Linear Static Analysis of a Spring Element (CELAS)

Size: px
Start display at page:

Download "Linear Static Analysis of a Spring Element (CELAS)"

Transcription

1 Linear Static Analysis of a Spring Element (CELAS) Objectives: Modify nodal analysis and nodal definition coordinate systems to reference a local coordinate system. Define bar elements connected with a spring element. (CBAR and CELAS1) Submit the model to MSC.Nastran. a rigid body constraint to account for the extra DOF on a bar element. (SPC) Re-submit the model to MSC.Nastran. Compare results with a hand calculation. MSC.Nastran 120 Exercise Workbook 20-1 Model Description: The Figure in the title page shows a cantilever beam with a spring connection in between two elements. The spring is highlighted for clarification. The left end is fixed into the wall, and a tensile load of 100 lbf is applied to the right end of the model. Figure 20.1 shows two user defined coordinate systems. Nodes on the left half of the beam will reference Coordinate System 11 for displacements and location. Nodes on the right half will reference Coordinate System 13. Figure Coordinate Frames Figure Grid Coordinates and Element Connectivities 20-2 MSC.Nastran 120 Exercise Workbook MSC.Nastran 120 Exercise Workbook 20-3

2 Figure Loads and Boundary Conditions Table Material Properties Elastic Modulus = 10E6 lb/in 2 Poisson s Ratio = 0.3 A spring element is attached at the midpoint of the assembly. Properties for the spring, and bar elements are shown in Table 20.1 and Table The material properties for the model are shown in Table Because the spring attaches the beams in the Global X direction, the model is properly connected for a hand calculation. However, for MSC.Nastran, all DOF of the model have to be constrained against rigid body motions. When the model is first submitted for analysis, a fatal error message will be returned. Because the right half of the bar elements also have DOF in the UY, UX, RX, RY, and RZ, an additional constraint needs to be applied. After adding the constraints and re-running the job, compare the deflection results with the hand calculation. Table Spring Properties Spring Constant = 100 lb/in Table Element Properties A 1 in 2 I in 4 I in 4 Torsional Constant MSC.Nastran 120 Exercise Workbook MSC.Nastran 120 Exercise Workbook 20-5 Suggested Exercise Steps: Open a new database. Define the coordinate systems. Create Curves to define bar elements. Mesh the Curves and define the nodal coordinate systems for each half of the model. Define the spring element. Define material properties. Define spring and bar properties. the first constraint and load on the model. Submit the model to MSC.Nastran. Review the model for fatal messages. a constraint to account for rigid body motions. Re-submit the model to MSC.Nastran. Compare the results with a hand calculation. Exercise Procedure: 1. Create a new database called workshop20.db. File/New Database New Database Name In the New Model Preferences form set the following: Tolerance Analysis code: 2. Activate the entity labels by selecting the Show Labels button on the toolbar. 3. Also, activate the Node Size button. 4. Create coordinate frames. Show Labels Node Size workshop20 Default MSC/NASTRAN Geometry Action: Create Object: Coord Method: 3 Point Coord ID List: 11 Origin: [0, 0, 0] Point on Axis 3: [0, 1, 0] Point on Plane 1-3: [0, 0, 1] Coord ID List: MSC.Nastran 120 Exercise Workbook MSC.Nastran 120 Exercise Workbook 20-7

3 Origin: [21, 0, 0] Point on Axis 3: [22, 0, 0] Point on Plane 1-3: [21, 0, -1] 5. Create parent geometry. Geometry Object: Curve Method: XYZ Refer. Coordinate List: Coord 11 Vector Coordinates List: <0, 20, 0> Origin Coordinates List: [0, 0, 0] Refer. Coordinate List: Coord 13 Vector Coordinates List: <0, 0, 20> Origin Coordinates List: [0, 0, 0] 6. Create the nodes (GRID) and connectivities (CBAR) by meshing the curves previously created. Finite Elements Object: Mesh Type: Curve Global Edge Length: 10 Element Topology: Bar2 Node Coordinate Frames... Analysis Coordinate Frame: Coord MSC.Nastran 120 Exercise Workbook Refer. Coordinate Frame: Coord 11 Curve List: Curve 1 Node Coordinate Frames... Analysis Coordinate Frame: Coord 13 Refer. Coordinate Frame: Coord 13 Curve List: Curve 2 7. Create the spring. Finite Elements Object: Element Method: Edit Shape: Bar Node 1 = Node 3 Node 2 = Node 4 7a. Define spring properties. Properties Object: 1D Type: Spring Property Set Name: spring Input Properties... Spring Constant 100 MSC.Nastran 120 Exercise Workbook 20-9 DOF at Node 1 DOF at Node 2 (hint: To select the element on the screen, use the Beam element option from the entity selection menu.) Beam element 8. Clean up the display. Refresh the display using the brush icon on the Top Menu Bar. The display should resemble Figure Figure Nodal and Element Locations MSC.Nastran 120 Exercise Workbook UY UZ Select Members Elm 5 Display/Plot/Erase... Geometry Erase Refresh Graphics 9. Define a material using the specified modulus of elasticity and Poisson s ratio. Materials Object: Isotropic Method: Manual Input Material Name: alum Input Properties... Constitutive Model: Linear Elastic Elastic Modulus = 10e6 Poisson Ratio = Define element properties for the analysis model. Properties Dimension: 1 D Type: Beam Property Set Name: beam Option(s): General Section Input Properties... Material Name m:alum Bar Orientation < 0, 1, 0 > Area 1 [Inertia 1,1] 10 [Inertia 2,2] 10 [Torsional Constant] 0.1 MSC.Nastran 120 Exercise Workbook 20-11

