signature reveals the structure of the metric space across scales dgm F(X, d X ), where F(X, d X ) is some simplicial filtration over X derived from d X (proxy for union of balls) dimensional homology generators -dimensional homology generators 6

17 Global topological descriptors Input: a compact metric space (X, d X ) This signature reveals the structure of the metric space across scales Descriptor: dgm F(X, d X ), where F(X, d X ) is some simplicial filtration over X derived from d X (proxy for union of balls) t C t (X, d X ) popular choices: - Čech/Nerve filtration C(X, d X ) R 2t (X, d X ) - (Vietoris)-Rips filtration R(X, d X ) 6

18 Global topological descriptors Input: a compact metric space (X, d X ) This signature reveals the structure of the metric space across scales Descriptor: dgm F(X, d X ), where F(X, d X ) is some simplicial filtration over X derived from d X (proxy for union of balls) t C t (X, d X ) = R 2t (X, d X ) popular choices: - Čech/Nerve filtration C(X, d X ) - (Vietoris)-Rips filtration R(X, d X ) 6

19 Some examples Descriptors of some elementary shapes (approximated from finite samples): Euclidean geodesic 7

20 This equality is fine, since both curves are isometric when equipped with the geodesic distance (their total lengths are the same). The Euclidean distance Descriptors of some elementary shapes (approximated from finite samples): geodesic Euclidean Some examples 7

21 This equality is not fine, since the two spaces are not isometric. Note that the e Descriptors of some elementary shapes (approximated from finite samples): geodesic Euclidean Some examples 7

22 Stability Theorem: [Chazal, de Silva, O. 23] For any compact metric spaces (X, d X ) and (Y, d Y ), d B (dgm R(X, d X ), dgm R(Y, d Y )) 2d GH (X, Y ). 8

23 Stability Theorem: [Chazal, de Silva, O. 23] For any compact metric spaces (X, d X ) and (Y, d Y ), d B (dgm R(X, d X ), dgm R(Y, d Y )) 2d GH (X, Y ). The bound is worst-case tight... X = d GH (X, Y ) = ε dgm R(X, d X ) = {(, ), (, )} Y = + 2ε dgm R(Y, d Y ) = {(, ), (, + 2ε)} d B (dgm R(X, d X), dgm R(Y, d Y )) = 2ε 8

24 Stability Theorem: [Chazal, de Silva, O. 23] For any compact metric spaces (X, d X ) and (Y, d Y ), d B (dgm R(X, d X ), dgm R(Y, d Y )) 2d GH (X, Y ). The bound is worst-case tight... but it is still only an upper bound this means that the distance between our signatures is still only a lower bound on the G X = d GH (X, Y ) = 2 - any one-to-one mapping X Y has a metric distortion of - any correspondence has a metric d dgm R(X, d X ) = {(, ), (, ), (.)} Y = 2 dgm R(Y, d Y ) = {(, ), (, ), (, )} d B (dgm R(X, d X), dgm R(Y, d Y )) = 8

25 Stability Theorem: [Chazal, de Silva, O. 23] For any compact metric spaces (X, d X ) and (Y, d Y ), d B (dgm R(X, d X ), dgm R(Y, d Y )) 2d GH (X, Y ). Variants and extensions: - other filtrations: v Cech / Nerve, witness complex, etc. - larger classes of metric spaces: precompact, totally bounded, etc. - (dis-)similarity measures 8

26 Stability finite the issue with infinite spaces is that they give rise to infinite Rips complexes, whose filtrations may or may not be tame and th Theorem: [Chazal, de Silva, O. 23] For any compact metric spaces (X, d X ) and (Y, d Y ), d B (dgm R(X, d X ), dgm R(Y, d Y )) 2d GH (X, Y ). Proof outline: (X, d X ) (Z, d Z ) (R X + Y, l ) γ X id (γ X (X) γ Y (Y ), d Z ) γ γ Y id (Y, d Y ) 8

27 Toy application (unsupervised shape classification) 9

28 Toy application (unsupervised shape classification) camels cats elephants faces heads horses camels cats elephants faces heads horses 9

