A New Efficient Algorithm for Solving the Simple Temporal Problem

Size: px
Start display at page:

Download "A New Efficient Algorithm for Solving the Simple Temporal Problem"

Transcription

1 University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Conference and Workshop Papers Computer Science and Engineering, Department of 2003 A New Efficient Algorithm for Solving the Simple Temporal Problem Lin Xu University of Nebraska - Lincoln, lxu@cse.unl.edu Berthe Y. Choueiry University of Nebraska - Lincoln, choueiry@cse.unl.edu Follow this and additional works at: Part of the Computer Sciences Commons Xu, Lin and Choueiry, Berthe Y., "A New Efficient Algorithm for Solving the Simple Temporal Problem" (2003). CSE Conference and Workshop Papers This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

2 A New Efficient Algorithm for Solving the Simple Temporal Problem Lin Xu & Berthe Y. Choueiry Constraint Systems Laboratory University of Nebraska-Lincoln

3 Outline Motivation for Simple Temporal Problem (STP) STP TCSP DTP Consistency properties & algorithms General CSPs STP Contributions Use (improved) PPC for STP Refine it into STP Evaluation on random instances, 3 generators Summary & new results

4 Temporal Reasoning in AI An important task & exciting research topic, otherwise we would not be here Temporal Logic Temporal Networks Qualitative relations: Before, after, during, etc. interval algebra, point algebra Quantitative/metric relations: 10 min before, during 15 min, etc. Simple TP (STP), Temporal CSP (TCSP), Disjunctive TP (DTP)

5 Temporal Network: example Tom has class at 8:00 a.m. Today, he gets up between 7:30 and 7:40 a.m. He prepares his breakfast (10-15 min). After breakfast (5-10 min), he goes to school by car (20-30 min). Will he be on time for class?

6 Simple Temporal Network (STP) Variable: Time point for an event Domain: A set of real numbers (time instants) Constraint: An edge between time points ([5, 10] 5 P b -P a 10) Algorithm: Floyd-Warshall, polynomial time

7 Other Temporal Problems Temporal CSP: Each edge is a disjunction of intervals STP TCSP Disjunctive Temporal Problem: Each constraint is a disjunction of edges STP TCSP DTP

8 Search to solve the TCSP/DTP TCSP [Dechter] and DTP [Stergiou & Koubarakis] are NP-hard They are solved with backtrack search Every node in the search tree is an STP to be solved An exponential number of STPs to be solved Better STP-solver than Floyd-Warshall? Yes

9 Properties of a (general) CSP Consistency properties Decomposable Consistent Decomposable Minimal Path consistent (PC) Algorithms for PC PC-1 (complete graph) [Montanari 74] PPC (triangulated graph) [Bliek & Sam-Haroud 99] Approximation algorithm: DPC [Dechter et al. 91] Articulation points

10 Properties of an STP When distributive over in PC-1: Decomposable Minimal PC [Montanari 74] PC-1 guarantees consistency Convexity of constraints PPC & PC-1 yield same results [B & S-H 99] PC-1 collapses with F-W [Montanari 74] Triangulation of the network Decomposition using AP is implicit No propagation between bi-connected components

11 New algorithms for STP Temporal graph F-W PPC STP Use PPC for solving the STP improved [B&S-H 99] Simultaneously update all edges in a triangle STP is a refinement of PPC considers the network as composed by triangles instead of edges

12 Evaluation Implemented 2 new random generators Tested: 100 samples, 50, 100, 256, 512 nodes GenSTP-1 (2 versions) Connected, solvable with 80% probability SPRAND Sub-class of SPLIB, public domain library Problems have a structural constraint (cycle) GenSTP-2 Courtesy of Ioannis Tsamardinos Structural constraint not guaranteed

13 Experiments 1. Managing queue in STP STP-front, STP-random, STP-back 2. Comparing F-W, PPC (new), DPC, STP Effect of using AP in F-W & DPC Computing the minimal network (not DPC) Counting constraint check & CPU time

14 Managing the queue in STP

15 Experiments 1. Managing queue in STP STP-front, STP-random, STP-back 2. Comparing F-W, PPC (new), DPC, STP Effect of using AP in F-W & DPC Computing the minimal network (not DPC) Counting constraint checks & CPU time