4 Select Members: Elm 1:4 Figure Boundary Condition. 11. Shrink the elements by 15% for clarity; this allows us to easily assess the element connectivities. Use the Display/Finite Elements... option. Display/Finite Elements... FEM Shrink: Create the displacement constraints and apply them to the analysis model. Loads/BCs Object: Displacement Type: Nodal New Set Name: fixed Input Data... Translations < T1 T2 T3 > <0, 0, 0> Rotations < R1 R2 R3 > <0, 0, 0> Analysis Coordinate Frame: Coord 11 Select Application Region... Geometry Filter: FEM Select Nodes: Node 1 The display should resemble Figure MSC.Nastran 120 Exercise Workbook 13. Create the load. Loads/BCs Object: Force Method: Nodal New Set Name: load Input Data... Force < F1 F2 F3 > <100, 0, 0> Moment < M1 M2 M3 > < > Select Application Region... Geometry Filter: FEM Select Nodes: Node 6 To view both the coordinate frames and the load easier, change the view to Isoview_1 by selecting the following icon: Iso 1 View MSC.Nastran 120 Exercise Workbook Figure Load. 14. Generate an input file for analysis. Analysis Action: Analyze Object: Entire Model Method: Analysis Deck Job Name: workshop20 A MSC.Nastran input file called workshop20.bdf will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green MSC.Nastran 120 Exercise Workbook SUBMITTING THE INPUT FILE FOR MSC.Nastran and MSC.Patran USERS: 15. Submit the input file to MSC.Nastran for analysis. 15a. To submit the MSC.Patran.bdf file, find an available UNIX shell window. At the command prompt enter nastran workshop20.bdf scr=yes. Monitor the run using the UNIX ps command. 15b. To submit the MSC.Nastran.dat file, find an available UNIX shell window and at the command prompt enter nastran workshop20 scr=yes. Monitor the run using the UNIX ps command. 16. When the run is completed, edit the workshop20.f06 file and search for the word FATAL. The model will return a fatal message because the model needs additional constraints. Each bar element has six D.O.F. at every node. The spring element only supports one degree of freedom. Because of this, the model will fail. 17. Create additional constraints to avoid a fatal error. Loads/BCs Object: Displacement Type: Nodal New Set Name: constraint Input Data... Translations < T1 T2 T3 > <0, 0, > Rotations < R1 R2 R3 > <0, 0, 0> Analysis Coordinate Frame Coord 13 Select Application Region... Geometry Filter: FEM Select Nodes: Node 4 MSC.Nastran 120 Exercise Workbook 20-15

5 Figure Load and Boundary Conditions. SUBMITTING THE INPUT FILE FOR MSC.Nastran and MSC.Patran USERS: 19. Submit the input file to MSC.Nastran for analysis. 19a. To submit the MSC.Patran.bdf file, find an available UNIX shell window. At the command prompt enter nastran workshop20.bdf scr=yes. Monitor the run using the UNIX ps command. 19b. To submit the MSC.Nastran.dat file, find an available UNIX shell window and at the command prompt enter nastran workshop20 scr=yes. Monitor the run using the UNIX ps command.when the run is completed, edit the workshop20.f06 file and search for the word FATAL. 18. Generate an input file for analysis. Analysis Action: Analyze Object: Entire Model Method: Analysis Deck Job Name: workshop20 A MSC.Nastran input file called workshop20.bdf will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green MSC.Nastran 120 Exercise Workbook MSC.Nastran 120 Exercise Workbook Comparison of Results: 20. Compare the results obtained in the.f06 file with the results on the previous page: Also compare the results in the.f06 file with the following hand calculations applicable to node #6. Deflection from the axial load: P L T1 = = A E 6 T 1 = 5.15E 4 in 0.97 ( ) 21.MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step. 22. Proceed with the Reverse Translation process, that is, attaching the workshop20.xdb results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows: Analysis Action: Attach XDB Object: Result Entities Method: Translate Select Results File... Selected Results File workshop20.xdb Reset the graphics by click on the Reset Graphics icon: Deflection from the bending moment: M L T2 = = I E 6 T 2 = 9.43E 3 in 2 ( 2.65) ( ) Rotation at the end: M L R3 = = E I 6 R 3 = 3.77E 4 rad ( ) ( 2.65) 23. When the translation is complete and the Heartbeat turns green, bring up the Results form. Find the maximum deformation. Results Object: Deformation Select Result Case(s) Select Deformation Result Show As: Reset Graphics Default, Static Subcase Displacements, Translational Resultant MSC.Nastran 120 Exercise Workbook MSC.Nastran 120 Exercise Workbook 20-19

6 Figure Deformation. Note: Compare the results to what was found in the.f06 file. Quit MSC.Patran after fininshing this exercise MSC.Nastran 120 Exercise Workbook

Load Analysis of a Beam (using a point force and moment)

Load Analysis of a Beam (using a point force and moment) WORKSHOP 13a Load Analysis of a Beam (using a point force and moment) 100 lbs Y Z X Objectives: Construct a 1d representation of a beam. Account for induced moments from an off-center compressive load