29 Toy application (unsupervised shape classification) camel cat elephant face head horse

30 Local topological descriptors Goal: associate PD to every point choice of filtration(s)? stability guarantees?

31 Local topological descriptors Input: a compact intrinsic metric space (X, d X ), a basepoint x X Construction: filtration of the sublevel sets of d x ( ) = d X (x, ) Descriptor: persistence diagram of the filtration, denoted dgm d x In practice: compute descriptor from point cloud using a pair of Rips complexes [Chazal et al. 29]

32 Stability Theorem: [Carrière, O., Ovsjanikov 25] Let (X, d X ) and (Y, d Y ) be compact intrinsic metric spaces with positive convexity radius (ϱ(x), ϱ(y ) > ). Let x X and y Y. If d GH ((X, x ), (Y, y )) min{ϱ(x), ϱ(y )}, then 2 d B (dgm d x, dgm d y ) 2 d GH ((X, x ), (Y, y )).

33 Stability Theorem: [Carrière, O., Ovsjanikov 25] Let (X, d X ) and (Y, d Y ) be compact intrinsic metric spaces with positive convexity radius (ϱ(x), ϱ(y ) > ). Let x X and y Y. If d GH ((X, x ), (Y, y )) min{ϱ(x), ϱ(y )}, then 2 d B (dgm d x, dgm d y ) 2 d GH ((X, x ), (Y, y )). Definitions: convexity radius Gromov-Hausdorff distance between pointed spaces

34 Stability Theorem: [Carrière, O., Ovsjanikov 25] Let (X, d X ) and (Y, d Y ) be compact intrinsic metric spaces with positive convexity radius (ϱ(x), ϱ(y ) > ). Let x X and y Y. If d GH ((X, x ), (Y, y )) min{ϱ(x), ϱ(y )}, then 2 d B (dgm d x, dgm d y ) 2 d GH ((X, x ), (Y, y )). Prerequisite: d GH (X, Y ) < 2 min{ϱ(x), ϱ(y )} X = Y = d GH (X, Y ) < = ϱ(y ) d B (dgm f, dgm g) =

35 Toy application (unsupervised shape segmentation) Experimental results: - input: shapes from the TOSCA database, in mesh form (triangulated) - select a few base points by hand on each shape - approximate geodesic distances to base points using the -skeleton graph - use the PDs of the PL interpolations over the meshes as descriptors 2

36 Toy application (unsupervised shape segmentation) Experimental results: 2

37 Toy application (unsupervised shape segmentation) Experimental results: 2

38 Toy application (unsupervised shape segmentation) Experimental results: mapping to R 3 via MDS k-means in R 3 note that blue and green are not contiguous after MDS 2

39 Toy application (unsupervised shape segmentation) Experimental results: mapping to R 3 via MDS k-means in R 3 2

40 Toy application (supervised shape segmentation) Goal: segment 3d shapes based on examples Approach: - train a (multiclass) classifier on PDs extracted from the training shapes - apply classifier to PDs extracted from each test shape Head Torso Label =? Foot Hand Training Test 3

41 Toy application (supervised shape segmentation) Strategy: use k-nn classifier in diagram space (equipped with d B ) 3

42 Recap finite metric space / basepoint filtration persistence diagram Pros: topological descriptors carry information of a different nature -dimensional homology generators -dimensional homology generators they enjoy stability properties, e.g. d B (R(X), R(Y )) 2d GH(X, Y ) 4

43 Recap finite metric space / basepoint filtration persistence diagram Pros: topological descriptors carry information of a different nature -dimensional homology generators -dimensional homology generators they enjoy stability properties, e.g. d B (R(X), R(Y )) 2d GH(X, Y ) Cons: this implies the space that oflinear persistence classifiers diagrams cannotisbe not used a vector/hilbert PDs have space been mostly used in unsuper bad for supervised learning and statistics having descriptors long construction can be slow times to is compute fine as long and (more as comparisons importantly) canto becompare made fast, but here t bad for applications 4

Topological Signatures

Topological Signatures Topological Signatures - ma recherche s inscrit dans le contexte de l analyse exploratoire des donnees, dont l obj Geometric Data Input: set of data points with metric or (dis-)similarity measure data