16 Finding the minimal STP

17 Determining consistency of STP

18 Advantages of STP A finer version of PPC Cheaper than PPC and F-W Guarantees the minimal network Automatically decomposes the graph into its bi-connected components binds effort in size of largest component allows parallellization Best known algorithm for solving STP use it search to solve TCSP or DTP where it is applied an exponential number of times

19 Results of this paper Is there a better algorithm for STP than F-W? Constraint semantic: convexity PPC guarantees minimality and decomposability Exploiting topology: AP + triangles Articulation points improves any STP solver Propagation over triangles make STP more efficient than F-W and PPC

20 Beyond the temporal problem Exploiting constraint convexity: A new some-pairs shortest path algorithm, determines consistency faster than F-W Exploiting triangulation: A new pathconsistency algorithm (improved PPC) Simultaneously updating edges in a triangle Propagating via adjacent triangles

21 New results & future work Demonstrate the usefulness and effectiveness of STP for solving: TCSP [CP 03, IJCAI-WS 03] Use STP, currently the best STP solver AC algorithm, NewCyc & EdgeOrd heuristics DTP [on-going] Incremental triangulation [Noubir 03, Berry 03]

22 The end

23 Algorithms for solving the STP Graph Cost Consistency Minimality F-W/PC Complete (n 3 ) Yes Yes DPC Not necessarily O (nw * (d) 2 ) very cheap PPC Triangulated O (n 3 ) usually cheaper than F-W/PC STP Triangulated Always cheaper than PPC Yes Yes Yes No Yes Yes Our approach requires triangulation of the constraint graph

24 SPRAND: Constraint checks

25 SPRAND: CPU Time

26 GenSTP2: Constraint checks

27 GenSTP2: CPU time

An efficient consistency algorithm for the Temporal Constraint Satisfaction Problem

An efficient consistency algorithm for the Temporal Constraint Satisfaction Problem AI Communications 17 (2004) 213 221 213 IOS Press An efficient consistency algorithm for the Temporal Constraint Satisfaction Problem Berthe Y. Choueiry and Lin Xu Constraint Systems Laboratory, Department

More information

Temporal Reasoning Problems and Algorithms for Solving Them. Student number

Temporal Reasoning Problems and Algorithms for Solving Them. Student number Temporal Reasoning Problems and Algorithms for Solving Them Léon Planken Student number 9654215 November 2, 2007 2 Contents Preface iii 1 Introduction 1 2 The Simple Temporal Problem 5 2.1 Introduction............................

More information

Incrementally Solving the STP by Enforcing Partial Path Consistency

Incrementally Solving the STP by Enforcing Partial Path Consistency Incrementally Solving the STP by Enforcing Partial Path Consistency Léon Planken Delft University of Technology, The Netherlands l.r.planken@tudelft.nl Abstract The Simple Temporal Problem (STP) appears

More information

On Path Consistency for Binary Constraint Satisfaction Problems

On Path Consistency for Binary Constraint Satisfaction Problems University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering: Theses, Dissertations, and Student Research Computer Science and Engineering, Department

More information

Eddie Schwalb, Rina Dechter. It is well known that all these tasks are NP-hard.

Eddie Schwalb, Rina Dechter.  It is well known that all these tasks are NP-hard. Coping With Disjunctions in Temporal Constraint Satisfaction Problems 3 Eddie Schwalb, Rina Dechter Department of Information and Computer Science University of California at Irvine, CA 977 eschwalb@ics.uci.edu,

More information

Efficient Message Passing and Propagation of Simple Temporal Constraints: Results on Semi-Structured Networks

Efficient Message Passing and Propagation of Simple Temporal Constraints: Results on Semi-Structured Networks Efficient Message Passing and Propagation of Simple Temporal Constraints: Results on Semi-Structured Networks Hung H. Bui and Mabry Tyson and Neil Yorke-Smith Artificial Intelligence Center, SRI International

More information

New Algorithms for the Simple Temporal Problem

New Algorithms for the Simple Temporal Problem New Algorithms for the Simple Temporal Problem Master s Thesis x 7 0 x 6 0 x 5 0 x 4 0 a 1 5 b 2 4 c 3 3 d 4 2 e 5 1 f 0 x 0 x 1 x 2 x 3 0 0 0 L.R. Planken New Algorithms for the Simple Temporal Problem