More information

Rigid Element Analysis with RBAR

Rigid Element Analysis with RBAR WORKSHOP 4 Rigid Element Analysis with RBAR Y Objectives: Idealize the tube with QUAD4 elements. Use RBAR elements to model a rigid end. Produce a Nastran input file that represents the cylinder. Submit

More information

Modal Analysis of a Beam (SI Units)

Modal Analysis of a Beam (SI Units) APPENDIX 1a Modal Analysis of a Beam (SI Units) Objectives Perform normal modes analysis of a cantilever beam. Submit the file for analysis in MSC.Nastran. Find the first three natural frequencies and

More information

Normal Modes - Rigid Element Analysis with RBE2 and CONM2

Normal Modes - Rigid Element Analysis with RBE2 and CONM2 APPENDIX A Normal Modes - Rigid Element Analysis with RBE2 and CONM2 T 1 Z R Y Z X Objectives: Create a geometric representation of a tube. Use the geometry model to define an analysis model comprised

More information

Normal Modes - Rigid Element Analysis with RBE2 and CONM2

Normal Modes - Rigid Element Analysis with RBE2 and CONM2 APPENDIX A Normal Modes - Rigid Element Analysis with RBE2 and CONM2 T 1 Z R Y Z X Objectives: Create a geometric representation of a tube. Use the geometry model to define an analysis model comprised

More information

Normal Modes - Rigid Element Analysis with RBE2 and CONM2

Normal Modes - Rigid Element Analysis with RBE2 and CONM2 LESSON 16 Normal Modes - Rigid Element Analysis with RBE2 and CONM2 Y Y Z Z X Objectives: Create a geometric representation of a tube. Use the geometry model to define an analysis model comprised of plate

More information

Modal Analysis of a Flat Plate

Modal Analysis of a Flat Plate WORKSHOP 1 Modal Analysis of a Flat Plate Objectives Produce a MSC.Nastran input file. Submit the file for analysis in MSC.Nastran. Find the first five natural frequencies and mode shapes of the flat plate.

More information

The Essence of Result Post- Processing

The Essence of Result Post- Processing APPENDIX E The Essence of Result Post- Processing Objectives: Manually create the geometry for the tension coupon using the given dimensions then apply finite elements. Manually define material and element

More information

Shear and Moment Reactions - Linear Static Analysis with RBE3

Shear and Moment Reactions - Linear Static Analysis with RBE3 WORKSHOP 10a Shear and Moment Reactions - Linear Static Analysis with RBE3 250 10 15 M16x2 bolts F = 16 kn C B O 60 60 200 D A Objectives: 75 75 50 300 Create a geometric representation of the bolts. Use

More information

Alternate Bar Orientations

Alternate Bar Orientations APPENDIX N Alternate Bar Orientations Objectives: The effects of alternate bar orientation vector. MSC.Nastran 120 Exercise Workbook N-1 N-2 MSC.Nastran 120 Exercise Workbook APPENDIX N Alternate Bar Orientations

More information

Elastic Stability of a Plate

Elastic Stability of a Plate WORKSHOP PROBLEM 7 Elastic Stability of a Plate Objectives Produce a Nastran input file. Submit the file for analysis in MSC/NASTRAN. Find the first five natural modes of the plate. MSC/NASTRAN 101 Exercise

More information

Linear Static Analysis of a Simply-Supported Truss

Linear Static Analysis of a Simply-Supported Truss WORKSHOP PROBLEM 2 Linear Static Analysis of a Simply-Supported Truss Objectives: Define a set of material properties using the beam library. Perform a static analysis of a truss under 3 separate loading

More information

Rigid Element Analysis with RBE2 and CONM2

Rigid Element Analysis with RBE2 and CONM2 WORKSHOP PROBLEM 5 Rigid Element Analysis with RBE2 and CONM2 Y Y Z Z X Objectives: Idealize a rigid end using RBE2 elements. Define a concentrated mass, to represent the weight of the rigid enclosure

More information

APPENDIX B. PBEAML Exercise. MSC.Nastran 105 Exercise Workbook B-1

APPENDIX B. PBEAML Exercise. MSC.Nastran 105 Exercise Workbook B-1 APPENDIX B PBEAML Exercise MSC.Nastran 105 Exercise Workbook B-1 B-2 MSC.Nastran 105 Exercise Workbook APPENDIX B PBEAML Exercise Exercise Procedure: 1. Create a new database called pbeam.db. File/New...

More information

Linear Static Analysis of a Simply-Supported Truss

Linear Static Analysis of a Simply-Supported Truss LESSON 8 Linear Static Analysis of a Simply-Supported Truss Objectives: Create a finite element model by explicitly defining node locations and element connectivities. Define a MSC/NASTRAN analysis model

More information

Modal Analysis of A Flat Plate using Static Reduction

Modal Analysis of A Flat Plate using Static Reduction WORKSHOP PROBLEM 2 Modal Analysis of A Flat Plate using Static Reduction Objectives Reduce the dynamic math model, created in Workshop 1, to one with fewer degrees of freedom. Produce a MSC/NASTRAN input

More information

WORKSHOP 33 A1 A2 A1. Subcase 1 4 Subcase 2 X: -16,000 lbs. X: 16,000 lbs Y: -12,000 lbs. Y: -12,000 lbs. Objectives:

WORKSHOP 33 A1 A2 A1. Subcase 1 4 Subcase 2 X: -16,000 lbs. X: 16,000 lbs Y: -12,000 lbs. Y: -12,000 lbs. Objectives: WORKSHOP 33 y 2 x 1 3 A1 A2 A1 1 2 3 Subcase 1 4 Subcase 2 X: -16,000 lbs X: 16,000 lbs Y: -12,000 lbs Y: -12,000 lbs Objectives: Optimize the following three-bar truss problem subject to static loading.