More information

Kernels for Persistence Diagrams with Applications in Geometry Processing

Kernels for Persistence Diagrams with Applications in Geometry Processing ACAT meeting July 2015 Kernels for Persistence Diagrams with Applications in Geometry Processing Steve Oudot Inria, Geometrica group M. Carrière, S. O., M. Ovsjanikov. Stable Topological Signatures for

More information

Persistence stability for geometric complexes

Persistence stability for geometric complexes Lake Tahoe - December, 8 2012 NIPS workshop on Algebraic Topology and Machine Learning Persistence stability for geometric complexes Frédéric Chazal Joint work with Vin de Silva and Steve Oudot (+ on-going

More information

Stable and Multiscale Topological Signatures

Stable and Multiscale Topological Signatures Stable and Multiscale Topological Signatures Mathieu Carrière, Steve Oudot, Maks Ovsjanikov Inria Saclay Geometrica April 21, 2015 1 / 31 Shape = point cloud in R d (d = 3) 2 / 31 Signature = mathematical

More information

Analyse Topologique des Données

Analyse Topologique des Données Collège de France 31 mai 2017 Analyse Topologique des Données Frédéric Chazal DataShape team INRIA Saclay - Ile-de-France frederic.chazal@inria.fr Introduction [Shape database] [Galaxies data] [Scanned

More information

Statistical properties of topological information inferred from data

Statistical properties of topological information inferred from data Saclay, July 8, 2014 DataSense Research day Statistical properties of topological information inferred from data Frédéric Chazal INRIA Saclay Joint works with B.T. Fasy (CMU), M. Glisse (INRIA), C. Labruère

More information

Detection and approximation of linear structures in metric spaces

Detection and approximation of linear structures in metric spaces Stanford - July 12, 2012 MMDS 2012 Detection and approximation of linear structures in metric spaces Frédéric Chazal Geometrica group INRIA Saclay Joint work with M. Aanjaneya, D. Chen, M. Glisse, L. Guibas,

More information

Stability and Statistical properties of topological information inferred from metric data

Stability and Statistical properties of topological information inferred from metric data Beijing, June 25, 2014 ICML workshop: Topological Methods for Machine Learning Stability and Statistical properties of topological information inferred from metric data Frédéric Chazal INRIA Saclay Introduction

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

New Results on the Stability of Persistence Diagrams

New Results on the Stability of Persistence Diagrams New Results on the Stability of Persistence Diagrams Primoz Skraba Jozef Stefan Institute TAGS - Linking Topology to Algebraic Geometry and Statistics joint work with Katharine Turner and D. Yogeshwaran

More information

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis

Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Computational Topology in Reconstruction, Mesh Generation, and Data Analysis Tamal K. Dey Department of Computer Science and Engineering The Ohio State University Dey (2014) Computational Topology CCCG

More information

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION 1 Invariant shape similarity Alexer & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 2 Invariant shape similarity 048921 Advanced topics in vision Processing Analysis

More information

Graphs associated to CAT(0) cube complexes

Graphs associated to CAT(0) cube complexes Graphs associated to CAT(0) cube complexes Mark Hagen McGill University Cornell Topology Seminar, 15 November 2011 Outline Background on CAT(0) cube complexes The contact graph: a combinatorial invariant

More information

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference

An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference Sophia-Antipolis, January 2016 Winter School An introduction to Topological Data Analysis through persistent homology: Intro and geometric inference Frédéric Chazal INRIA Saclay - Ile-de-France frederic.chazal@inria.fr

More information

Non-rigid shape correspondence by matching semi-local spectral features and global geodesic structures

Non-rigid shape correspondence by matching semi-local spectral features and global geodesic structures Non-rigid shape correspondence by matching semi-local spectral features and global geodesic structures Anastasia Dubrovina Technion Israel Institute of Technology Introduction Correspondence detection

More information

Data Analysis, Persistent homology and Computational Morse-Novikov theory

Data Analysis, Persistent homology and Computational Morse-Novikov theory Data Analysis, Persistent homology and Computational Morse-Novikov theory Dan Burghelea Department of mathematics Ohio State University, Columbuus, OH Bowling Green, November 2013 AMN theory (computational

More information

Topological Inference via Meshing

Topological Inference via Meshing Topological Inference via Meshing Benoit Hudson, Gary Miller, Steve Oudot and Don Sheehy SoCG 2010 Mesh Generation and Persistent Homology The Problem Input: Points in Euclidean space sampled from some