More information

Exploiting the Structure of Hierarchical Plans in Temporal Constraint Propagation

Exploiting the Structure of Hierarchical Plans in Temporal Constraint Propagation Exploiting the Structure of Hierarchical Plans in Temporal Constraint Propagation Neil Yorke-Smith Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA nysmith@ai.sri.com Abstract

More information

Path Consistency on Triangulated Constraint Graphs*

Path Consistency on Triangulated Constraint Graphs* Path Consistency on Triangulated Constraint Graphs* Christian Bliek ILOG 1681 Route des Dolines 06560 Valbonne, France bliekqilog.fr Djamila Sam-Haroud Artificial Intelligence Laboratory Swiss Federal

More information

Exploiting Structure in Constraint Propagation

Exploiting Structure in Constraint Propagation University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Technical reports Computer Science and Engineering, Department of 2012 Exploiting Structure in Constraint Propagation

More information

Strong Controllability of Disjunctive Temporal Problems with Uncertainty

Strong Controllability of Disjunctive Temporal Problems with Uncertainty Strong Controllability of Disjunctive Temporal Problems with Uncertainty Bart Peintner 1, Kristen Brent Venable 2, and Neil Yorke-Smith 1 1 Artificial Intelligence Center, SRI International. {peintner,nysmith}@ai.sri.com

More information

On Solving Soft Temporal Constraints using SAT Techniques

On Solving Soft Temporal Constraints using SAT Techniques On Solving Soft Temporal Constraints using SAT Techniques Hossein M. Sheini, Bart Peintner, Karem A. Sakallah, and Martha E. Pollack University of Michigan, Ann Arbor, MI 89, USA {hsheini, bpeintne, karem,

More information

Constraint Solving by Composition

Constraint Solving by Composition Constraint Solving by Composition Student: Zhijun Zhang Supervisor: Susan L. Epstein The Graduate Center of the City University of New York, Computer Science Department 365 Fifth Avenue, New York, NY 10016-4309,

More information

Robust Execution of Temporal Plans. Assignments. Remember: Problem Set #5 due today, Wed, Oct. 6 th, Problem Set #6 out today.

Robust Execution of Temporal Plans. Assignments. Remember: Problem Set #5 due today, Wed, Oct. 6 th, Problem Set #6 out today. Massachusetts Institute of Technology Robust Execution of Temporal Plans Slide Contributions: Andreas Hofmann Julie Shah Prof Brian Williams 16.410 / 16.413 October.6 th, 2010 Assignments Remember: Problem

More information

Abstract. I. Introduction. 2. The T CS ode1. vide answers to a variety of additional queries.

Abstract. I. Introduction. 2. The T CS ode1. vide answers to a variety of additional queries. From: AAAI-93 Proceedings. Copyright 1993, AAAI (www.aaai.org). All rights reserved. in Temporal it Constraint Eddie Schwalb, Rina Dechter Department of Information and Computer Science University of California

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 28. Constraint Satisfaction Problems: Decomposition Methods Malte Helmert University of Basel April 23, 2018 Constraint Satisfaction Problems: Overview Chapter overview:

More information

Soft constraints: Polynomial classes, Applications

Soft constraints: Polynomial classes, Applications Soft constraints: Polynomial classes, Applications T. Schiex INRA - Toulouse, France Padova 2004 - Soft constraints p. 1 Polynomial classes structural classes: when the constraint (hyper)-graph has good

More information

28.1 Decomposition Methods

28.1 Decomposition Methods Foundations of Artificial Intelligence April 23, 2018 28. Constraint Satisfaction Problems: Decomposition Methods Foundations of Artificial Intelligence 28. Constraint Satisfaction Problems: Decomposition

More information

Temporal Constraint Networks 3. Eddie Schwalb, Rina Dechter. Abstract

Temporal Constraint Networks 3. Eddie Schwalb, Rina Dechter. Abstract Processing Disjunctions in Temporal Constraint Networks 3 Eddie Schwalb, Rina Dechter Department of Information and Computer Science University of California at Irvine, CA 92717 eschwalb,dechter@ics.uci.edu