More information

Linear Buckling Load Analysis (without spring)

Linear Buckling Load Analysis (without spring) WORKSHOP PROBLEM 4a Linear Buckling Load Analysis (without spring) Objectives: Demonstrate the use of linear buckling analysis. MSC/NASTRAN 103 Exercise Workbook 4a-1 4a-2 MSC/NASTRAN 103 Exercise Workbook

More information

Modal Analysis of Interpolation Constraint Elements and Concentrated Mass

Modal Analysis of Interpolation Constraint Elements and Concentrated Mass APPENDIX B Modal Analysis of Interpolation Constraint Elements and Concentrated Mass Y Y Z Z X Objectives: Utilize the analysis model created in a previous exercise. Run an MSC.Nastran modal analysis with

More information

Elasto-Plastic Deformation of a Thin Plate

Elasto-Plastic Deformation of a Thin Plate WORKSHOP PROBLEM 6 Elasto-Plastic Deformation of a Thin Plate W P y L x P Objectives: Demonstrate the use of elasto-plastic material properties. Create an accurate deformation plot of the model. Create

More information

Elasto-Plastic Deformation of a Truss Structure

Elasto-Plastic Deformation of a Truss Structure WORKSHOP PROBLEM 8 Elasto-Plastic Deformation of a Truss Structure Objectives: Demonstrate the use of elasto-plastic material properties. Create an enforced displacement on the model. Create an XY plot

More information

Helical Spring. Supplementary Exercise - 6. Objective: Develop model of a helical spring

Helical Spring. Supplementary Exercise - 6. Objective: Develop model of a helical spring Supplementary Exercise - 6 Helical Spring Objective: Develop model of a helical spring Perform a linear analysis to obtain displacements and stresses. MSC.Patran 301 Exercise Workbook Supp6-1 Supp6-2 MSC.Patran

More information

Nonlinear Creep Analysis

Nonlinear Creep Analysis WORKSHOP PROBLEM 7 Nonlinear Creep Analysis Objectives: Demonstrate the use of creep material properties. Examine the strain for each subcase. Create an XY plot of Load vs. Displacement for all the subcases.

More information

Restarting a Linear Static Analysis of a Simply- Supported Stiffened Plate

Restarting a Linear Static Analysis of a Simply- Supported Stiffened Plate WORKSHOP 15 Restarting a Linear Static Analysis of a Simply- Supported Stiffened Plate Objectives: Submit a job to MSC.Nastran for analysis and save the restart files. (SCR = NO) Perform a restart on a

More information

Normal Modes with Differential Stiffness

Normal Modes with Differential Stiffness WORKSHOP PROBLEM 14b Normal Modes with Differential Stiffness Objectives Analyze a stiffened beam for normal modes. Produce an MSC/ NASTRAN input file that represent beam and load. Submit for analysis.

More information

Linear Bifurcation Buckling Analysis of Thin Plate

Linear Bifurcation Buckling Analysis of Thin Plate LESSON 13a Linear Bifurcation Buckling Analysis of Thin Plate Objectives: Construct a quarter model of a simply supported plate. Place an edge load on the plate. Run an Advanced FEA bifurcation buckling

More information

Post-Buckling Analysis of a Thin Plate

Post-Buckling Analysis of a Thin Plate LESSON 13b Post-Buckling Analysis of a Thin Plate Objectives: Construct a thin plate (with slight imperfection) Place an axial load on the plate. Run an Advanced FEA nonlinear static analysis in order

More information

Multi-Step Analysis of a Cantilever Beam

Multi-Step Analysis of a Cantilever Beam LESSON 4 Multi-Step Analysis of a Cantilever Beam LEGEND 75000. 50000. 25000. 0. -25000. -50000. -75000. 0. 3.50 7.00 10.5 14.0 17.5 21.0 Objectives: Demonstrate multi-step analysis set up in MSC/Advanced_FEA.

More information

Direct Transient Response Analysis

Direct Transient Response Analysis WORKSHOP 3 Direct Transient Response Analysis Objectives Define time-varying excitation. Produce a MSC.Nastran input file from dynamic math model created in Workshop 1. Submit the file for analysis in

More information

Transient Response of a Rocket

Transient Response of a Rocket Transient Response of a Rocket 100 Force 0 1.0 1.001 3.0 Time Objectives: Develope a finite element model that represents an axial force (thrust) applied to a rocket over time. Perform a linear transient

More information

Stiffened Plate With Pressure Loading

Stiffened Plate With Pressure Loading Supplementary Exercise - 3 Stiffened Plate With Pressure Loading Objective: geometry and 1/4 symmetry finite element model. beam elements using shell element edges. MSC.Patran 301 Exercise Workbook Supp3-1