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

Gromov-Hausdorff distances in Euclidean Spaces. Facundo Mémoli

Gromov-Hausdorff distances in Euclidean Spaces. Facundo Mémoli Gromov-Hausdorff distances in Euclidean Spaces Facundo Mémoli memoli@math.stanford.edu 1 The GH distance for Shape Comparison Regard shapes as (compact) metric spaces. Let X denote set of all compact metric

More information

Homology and Persistent Homology Bootcamp Notes 2017

Homology and Persistent Homology Bootcamp Notes 2017 Homology and Persistent Homology Bootcamp Notes Summer@ICERM 2017 Melissa McGuirl September 19, 2017 1 Preface This bootcamp is intended to be a review session for the material covered in Week 1 of Summer@ICERM

More information

Simplicial Complexes: Second Lecture

Simplicial Complexes: Second Lecture Simplicial Complexes: Second Lecture 4 Nov, 2010 1 Overview Today we have two main goals: Prove that every continuous map between triangulable spaces can be approximated by a simplicial map. To do this,

More information

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers Preparation Meeting Recent Advances in the Analysis of 3D Shapes Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers What You Will Learn in the Seminar Get an overview on state of the art

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France

A Multicover Nerve for Geometric Inference. Don Sheehy INRIA Saclay, France A Multicover Nerve for Geometric Inference Don Sheehy INRIA Saclay, France Computational geometers use topology to certify geometric constructions. Computational geometers use topology to certify geometric

More information

Topological Inference via Meshing

Topological Inference via Meshing Topological Inference via Meshing Don Sheehy Theory Lunch Joint work with Benoit Hudson, Gary Miller, and Steve Oudot Computer Scientists want to know the shape of data. Clustering Principal Component

More information

Clustering algorithms and introduction to persistent homology

Clustering algorithms and introduction to persistent homology Foundations of Geometric Methods in Data Analysis 2017-18 Clustering algorithms and introduction to persistent homology Frédéric Chazal INRIA Saclay - Ile-de-France frederic.chazal@inria.fr Introduction

More information

3. Persistence. CBMS Lecture Series, Macalester College, June Vin de Silva Pomona College

3. Persistence. CBMS Lecture Series, Macalester College, June Vin de Silva Pomona College Vin de Silva Pomona College CBMS Lecture Series, Macalester College, June 2017 o o The homology of a planar region Chain complex We have constructed a diagram of vector spaces and linear maps @ 0 o 1 C

More information

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by.

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by. Chapter 1 Geometry: Nuts and Bolts 1.1 Metric Spaces Definition 1.1.1. A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by (x, y) inf p. p:x

More information

Topology-Invariant Similarity and Diffusion Geometry

Topology-Invariant Similarity and Diffusion Geometry 1 Topology-Invariant Similarity and Diffusion Geometry Lecture 7 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Intrinsic

More information

66 III Complexes. R p (r) }.

66 III Complexes. R p (r) }. 66 III Complexes III.4 Alpha Complexes In this section, we use a radius constraint to introduce a family of subcomplexes of the Delaunay complex. These complexes are similar to the Čech complexes but differ

More information

arxiv: v1 [math.st] 11 Oct 2017

arxiv: v1 [math.st] 11 Oct 2017 An introduction to Topological Data Analysis: fundamental and practical aspects for data scientists Frédéric Chazal and Bertrand Michel October 12, 2017 arxiv:1710.04019v1 [math.st] 11 Oct 2017 Abstract

More information

Persistent homology in TDA

Persistent homology in TDA Barcelona, June, 2016 Persistent homology in TDA Frédéric Chazal and Bertrand Michel Persistent homology R X topological space f : X R X persistence Persistence diagram Nested spaces A general mathematical

More information

Mathematical Tools for 3D Shape Analysis and Description

Mathematical Tools for 3D Shape Analysis and Description outline Mathematical Tools for 3D Shape Analysis and Description SGP 2013 Graduate School Silvia Biasotti, Andrea Cerri, Michela Spagnuolo Istituto di Matematica Applicata e Tecnologie Informatiche E.