More information

Flexible Execution of Plans with Choice

Flexible Execution of Plans with Choice Flexible Execution of Plans with Choice The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Conrad, Patrick

More information

Periodicity-based Temporal Constraints Paolo Terenziani*,

Periodicity-based Temporal Constraints Paolo Terenziani*, Periodicity-based Temporal Constraints Paolo Terenziani*, Luca Anselma, Stefania Montani* *{terenz terenz,stefania}@mfn.unipmn.it, DI, Univ.. del Piemonte Orientale A. Avogadro, Italy anselma@di.unito.it,

More information

1 Inference for Boolean theories

1 Inference for Boolean theories Scribe notes on the class discussion on consistency methods for boolean theories, row convex constraints and linear inequalities (Section 8.3 to 8.6) Speaker: Eric Moss Scribe: Anagh Lal Corrector: Chen

More information

RELATIONAL NEIGHBORHOOD INVERSE CONSISTENCY FOR CONSTRAINT SATISFACTION: A STRUCTURE-BASED APPROACH FOR ADJUSTING CONSISTENCY & MANAGING PROPAGATION

RELATIONAL NEIGHBORHOOD INVERSE CONSISTENCY FOR CONSTRAINT SATISFACTION: A STRUCTURE-BASED APPROACH FOR ADJUSTING CONSISTENCY & MANAGING PROPAGATION University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Technical reports Computer Science and Engineering, Department of 2011 RELATIONAL NEIGHBORHOOD INVERSE CONSISTENCY FOR

More information

Efficient Path Consistency Algorithm for Large Qualitative Constraint Networks

Efficient Path Consistency Algorithm for Large Qualitative Constraint Networks Efficient Path Consistency Algorithm for Large Qualitative Constraint Networks Zhiguo Long QCIS, FEIT University of Technology Sydney Australia zhiguo.long@student.uts.edu.au Michael Sioutis CRIL-CNRS

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership -007 The Polygon Game Kyla Hall Follow this and additional

More information

Some Applications of Graph Bandwidth to Constraint Satisfaction Problems

Some Applications of Graph Bandwidth to Constraint Satisfaction Problems Some Applications of Graph Bandwidth to Constraint Satisfaction Problems Ramin Zabih Computer Science Department Stanford University Stanford, California 94305 Abstract Bandwidth is a fundamental concept

More information

Backtracking algorithms for disjunctions of temporal constraints

Backtracking algorithms for disjunctions of temporal constraints Artificial Intelligence 120 (2000) 81 117 Backtracking algorithms for disjunctions of temporal constraints Kostas Stergiou a,, Manolis Koubarakis b,1 a APES Research Group, Department of Computer Science,

More information

Reasoning about Qualitative Temporal Information

Reasoning about Qualitative Temporal Information From: AAAI-90 Proceedings. Copyright 1990, AAAI (www.aaai.org). All rights reserved. Reasoning about Qualitative Temporal Information Peter van Beek Department of Computer Science1 University of Waterloo

More information

CONSTRAINT SATISFACTION

CONSTRAINT SATISFACTION 9// CONSRAI ISFACION oday Reading AIMA Chapter 6 Goals Constraint satisfaction problems (CSPs) ypes of CSPs Inference Search + Inference 9// 8-queens problem How would you go about deciding where to put

More information

Exploring Parameterized Relational Consistency

Exploring Parameterized Relational Consistency University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Technical reports Computer Science and Engineering, Department of 2009 Exploring Parameterized Relational Consistency

More information

Decomposable Constraints

Decomposable Constraints Decomposable Constraints Ian Gent 1, Kostas Stergiou 2, and Toby Walsh 3 1 University of St Andrews, St Andrews, Scotland. ipg@dcs.st-and.ac.uk 2 University of Strathclyde, Glasgow, Scotland. ks@cs.strath.ac.uk

More information

Combining forces to solve Combinatorial Problems, a preliminary approach

Combining forces to solve Combinatorial Problems, a preliminary approach Combining forces to solve Combinatorial Problems, a preliminary approach Mohamed Siala, Emmanuel Hebrard, and Christian Artigues Tarbes, France Mohamed SIALA April 2013 EDSYS Congress 1 / 19 Outline Context