More information

Direct Transient Response Analysis

Direct Transient Response Analysis WORKSHOP PROBLEM 3 Direct Transient Response Analysis Objectives Define time-varying excitation. Produce a MSC/NASTRAN input file from dynamic math model created in Workshop 1. Submit the file for analysis

More information

Shell-to-Solid Element Connector(RSSCON)

Shell-to-Solid Element Connector(RSSCON) WORKSHOP 11 Shell-to-Solid Element Connector(RSSCON) Solid Shell MSC.Nastran 105 Exercise Workbook 11-1 11-2 MSC.Nastran 105 Exercise Workbook WORKSHOP 11 Shell-to-Solid Element Connector The introduction

More information

Modal Transient Response Analysis

Modal Transient Response Analysis WORKSHOP 4 Modal Transient Response Analysis Z Y X Objectives Define time-varying excitation. Produce a MSC.Nastran input file from a dynamic math model, created in Workshop 1. Submit the file for analysis

More information

Introduction to MSC.Patran

Introduction to MSC.Patran Exercise 1 Introduction to MSC.Patran Objectives: Create geometry for a Beam. Add Loads and Boundary Conditions. Review analysis results. MSC.Patran 301 Exercise Workbook - Release 9.0 1-1 1-2 MSC.Patran

More information

Modal Transient Response Analysis

Modal Transient Response Analysis WORKSHOP PROBLEM 4 Modal Transient Response Analysis Z Y X Objectives Define time-varying excitation. Produce a MSC/NASTRAN input file from a dynamic math model, created in Workshop 1. Submit the file

More information

Modal Transient Response Analysis

Modal Transient Response Analysis WORKSHOP 22 Modal Transient Response Analysis Z Y X Objectives Define time-varying excitation. Produce a MSC.Nastran input file from a dynamic math model, created in Workshop 1. Submit the file for analysis

More information

Spring Element with Nonlinear Analysis Parameters (filter using restart)

Spring Element with Nonlinear Analysis Parameters (filter using restart) WORKSHOP PROBLEM 1e Spring Element with Nonlinear Analysis Parameters (filter using restart) Objectives: Demonstrate another use of the restart feature in a multistep analysis by keeping only the first

More information

Spring Element with Nonlinear Analysis Parameters (Multi-Step Analysis)

Spring Element with Nonlinear Analysis Parameters (Multi-Step Analysis) WORKSHOP 32c Spring Element with Nonlinear Analysis Parameters (Multi-Step Analysis) Objectives: Demonstrate the effects of geometric nonlinear analysis in SOL 106 (nonlinear statics). incremental loads

More information

Linear and Nonlinear Analysis of a Cantilever Beam

Linear and Nonlinear Analysis of a Cantilever Beam LESSON 1 Linear and Nonlinear Analysis of a Cantilever Beam P L Objectives: Create a beam database to be used for the specified subsequent exercises. Compare small vs. large displacement analysis. Linear

More information

Sliding Block LESSON 26. Objectives: Demonstrate the use of Contact LBCs in a simple exercise.

Sliding Block LESSON 26. Objectives: Demonstrate the use of Contact LBCs in a simple exercise. LESSON 26 Sliding Block 5 Objectives: Demonstrate the use of Contact LBCs in a simple exercise. Present method for monitoring a non-linear analysis progress. 26-1 26-2 LESSON 26 Sliding Block Model Description:

More information

Large-Scale Deformation of a Hyperelastic Material

Large-Scale Deformation of a Hyperelastic Material WORKSHOP PROBLEM 5 Large-Scale Deformation of a Hyperelastic Material Objectives: Demonstrate the use of hyperelastic material properties. Create an accurate deformation plot of the model. MSC/NASTRAN

More information

Modeling a Shell to a Solid Element Transition

Modeling a Shell to a Solid Element Transition LESSON 9 Modeling a Shell to a Solid Element Transition Objectives: Use MPCs to replicate a Solid with a Surface. Compare stress results of the Solid and Surface 9-1 9-2 LESSON 9 Modeling a Shell to a

More information

Using Groups and Lists

Using Groups and Lists LESSON 15 Using Groups and Lists Objectives: Build a finite element model that includes element properties and boundary conditions. Use lists to identify parts of the model with specified attributes. Explore

More information

Cylinder with T-Beam Stiffeners

Cylinder with T-Beam Stiffeners LESSON 17 Cylinder with T-Beam Stiffeners X Y Objectives: Create a cylinder and apply loads. Use the beam library to add stiffeners to the cylinder. PATRAN 302 Exercise Workbook - Release 8.0 17-1 17-2

More information

Mass Properties Calculations

Mass Properties Calculations LESSON 15 Mass Properties Calculations Objectives Import a unigraphics express file and apply mass properties to the propeller. PAT302 Exercise Workbook MSC/PATRAN Version 8.0 15-1 15-2 PAT302 Exercise

More information

Normal Modes Analysis of a Simply-Supported Stiffened Plate

Normal Modes Analysis of a Simply-Supported Stiffened Plate APPENDIX C Normal Modes Analysis of a Simply-Supported Stiffened Plate Objectives: Manually convert a Linear Static analysis (Sol 101) input file to a Normal Modes analysis (Sol 103) input file. Learn

More information

Geometric Linear Analysis of a Cantilever Beam

Geometric Linear Analysis of a Cantilever Beam WORKSHOP PROBLEM 2a Geometric Linear Analysis of a Cantilever Beam Objectives: Demonstrate the use of geometric linear analysis. Observe the behavior of the cantilever beam under four increasing load magnitudes.