More information

Reconstruction of Filament Structure

Reconstruction of Filament Structure Reconstruction of Filament Structure Ruqi HUANG INRIA-Geometrica Joint work with Frédéric CHAZAL and Jian SUN 27/10/2014 Outline 1 Problem Statement Characterization of Dataset Formulation 2 Our Approaches

More information

On the Topology of Finite Metric Spaces

On the Topology of Finite Metric Spaces On the Topology of Finite Metric Spaces Meeting in Honor of Tom Goodwillie Dubrovnik Gunnar Carlsson, Stanford University June 27, 2014 Data has shape The shape matters Shape of Data Regression Shape of

More information

Observing Information: Applied Computational Topology.

Observing Information: Applied Computational Topology. Observing Information: Applied Computational Topology. Bangor University, and NUI Galway April 21, 2008 What is the geometric information that can be gleaned from a data cloud? Some ideas either already

More information

Graphics. Automatic Efficient to compute Smooth Low-distortion Defined for every point Aligns semantic features. Other disciplines

Graphics. Automatic Efficient to compute Smooth Low-distortion Defined for every point Aligns semantic features. Other disciplines Goal: Find a map between surfaces Blended Intrinsic Maps Vladimir G. Kim Yaron Lipman Thomas Funkhouser Princeton University Goal: Find a map between surfaces Automatic Efficient to compute Smooth Low-distortion

More information

Metrics on diagrams and persistent homology

Metrics on diagrams and persistent homology Background Categorical ph Relative ph More structure Department of Mathematics Cleveland State University p.bubenik@csuohio.edu http://academic.csuohio.edu/bubenik_p/ July 18, 2013 joint work with Vin

More information

Towards Multi-scale Heat Kernel Signatures for Point Cloud Models of Engineering Artifacts

Towards Multi-scale Heat Kernel Signatures for Point Cloud Models of Engineering Artifacts Towards Multi-scale Heat Kernel Signatures for Point Cloud Models of Engineering Artifacts Reed M. Williams and Horea T. Ilieş Department of Mechanical Engineering University of Connecticut Storrs, CT

More information

First-passage percolation in random triangulations

First-passage percolation in random triangulations First-passage percolation in random triangulations Jean-François Le Gall (joint with Nicolas Curien) Université Paris-Sud Orsay and Institut universitaire de France Random Geometry and Physics, Paris 2016

More information

Geometric Registration for Deformable Shapes 2.2 Deformable Registration

Geometric Registration for Deformable Shapes 2.2 Deformable Registration Geometric Registration or Deormable Shapes 2.2 Deormable Registration Variational Model Deormable ICP Variational Model What is deormable shape matching? Example? What are the Correspondences? Eurographics

More information

Multidimensional scaling

Multidimensional scaling Multidimensional scaling Lecture 5 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Cinderella 2.0 2 If it doesn t fit,

More information

A fast and robust algorithm to count topologically persistent holes in noisy clouds

A fast and robust algorithm to count topologically persistent holes in noisy clouds A fast and robust algorithm to count topologically persistent holes in noisy clouds Vitaliy Kurlin Durham University Department of Mathematical Sciences, Durham, DH1 3LE, United Kingdom vitaliy.kurlin@gmail.com,

More information

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Do Something..

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

Reflection groups 4. Mike Davis. May 19, Sao Paulo

Reflection groups 4. Mike Davis. May 19, Sao Paulo Reflection groups 4 Mike Davis Sao Paulo May 19, 2014 https://people.math.osu.edu/davis.12/slides.html 1 2 Exotic fundamental gps Nonsmoothable aspherical manifolds 3 Let (W, S) be a Coxeter system. S

More information

Special Links. work in progress with Jason Deblois & Henry Wilton. Eric Chesebro. February 9, 2008

Special Links. work in progress with Jason Deblois & Henry Wilton. Eric Chesebro. February 9, 2008 work in progress with Jason Deblois & Henry Wilton February 9, 2008 Thanks for listening! Construction Properties A motivating question Virtually fibered: W. Thurston asked whether every hyperbolic 3-manifold

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

STATISTICS AND ANALYSIS OF SHAPE

STATISTICS AND ANALYSIS OF SHAPE Control and Cybernetics vol. 36 (2007) No. 2 Book review: STATISTICS AND ANALYSIS OF SHAPE by H. Krim, A. Yezzi, Jr., eds. There are numerous definitions of a notion of shape of an object. These definitions