More information

Outline. Best-first search

Outline. Best-first search Outline Best-first search Greedy best-first search A* search Heuristics Local search algorithms Hill-climbing search Beam search Simulated annealing search Genetic algorithms Constraint Satisfaction Problems

More information

Fast Distributed Multi-agent Plan Execution with Dynamic Task Assignment and Scheduling

Fast Distributed Multi-agent Plan Execution with Dynamic Task Assignment and Scheduling Fast Distributed Multi-agent Plan Execution with Dynamic Task Assignment and Scheduling Julie A. Shah, Patrick R. Conrad, and Brian C. Williams MIT CSAIL MERS 32 Vassar St. Room 32-D224, Cambridge, MA

More information

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2013 Soleymani Course material: Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Constraint Satisfaction Problems. Chapter 6

Constraint Satisfaction Problems. Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems A constraint satisfaction problem consists of three components, X, D, and C: X is a set of variables, {X 1,..., X n }. D is a

More information

Solving Difficult CSPs with Relational Neighborhood Inverse Consistency

Solving Difficult CSPs with Relational Neighborhood Inverse Consistency Solving Difficult CSPs with Relational Neighborhood Inverse Consistency Robert J. Woodward 1 Shant Karakashian 1 Berthe Y. Choueiry 1 Christian Bessiere 2 1 Constraint Systems Laboratory, University of

More information

MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING

MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING Roman Barták (Charles University in Prague, Czech Republic) MODELLING AND SOLVING SCHEDULING PROBLEMS USING CONSTRAINT PROGRAMMING Two worlds planning vs. scheduling planning is about finding activities

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 5. Constraint Satisfaction Problems CSPs as Search Problems, Solving CSPs, Problem Structure Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller Albert-Ludwigs-Universität

More information

Mathematical Programming Formulations, Constraint Programming

Mathematical Programming Formulations, Constraint Programming Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 3 Mathematical Programming Formulations, Constraint Programming 1. Special Purpose Algorithms 2. Constraint Programming Marco Chiarandini DM87 Scheduling,

More information

Retiming. Adapted from: Synthesis and Optimization of Digital Circuits, G. De Micheli Stanford. Outline. Structural optimization methods. Retiming.

Retiming. Adapted from: Synthesis and Optimization of Digital Circuits, G. De Micheli Stanford. Outline. Structural optimization methods. Retiming. Retiming Adapted from: Synthesis and Optimization of Digital Circuits, G. De Micheli Stanford Outline Structural optimization methods. Retiming. Modeling. Retiming for minimum delay. Retiming for minimum

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MA xam xpository Papers Math in the Middle Institute Partnership 7-2006 axicab Geometry Kyle Lannin Poore University of

More information

PART II: Local Consistency & Constraint Propagation

PART II: Local Consistency & Constraint Propagation PART II: Local Consistency & Constraint Propagation Solving CSPs Search algorithm. Usually backtracking search performing a depth-first traversal of a search tree. Local consistency and constraint propagation.

More information

Modelling and Solving Temporal Reasoning as Propositional Satisfiability

Modelling and Solving Temporal Reasoning as Propositional Satisfiability Modelling and Solving Temporal Reasoning as Propositional Satisfiability Duc Nghia Pham a,b,, John Thornton a,b and Abdul Sattar a,b a SAFE Program NICTA Ltd., Queensland, Australia b Institute for Integrated

More information

10/11/2017. Constraint Satisfaction Problems II. Review: CSP Representations. Heuristic 1: Most constrained variable

10/11/2017. Constraint Satisfaction Problems II. Review: CSP Representations. Heuristic 1: Most constrained variable //7 Review: Constraint Satisfaction Problems Constraint Satisfaction Problems II AIMA: Chapter 6 A CSP consists of: Finite set of X, X,, X n Nonempty domain of possible values for each variable D, D, D

More information

An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events

An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events Journal of Artificial Intelligence Research 25 (2006) 187-231 Submitted 03/05; published 02/06 An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events Alfonso Gerevini

More information

Steve Levine. Programs with Flexible Time. When? Tuesday, Feb 16 th. courtesy of JPL