More information

Linear Static Analysis for a 3-D Slideline Contact

Linear Static Analysis for a 3-D Slideline Contact WORKSHOP PROBLEM 10a Linear Static Analysis for a 3-D Slideline Contact Objectives: Demonstrate the use of slideline contact. Run an MSC/NASTRAN linear static analysis. Create an accurate deformation plot

More information

Engine Gasket Model Instructions

Engine Gasket Model Instructions SOL 600 Engine Gasket Model Instructions Demonstrated:! Set up the Model Database! 3D Model Import from a MSC.Nastran BDF! Creation of Groups from Element Properties! Complete the Material Models! Import

More information

ME 442. Marc/Mentat-2011 Tutorial-1

ME 442. Marc/Mentat-2011 Tutorial-1 ME 442 Overview Marc/Mentat-2011 Tutorial-1 The purpose of this tutorial is to introduce the new user to the MSC/MARC/MENTAT finite element program. It should take about one hour to complete. The MARC/MENTAT

More information

Sliding Split Tube Telescope

Sliding Split Tube Telescope LESSON 15 Sliding Split Tube Telescope Objectives: Shell-to-shell contact -accounting for shell thickness. Creating boundary conditions and loads by way of rigid surfaces. Simulate large displacements,

More information

Materials, Load Cases and LBC Assignment

Materials, Load Cases and LBC Assignment LESSON 4 Materials, Load Cases and LBC Assignment 5.013 5.000 4.714 30000 4.429 4.143 3.858 3.572 3.287 3.001 2.716 2.430 2.145 1.859 20000 1.574 1.288 default_fringe : 1.003 Max 2.277 @Elm 40079.1 Min

More information

Load Lug Model EXERCISE 6. Objective: Write a function to apply the loads and element properties to the finite element mesh of the lug.

Load Lug Model EXERCISE 6. Objective: Write a function to apply the loads and element properties to the finite element mesh of the lug. EXERCISE 6 Load Lug Model Objective: Write a function to apply the loads and element properties to the finite element mesh of the lug. PATRAN 304 Exercise Workbook 6-1 6-2 PATRAN 304 Exercise Workbook

More information

Spring Element with Nonlinear Analysis Parameters (large displacements off)

Spring Element with Nonlinear Analysis Parameters (large displacements off) WORKSHOP PROBLEM 1a Spring Element with Nonlinear Analysis Parameters (large displacements off) Objectives: Create a model of a simple rod and grounded spring system. Apply the appropriate constraints

More information

Thermal Analysis Using MSC.Nastran

Thermal Analysis Using MSC.Nastran MSC.Software Corporation 815 Colorado Boulevard Los Angeles, California 90041-1777 Tel: (323) 258-9111 Fax: (323) 259-3838 United States MSC.Patran Support Tel: 1-800-732-7284 Fax: 714-9792990 Tokyo, Japan

More information

Linear Buckling Analysis of a Plate

Linear Buckling Analysis of a Plate Workshop 9 Linear Buckling Analysis of a Plate Objectives Create a geometric representation of a plate. Apply a compression load to two apposite sides of the plate. Run a linear buckling analysis. 9-1

More information

Rigid Element Analysis with RBE2 and CONM2

Rigid Element Analysis with RBE2 and CONM2 WORKSHOP 8 Rigid Element Analysis with RBE2 and CONM2 Y Z X Objectives: Create a geometric representation of a tube. Use the geometry model to define an analysis model comprised of plate elements. Idealize

More information

Spatial Variation of Physical Properties

Spatial Variation of Physical Properties LESSON 5 Spatial Variation of Physical Properties Aluminum Steel 45 Radius 1 Radius 3 Radius 4 Objective: To model the variation of physical properties as a function of spatial coordinates. MSC/NASTRAN

More information

Linear Buckling Load Analysis (without spring)

Linear Buckling Load Analysis (without spring) WORKSHOP PROBLEM 4a Linear Buckling Load Analysis (without spring) Objectives: Create and prepare the appropriate model for the analysis. Demonstrate the use of linear buckling analysis. MSC/NASTRAN for

More information

Projected Coordinate Systems

Projected Coordinate Systems LESSON 8 Projected Coordinate Systems Objectives: To become familiar with the difference between Global and Projected-Global coordinate systems. To realize the importance of both coordinate systems. PATRAN

More information

Nonlinear Creep Analysis

Nonlinear Creep Analysis WORKSHOP PROBLEM 7 Nonlinear Creep Analysis Objectives: Create the appropriate load cases for nonlinear static and nonlinear creep loads. Examine the strain for each subcase. Run an MSC/NASTRAN nonlinear

More information

Spatial Variation of Physical Properties

Spatial Variation of Physical Properties LESSON 13 Spatial Variation of Physical Properties Aluminum Steel 45 Radius 1 Radius 3 Radius 4 Objective: To model the variation of physical properties as a function of spatial coordinates. PATRAN301ExericseWorkbook-Release7.5

More information

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook P3*V8.0*Z*Z*Z*SM-PAT325-WBK - 1 - - 2 - Table of Contents Page 1 Composite Model of Loaded Flat Plate 2 Failure Criteria for Flat Plate 3 Making Plies