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

CAT(0) BOUNDARIES OF TRUNCATED HYPERBOLIC SPACE

CAT(0) BOUNDARIES OF TRUNCATED HYPERBOLIC SPACE CAT(0) BOUNDARIES OF TRUNCATED HYPERBOLIC SPACE KIM RUANE Abstract. We prove that the CAT(0) boundary of a truncated hyperbolic space is homeomorphic to a sphere with disks removed. In dimension three,

More information

Western TDA Learning Seminar. June 7, 2018

Western TDA Learning Seminar. June 7, 2018 The The Western TDA Learning Seminar Department of Mathematics Western University June 7, 2018 The The is an important tool used in TDA for data visualization. Input point cloud; filter function; covering

More information

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism

Lecture 7: Jan 31, Some definitions related to Simplical Complex. 7.2 Topological Equivalence and Homeomorphism CS 6170 Computational Topology: Topological Data Analysis University of Utah Spring 2017 School of Computing Lecture 7: Jan 31, 2017 Lecturer: Prof. Bei Wang Scribe: Avani Sharma,

More information

topological data analysis and stochastic topology yuliy baryshnikov waikiki, march 2013

topological data analysis and stochastic topology yuliy baryshnikov waikiki, march 2013 topological data analysis and stochastic topology yuliy baryshnikov waikiki, march 2013 Promise of topological data analysis: extract the structure from the data. In: point clouds Out: hidden structure

More information

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CX 4242 DVA March 6, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Analyze! Limited memory size! Data may not be fitted to the memory of your machine! Slow computation!

More information

Topological estimation using witness complexes. Vin de Silva, Stanford University

Topological estimation using witness complexes. Vin de Silva, Stanford University Topological estimation using witness complexes, Acknowledgements Gunnar Carlsson (Mathematics, Stanford) principal collaborator Afra Zomorodian (CS/Robotics, Stanford) persistent homology software Josh

More information

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center Discrete Surfaces 1 1 Mathematics Science Center Tsinghua University Tsinghua University Discrete Surface Discrete Surfaces Acquired using 3D scanner. Discrete Surfaces Our group has developed high speed

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES

PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES PERSISTENT HOMOLOGY OF FINITE TOPOLOGICAL SPACES HANEY MAXWELL Abstract. We introduce homology and finite topological spaces. From the basis of that introduction, persistent homology is applied to finite

More information

Hierarchical matching of non-rigid shapes

Hierarchical matching of non-rigid shapes Hierarchical matching of non-rigid shapes Dan Raviv, Anastasia Dubrovina, and Ron Kimmel Technion - Israel Institute of Technology Abstract. Detecting similarity between non-rigid shapes is one of the

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

A Geometric Perspective on Sparse Filtrations

A Geometric Perspective on Sparse Filtrations CCCG 2015, Kingston, Ontario, August 10 12, 2015 A Geometric Perspective on Sparse Filtrations Nicholas J. Cavanna Mahmoodreza Jahanseir Donald R. Sheehy Abstract We present a geometric perspective on

More information

Topological Persistence

Topological Persistence Topological Persistence Topological Persistence (in a nutshell) X topological space f : X f persistence X Dg f signature: persistence diagram encodes the topological structure of the pair (X, f) 1 Topological

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.1 - March 2002 http://www.msri.org/publications/books/gt3m/ This is an electronic edition of the 1980 notes distributed

More information

A Multicover Nerve for Geometric Inference

A Multicover Nerve for Geometric Inference A Multicover Nerve for Geometric Inference Donald R. Sheehy Abstract We show that filtering the barycentric decomposition of a Čech complex by the cardinality of the vertices captures precisely the topology

More information

Topology and the Analysis of High-Dimensional Data

Topology and the Analysis of High-Dimensional Data Topology and the Analysis of High-Dimensional Data Workshop on Algorithms for Modern Massive Data Sets June 23, 2006 Stanford Gunnar Carlsson Department of Mathematics Stanford University Stanford, California

More information

How Much Geometry Lies in The Laplacian?