Steve Levine. Programs with Flexible Time. When? Tuesday, Feb 16 th. courtesy of JPL Programs with Flexible Time When? Contributions: Brian Williams Patrick Conrad Simon Fang Paul Morris Nicola Muscettola Pedro Santana Julie Shah John Stedl Andrew Wang Steve Levine Tuesday, Feb 16 th courtesy

More information

Lecture outline. Graph coloring Examples Applications Algorithms

Lecture outline. Graph coloring Examples Applications Algorithms Lecture outline Graph coloring Examples Applications Algorithms Graph coloring Adjacent nodes must have different colors. How many colors do we need? Graph coloring Neighbors must have different colors

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Last update: February 25, 2010 Constraint Satisfaction Problems CMSC 421, Chapter 5 CMSC 421, Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure and problem decomposition Local

More information

Optimal Rectangle Packing: A Meta-CSP Approach

Optimal Rectangle Packing: A Meta-CSP Approach Optimal Rectangle Packing: A Meta-CSP Approach Michael D. Moffitt and Martha E. Pollack Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor, MI 48109, USA {mmoffitt,

More information

Flexible Execution of Plans with Choice and Uncertainty Patrick R Conrad and Brian C Williams

Flexible Execution of Plans with Choice and Uncertainty Patrick R Conrad and Brian C Williams Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-2011-002 January 15, 2011 Flexible Execution of Plans with Choice and Uncertainty Patrick R Conrad and Brian C Williams

More information

Lecture 18. Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1

Lecture 18. Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1 Lecture 18 Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1 Outline Chapter 6 - Constraint Satisfaction Problems Path Consistency & Global Constraints Sudoku Example Backtracking

More information

Algorithm Design Techniques. Hwansoo Han

Algorithm Design Techniques. Hwansoo Han Algorithm Design Techniques Hwansoo Han Algorithm Design General techniques to yield effective algorithms Divide-and-Conquer Dynamic programming Greedy techniques Backtracking Local search 2 Divide-and-Conquer

More information

A System Prototype for Solving Multi-granularity Temporal CSP

A System Prototype for Solving Multi-granularity Temporal CSP 142 A System Prototype for Solving Multi-granularity Temporal CSP Claudio Bettini, Sergio Mascetti, and Vincenzo Pupillo DICo Università di Milano, Italy Abstract. Time granularity constraint reasoning

More information

Principles of Parallel Algorithm Design: Concurrency and Decomposition

Principles of Parallel Algorithm Design: Concurrency and Decomposition Principles of Parallel Algorithm Design: Concurrency and Decomposition John Mellor-Crummey Department of Computer Science Rice University johnmc@rice.edu COMP 422/534 Lecture 2 12 January 2017 Parallel

More information

of Nebraska - Lincoln. Follow this and additional works at:

of Nebraska - Lincoln. Follow this and additional works at: University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications, Department of Mathematics Mathematics, Department of 6-1975 POLYGONS HAVE EARS G.H. Meisters University

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Tuomas Sandholm Carnegie Mellon University Computer Science Department [Read Chapter 6 of Russell & Norvig] Constraint satisfaction problems (CSPs) Standard search problem:

More information

Higher-Level Consistencies: Where, When, and How Much

Higher-Level Consistencies: Where, When, and How Much University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering: Theses, Dissertations, and Student Research Computer Science and Engineering, Department

More information

What is Search For? CS 188: Artificial Intelligence. Constraint Satisfaction Problems

What is Search For? CS 188: Artificial Intelligence. Constraint Satisfaction Problems CS 188: Artificial Intelligence Constraint Satisfaction Problems What is Search For? Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space Planning:

More information

Distributed Algorithms for Solving the Multiagent Temporal Decoupling Problem

Distributed Algorithms for Solving the Multiagent Temporal Decoupling Problem Distributed Algorithms for Solving the Multiagent Temporal Decoupling Problem James C. Boerkoel Jr. and Edmund H. Durfee Computer Science and Engineering University of Michigan, Ann Arbor, MI 48109, USA

More information

Artificial Intelligence

Artificial Intelligence Contents Artificial Intelligence 5. Constraint Satisfaction Problems CSPs as Search Problems, Solving CSPs, Problem Structure Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller What