More information

Heat Transfer Analysis of a Pipe

Heat Transfer Analysis of a Pipe LESSON 25 Heat Transfer Analysis of a Pipe 3 Fluid 800 Ambient Temperture Temperture, C 800 500 2 Dia Fluid Ambient 10 20 30 40 Time, s Objectives: Transient Heat Transfer Analysis Model Convection, Conduction

More information

Post-Processing Static Results of a Space Satellite

Post-Processing Static Results of a Space Satellite LESSON 7 Post-Processing Static Results of a Space Satellite 3.84+05 3.58+05 3.33+05 3.07+05 2.82+05 3.84+05 2.56+05 2.30+05 2.05+05 1.79+05 1.54+05 1.28+05 1.02+05 7.68+04 0. 5.12+04 Z Y X Objectives:

More information

ixcube 4-10 Brief introduction for membrane and cable systems.

ixcube 4-10 Brief introduction for membrane and cable systems. ixcube 4-10 Brief introduction for membrane and cable systems. ixcube is the evolution of 20 years of R&D in the field of membrane structures so it takes a while to understand the basic features. You must

More information

Post Processing of Displacement Results

Post Processing of Displacement Results WORKSHOP 16 Post Processing of Displacement Results Objectives: Examine the deformation of the MSC.Nastran model to evaluate the validity of the assumptions made in the creation of the mesh density and

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

2-D Slideline Contact

2-D Slideline Contact WORKSHOP PROBLEM 9 2-D Slideline Contact Objectives: Demonstrate the use of slideline contact. Create the appropriate load cases, one with enforced displacement and the other without. Run an MSC/NASTRAN

More information

Projected Coordinate Systems

Projected Coordinate Systems LESSON 16 Projected Coordinate Systems Objectives: To become familiar with the difference between Global and Projected-Global coordinate systems. To realize the importance of both coordinate systems. PATRAN

More information

Modal Analysis of A Flat Plate using Static Reduction

Modal Analysis of A Flat Plate using Static Reduction WORKSHOP PROBLEM 2 Modal Analysis of A Flat Plate using Static Reduction Objectives Reduce the dynamic math model, created in Workshop 1, to one with fewer degrees of freedom. Apply the static reduction

More information

Finite Element Analysis Using NEi Nastran

Finite Element Analysis Using NEi Nastran Appendix B Finite Element Analysis Using NEi Nastran B.1 INTRODUCTION NEi Nastran is engineering analysis and simulation software developed by Noran Engineering, Inc. NEi Nastran is a general purpose finite

More information

Spring Element with Nonlinear Analysis Parameters (Multi-step Analysis)

Spring Element with Nonlinear Analysis Parameters (Multi-step Analysis) WORKSHOP PROBLEM 1c Spring Element with Nonlinear Analysis Parameters (Multi-step Analysis) Objectives: Import the model from the previous exercise. Apply incremental load through multiple subcases. Submit

More information

MULTI-SPRING REPRESENTATION OF FASTENERS FOR MSC/NASTRAN MODELING

MULTI-SPRING REPRESENTATION OF FASTENERS FOR MSC/NASTRAN MODELING MULTI-SPRING REPRESENTATION OF FASTENERS FOR MSC/NASTRAN MODELING Alexander Rutman, Ph. D, Joseph Bales-Kogan, M. Sc. ** Boeing Commercial Airplane Group Strut Structures Technology MS K95-04 380 South

More information

Statically Indeterminate Beam

Statically Indeterminate Beam Problem: Using Castigliano's Theorem, determine the deflection at point A. Neglect the weight of the beam. W 1 N/m B 5 cm H 1 cm 1.35 m Overview Anticipated time to complete this tutorial: 45 minutes Tutorial

More information

Linear Static Analysis of a Simply-Supported Stiffened Plate

Linear Static Analysis of a Simply-Supported Stiffened Plate WORKSHOP 7 Linear Static Analysis of a Simply-Supported Stiffened Plate Objectives: Create a geometric representation of a stiffened plate. Use the geometry model to define an analysis model comprised

More information

Post-Processing Modal Results of a Space Satellite

Post-Processing Modal Results of a Space Satellite LESSON 8 Post-Processing Modal Results of a Space Satellite 30000 7.61+00 5.39+00 30002 30001 mode 1 : Max 5.39+00 @Nd 977 Objectives: Post-process model results from an DB file. View and animate the eigenvector

More information

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA

FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA 1 FEA BENDING, TORSION, TENSION, and SHEAR TUTORIAL in CATIA This tutorial shows the basics of a solid bending, torsional, tension, and shear FEA (Finite Elemental Analysis) model in CATIA. Torsion - page

More information

Spur Gears Static Stress Analysis with Linear Material Models

Spur Gears Static Stress Analysis with Linear Material Models Exercise A Spur Gears Static Stress Analysis with Linear Material Models Beam and Brick Elements Objective: Geometry: Determine the stress distribution in the spur gears when a moment of 93.75 in-lb is

More information

Static and Normal Mode Analysis of a Space Satellite

Static and Normal Mode Analysis of a Space Satellite LESSON 6 Static and Normal Mode of a Space Satellite Z Y X Objectives: Setup and analyze the satellite model for a normal modes and static analysis.. Learn to modify the default subcase parameters, solution