How Much Geometry Lies in The Laplacian? How Much Geometry Lies in The Laplacian? Encoding and recovering the discrete metric on triangle meshes Distance Geometry Workshop in Bad Honnef, November 23, 2017 Maks Ovsjanikov Joint with: E. Corman,

More information

Cannon s conjecture, subdivision rules, and expansion complexes

Cannon s conjecture, subdivision rules, and expansion complexes Cannon s conjecture, subdivision rules, and expansion complexes W. Floyd (joint work with J. Cannon and W. Parry) Department of Mathematics Virginia Tech UNC Greensboro: November, 2014 Motivation from

More information

Statistical topological data analysis using. Persistence landscapes

Statistical topological data analysis using. Persistence landscapes Motivation Persistence landscape Statistical topological data analysis using persistence landscapes Cleveland State University February 3, 2014 funded by AFOSR Motivation Persistence landscape Topological

More information

Topological space - Wikipedia, the free encyclopedia

Topological space - Wikipedia, the free encyclopedia Page 1 of 6 Topological space From Wikipedia, the free encyclopedia Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity.

More information

arxiv:math/ v3 [math.dg] 23 Jul 2007

arxiv:math/ v3 [math.dg] 23 Jul 2007 THE INTRINSIC GEOMETRY OF A JORDAN DOMAIN arxiv:math/0512622v3 [math.dg] 23 Jul 2007 RICHARD L. BISHOP Abstract. For a Jordan domain in the plane the length metric space of points connected to an interior

More information

A Practical Guide to Persistent Homology

A Practical Guide to Persistent Homology A Practical Guide to Persistent Homology Dmitriy Morozov Lawrence Berkeley National Lab A Practical Guide to Persistent Code snippets available at: http://hg.mrzv.org/dionysus-tutorial Homology (Dionysus

More information

Open Problems Column Edited by William Gasarch

Open Problems Column Edited by William Gasarch Open Problems Column Edited by William Gasarch 1 This Issues Column! This issue s Open Problem Column is by Brittany Terese Fasy and Bei Wang and is on Open Problems in Computational Topology; however,

More information

Rational maps, subdivision rules, and Kleinian groups

Rational maps, subdivision rules, and Kleinian groups Rational maps, subdivision rules, and Kleinian groups J. Cannon 1 W. Floyd 2 W. Parry 3 1 Department of Mathematics Brigham Young University 2 Department of Mathematics Virginia Tech 3 Department of Mathematics

More information

Topological Data Analysis

Topological Data Analysis Proceedings of Symposia in Applied Mathematics Topological Data Analysis Afra Zomorodian Abstract. Scientific data is often in the form of a finite set of noisy points, sampled from an unknown space, and

More information

A Singular Example for the Averaged Mean Curvature Flow

A Singular Example for the Averaged Mean Curvature Flow To appear in Experimental Mathematics Preprint Vol. No. () pp. 3 7 February 9, A Singular Example for the Averaged Mean Curvature Flow Uwe F. Mayer Abstract An embedded curve is presented which under numerical

More information

Coxeter Groups and CAT(0) metrics

Coxeter Groups and CAT(0) metrics Peking University June 25, 2008 http://www.math.ohio-state.edu/ mdavis/ The plan: First, explain Gromov s notion of a nonpositively curved metric on a polyhedral complex. Then give a simple combinatorial

More information

Lecture 5: Simplicial Complex

Lecture 5: Simplicial Complex Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex.

More information

A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns.

A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns. III.2 Convex Set Systems 53 III.2 Convex Set Systems A convenient way to construct large simplicial complexes is through specifying sets and recording their intersection patterns. Nerves. Let F be a finite

More information

A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching

A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching International Journal of Computer Vision manuscript No. (will be inserted by the editor) A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching Alexander

More information

Isotopic Approximation within a Tolerance Volume

Isotopic Approximation within a Tolerance Volume Isotopic Approximation within a Tolerance Volume Manish Mandad David Cohen-Steiner Pierre Alliez Inria Sophia Antipolis - 1 Goals and Motivation - 2 Goals and Motivation Input: Tolerance volume of a surface