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence 5. Constraint Satisfaction Problems CSPs as Search Problems, Solving CSPs, Problem Structure Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller SA-1 Contents

More information

1 Dynamic Programming

1 Dynamic Programming CS161 Lecture 13 Dynamic Programming and Greedy Algorithms Scribe by: Eric Huang Date: May 13, 2015 1 Dynamic Programming The idea of dynamic programming is to have a table of solutions of subproblems

More information

4.1.2 Merge Sort Sorting Lower Bound Counting Sort Sorting in Practice Solving Problems by Sorting...

4.1.2 Merge Sort Sorting Lower Bound Counting Sort Sorting in Practice Solving Problems by Sorting... Contents 1 Introduction... 1 1.1 What is Competitive Programming?... 1 1.1.1 Programming Contests.... 2 1.1.2 Tips for Practicing.... 3 1.2 About This Book... 3 1.3 CSES Problem Set... 5 1.4 Other Resources...

More information

Constrainedness and Redundancy by Constraint Ordering

Constrainedness and Redundancy by Constraint Ordering Constrainedness and Redundancy by Constraint Ordering Miguel A. Salido 1 and Federico Barber 2 1 Dpto. Ciencias de la Computación e Inteligencia Artificial, Universidad de Alicante Campus de San Vicente,

More information

Classical Planning: Limits

Classical Planning: Limits Classical Planning: Limits Spacecraft Domain Spacecraft Domain Extensions Time Resources Constraints Uncertainty Utility Model Temporal Interval Relations Interval Algebra (aka Allen Algebra) [Allen 83]

More information

Algorithms for the Minimal Network of a CSP and a Classifier for Choosing Between Them

Algorithms for the Minimal Network of a CSP and a Classifier for Choosing Between Them Algorithms for the Minimal Network of a CSP and a Classifier for Choosing Between Them Shant Karakashian 1 Robert J. Woodward 1 Berthe Y. Choueiry 1 Stephen D. Scott 1 Constraint Systems Laboratory University

More information

Dynamic Programming. CSE 101: Design and Analysis of Algorithms Lecture 19

Dynamic Programming. CSE 101: Design and Analysis of Algorithms Lecture 19 Dynamic Programming CSE 101: Design and Analysis of Algorithms Lecture 19 CSE 101: Design and analysis of algorithms Dynamic programming Reading: Chapter 6 Homework 7 is due Dec 6, 11:59 PM This Friday

More information

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Sanjit A. Seshia EECS, UC Berkeley Project Proposals Due Friday, February 13 on bcourses Will discuss project topics on Monday Instructions

More information

Efficient Subgraph Matching by Postponing Cartesian Products

Efficient Subgraph Matching by Postponing Cartesian Products Efficient Subgraph Matching by Postponing Cartesian Products Computer Science and Engineering Lijun Chang Lijun.Chang@unsw.edu.au The University of New South Wales, Australia Joint work with Fei Bi, Xuemin

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence 173 (2009) 1204 1219 Contents lists available at ScienceDirect Artificial Intelligence www.elsevier.com/locate/artint Solving connected row convex constraints by variable elimination

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems In which we see how treating states as more than just little black boxes leads to the invention of a range of powerful new search methods and a deeper understanding of

More information

A Divide-and-Conquer Approach for Solving Interval Algebra Networks

A Divide-and-Conquer Approach for Solving Interval Algebra Networks A Divide-and-Conquer Approach for Solving Interval Algebra Networks Jason Jingshi Li, Jinbo Huang, and Jochen Renz Australian National University and National ICT Australia Canberra, ACT 0200 Australia

More information

SOWL: A Framework for Handling Spatio-Temporal Information in OWL 2.0

SOWL: A Framework for Handling Spatio-Temporal Information in OWL 2.0 SOWL: A Framework for Handling Spatio-Temporal Information in OWL 2.0 Sotiris Batsakis Euripides G.M. Petrakis Technical University Of Crete Introduction SOWL Spatiotemporal model in OWL Representation

More information

Rina Dechter. Irvine, California, USA A constraint satisfaction problem (csp) dened over a constraint network