More information

NonLinear Analysis of a Cantilever Beam

NonLinear Analysis of a Cantilever Beam NonLinear Analysis of a Cantilever Beam Introduction This tutorial was created using ANSYS 7.0 The purpose of this tutorial is to outline the steps required to do a simple nonlinear analysis of the beam

More information

Introduction To Finite Element Analysis

Introduction To Finite Element Analysis Creating a Part In this part of the tutorial we will introduce you to some basic modelling concepts. If you are already familiar with modelling in Pro Engineer you will find this section very easy. Before

More information

Institute of Mechatronics and Information Systems

Institute of Mechatronics and Information Systems EXERCISE 2 Free vibrations of a beam arget Getting familiar with the fundamental issues of free vibrations analysis of elastic medium, with the use of a finite element computation system ANSYS. Program

More information

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10 This document contains an Abaqus tutorial for performing a buckling analysis using the finite element program

More information

Visit the following websites to learn more about this book:

Visit the following websites to learn more about this book: Visit the following websites to learn more about this book: 6 Introduction to Finite Element Simulation Historically, finite element modeling tools were only capable of solving the simplest engineering

More information

Importing Geometry from an IGES file

Importing Geometry from an IGES file WORKSHOP 2 Importing Geometry from an IGES file Objectives: Import geometry from an IGES file. Create a solid from curves and surfaces. Tet mesh the solid. MSC.Patran 301 Exercise Workbook 2-1 2-2 MSC.Patran

More information

Lecture 3 : General Preprocessing. Introduction to ANSYS Mechanical Release ANSYS, Inc. February 27, 2015

Lecture 3 : General Preprocessing. Introduction to ANSYS Mechanical Release ANSYS, Inc. February 27, 2015 Lecture 3 : General Preprocessing 16.0 Release Introduction to ANSYS Mechanical 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this chapter we cover basic preprocessing operations that are common

More information

Analysis of a Tension Coupon

Analysis of a Tension Coupon WORKSHOP 14 Analysis of a Tension Coupon Objectives: Manually define material and element properties. Manually create the geometry for the tension coupon using the given dimensions. Apply symmetric boundary

More information

Merging Databases LESSON 2. Objectives: Construct two databases which have distinct similarities and differences.

Merging Databases LESSON 2. Objectives: Construct two databases which have distinct similarities and differences. LESSON 2 Merging Databases Objectives: Construct two databases which have distinct similarities and differences. See how PATRAN resolves model conflicts and differences when the two databases are imported

More information

EXERCISE 4. Create Lug Geometry. Objective: Write a function to create the geometry of the lug. PATRAN 304 Exercise Workbook 4-1

EXERCISE 4. Create Lug Geometry. Objective: Write a function to create the geometry of the lug. PATRAN 304 Exercise Workbook 4-1 EXERCISE 4 Create Lug Geometry Objective: Write a function to create the geometry of the lug. PATRAN 304 Exercise Workbook 4-1 4-2 PATRAN 304 Exercise Workbook EXERCISE 4 Create Lug Geometry Exercise Description:

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS

FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS FINITE ELEMENT ANALYSIS OF A PLANAR TRUSS Instructor: Professor James Sherwood Revised: Michael Schraiber, Dimitri Soteropoulos, Sanjay Nainani Programs Utilized: HyperMesh Desktop v2017.2, OptiStruct,

More information

Interface with FE programs

Interface with FE programs Page 1 of 47 Interdisciplinary > RFlex > Flexible body Interface Interface with FE programs RecurDyn/RFlex can import FE model from ANSYS, NX/NASTRAN, MSC/NASTRAN and I-DEAS. Figure 1 RecurDyn/RFlex Interface

More information

Building the Finite Element Model of a Space Satellite

Building the Finite Element Model of a Space Satellite LESSON 3 Building the Finite Element Model of a Space Satellite 30000 30001 Objectives: mesh & MPC s on a Space Satellite Perform Model and Element Verification. Learn how to create 0-D, 1-D and 2-D elements

More information

CHAPTER 8 FINITE ELEMENT ANALYSIS

CHAPTER 8 FINITE ELEMENT ANALYSIS If you have any questions about this tutorial, feel free to contact Wenjin Tao (w.tao@mst.edu). CHAPTER 8 FINITE ELEMENT ANALYSIS Finite Element Analysis (FEA) is a practical application of the Finite

More information

Module 3: Buckling of 1D Simply Supported Beam

Module 3: Buckling of 1D Simply Supported Beam Module : Buckling of 1D Simply Supported Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing 9 Solution

More information

Direct Transient Response with Base Excitation

Direct Transient Response with Base Excitation WORKSHOP PROBLEM 7 Direct Transient Response with Base Excitation Z Y X Objectives Create a geometric representation of a flat rectangular plate. Use the geometry model to define an analysis model comprised

More information

Building the Finite Element Model of a Space Satellite

Building the Finite Element Model of a Space Satellite Exercise 4 Building the Finite Element Model of a Space Satellite 30000 20000 Objectives: mesh & MPC s on a Space Satellite. Perform Model and Element Verification. Learn how to control mesh parameters

More information

Simple Lumped Mass System

Simple Lumped Mass System WORKSHOP 22 Simple Lumped Mass System Y X Objectives: Model a simple lumped mass system using beam elements and mass elements. Apply the proper constraints to the model to ensure stability during analysis.

More information