More information

Mapper, Manifolds, and More! Topological Data Analysis and Mapper

Mapper, Manifolds, and More! Topological Data Analysis and Mapper Mapper, Manifolds, and More! Topological Data Analysis and Mapper Matt Piekenbrock Data Science and Security Cluster (DSSC) Talk: March 28th, 2018 Topology Topology is a branch of mathematics concerned

More information

25 HIGH-DIMENSIONAL TOPOLOGICAL DATA ANALYSIS

25 HIGH-DIMENSIONAL TOPOLOGICAL DATA ANALYSIS 25 HIGH-DIMENSIONAL TOPOLOGICAL DATA ANALYSIS Frédéric Chazal INTRODUCTION Modern data often come as point clouds embedded in high-dimensional Euclidean spaces, or possibly more general metric spaces.

More information

Persistent Homology of Directed Networks

Persistent Homology of Directed Networks Persistent Homology of Directed Networks Samir Chowdhury and Facundo Mémoli Abstract While persistent homology has been successfully used to provide topological summaries of point cloud data, the question

More information

Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 1: Introduction

Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 1: Introduction 5339 - Algorithms design under a geometric lens Spring 2014, CSE, OSU Lecture 1: Introduction Instructor: Anastasios Sidiropoulos January 8, 2014 Geometry & algorithms Geometry in algorithm design Computational

More information

Combinatorial constructions of hyperbolic and Einstein four-manifolds

Combinatorial constructions of hyperbolic and Einstein four-manifolds Combinatorial constructions of hyperbolic and Einstein four-manifolds Bruno Martelli (joint with Alexander Kolpakov) February 28, 2014 Bruno Martelli Constructions of hyperbolic four-manifolds February

More information

Geometric Learning and Topological Inference with Biobotic Networks: Convergence Analysis

Geometric Learning and Topological Inference with Biobotic Networks: Convergence Analysis 1 Geometric Learning and opological Inference with Biobotic Networks: Convergence Analysis Alireza Dirafzoon 1, Alper Bozkurt 1, and Edgar Lobaton 1 arxiv:167.51v1 [cs.ro] 3 Jun 216 Abstract In this study,

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Persistent Homology and Nested Dissection

Persistent Homology and Nested Dissection Persistent Homology and Nested Dissection Don Sheehy University of Connecticut joint work with Michael Kerber and Primoz Skraba A Topological Data Analysis Pipeline A Topological Data Analysis Pipeline

More information

Manifold Learning Theory and Applications

Manifold Learning Theory and Applications Manifold Learning Theory and Applications Yunqian Ma and Yun Fu CRC Press Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Contents

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Computing the Betti Numbers of Arrangements. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Computing the Betti Numbers of Arrangements Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Arrangements in Computational Geometry An arrangement in R k is

More information

Random Simplicial Complexes

Random Simplicial Complexes Random Simplicial Complexes Duke University CAT-School 2015 Oxford 9/9/2015 Part II Random Geometric Complexes Contents Probabilistic Ingredients Random Geometric Graphs Definitions Random Geometric Complexes

More information

Persistence-based Segmentation of Deformable Shapes

Persistence-based Segmentation of Deformable Shapes Persistence-based Segmentation of Deformable Shapes Primoz Skraba INRIA-Saclay Orsay, France primoz.skraba@inria.fr Maks Ovsjanikov Stanford Univerity Stanford CA, USA maks@stanford.edu Frédéric Chazal

More information

Hyperbolic Structures from Ideal Triangulations

Hyperbolic Structures from Ideal Triangulations Hyperbolic Structures from Ideal Triangulations Craig Hodgson University of Melbourne Geometric structures on 3-manifolds Thurston s idea: We would like to find geometric structures (or metrics) on 3-manifolds

More information

Stratified Structure of Laplacian Eigenmaps Embedding

Stratified Structure of Laplacian Eigenmaps Embedding Stratified Structure of Laplacian Eigenmaps Embedding Abstract We construct a locality preserving weight matrix for Laplacian eigenmaps algorithm used in dimension reduction. Our point cloud data is sampled

More information

A Geometric Perspective on Machine Learning

A Geometric Perspective on Machine Learning A Geometric Perspective on Machine Learning Partha Niyogi The University of Chicago Collaborators: M. Belkin, V. Sindhwani, X. He, S. Smale, S. Weinberger A Geometric Perspectiveon Machine Learning p.1

More information