Rina Dechter. Irvine, California, USA A constraint satisfaction problem (csp) dened over a constraint network Constraint Satisfaction Rina Dechter Department of Computer and Information Science University of California, Irvine Irvine, California, USA 92717 dechter@@ics.uci.edu A constraint satisfaction problem

More information

CONSTRAINT SATISFACTION

CONSTRAINT SATISFACTION CONSRAI ISFACION oday Reading AIMA Read Chapter 6.1-6.3, Skim 6.4-6.5 Goals Constraint satisfaction problems (CSPs) ypes of CSPs Inference (Search + Inference) 1 8-queens problem How would you go about

More information

Reasoning with Conditional Time-intervals

Reasoning with Conditional Time-intervals Proceedings of the Twenty-First International FLAIRS Conference (2008) Reasoning with Conditional Time-intervals Philippe Laborie and Jérôme Rogerie ILOG 9 rue de Verdun 94253 Gentilly Cedex, France Abstract

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Constraint Satisfaction Problems Prof. Scott Niekum The University of Texas at Austin [These slides are based on those of Dan Klein and Pieter Abbeel for CS188 Intro to

More information

Constraint Satisfaction Problems. slides from: Padhraic Smyth, Bryan Low, S. Russell and P. Norvig, Jean-Claude Latombe

Constraint Satisfaction Problems. slides from: Padhraic Smyth, Bryan Low, S. Russell and P. Norvig, Jean-Claude Latombe Constraint Satisfaction Problems slides from: Padhraic Smyth, Bryan Low, S. Russell and P. Norvig, Jean-Claude Latombe Standard search problems: State is a black box : arbitrary data structure Goal test

More information

Spatial synthesis by disjunctive constraint satisfaction

Spatial synthesis by disjunctive constraint satisfaction rtificial Intelligence for Engineering Design, nalysis and Manufacturing (1997), //, 245-262. Printed in the US. Copyright 1997 Cambridge University Press 0890-0604/97 $ 11.00 +.10 Spatial synthesis by

More information

Applying Local Search to Temporal Reasoning

Applying Local Search to Temporal Reasoning Applying Local Search to Temporal Reasoning J. Thornton, M. Beaumont and A. Sattar School of Information Technology, Griffith University Gold Coast, Southport, Qld, Australia 4215 {j.thornton, m.beaumont,

More information

A Polynomial Algorithm for Continuous Non-binary Disjunctive CSPs

A Polynomial Algorithm for Continuous Non-binary Disjunctive CSPs A Polynomial Algorithm for Continuous Non-binary Disjunctive CSPs Miguel A. Salido, Federico Barber Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, 46020 Valencia,

More information

Reasoning about Qualitative Temporal Information

Reasoning about Qualitative Temporal Information Reasoning about Qualitative Temporal Information Peter van Beek Department of Computer Science University of Waterloo Waterloo, Ontario CANADA N2L 3G1 Abstract Interval and point algebras have been proposed

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Chapter 5 Section 1 3 Constraint Satisfaction 1 Outline Constraint Satisfaction Problems (CSP) Backtracking search for CSPs Local search for CSPs Constraint Satisfaction

More information

PATH FINDING AND GRAPH TRAVERSAL

PATH FINDING AND GRAPH TRAVERSAL GRAPH TRAVERSAL PATH FINDING AND GRAPH TRAVERSAL Path finding refers to determining the shortest path between two vertices in a graph. We discussed the Floyd Warshall algorithm previously, but you may

More information

On the Complexity of Interval-Based Constraint. Networks. September 19, Abstract

On the Complexity of Interval-Based Constraint. Networks. September 19, Abstract On the Complexity of Interval-Based Constraint Networks Rony Shapiro 1, Yishai A. Feldman 2, and Rina Dechter 3 September 19, 1998 Abstract Acyclic constraint satisfaction problems with arithmetic constraints

More information

Unifying and extending hybrid tractable classes of CSPs

Unifying and extending hybrid tractable classes of CSPs Journal of Experimental & Theoretical Artificial Intelligence Vol. 00, No. 00, Month-Month 200x, 1 16 Unifying and extending hybrid tractable classes of CSPs Wady Naanaa Faculty of sciences, University

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Library Conference Presentations and Speeches Libraries at University of Nebraska-Lincoln 2-5-2009 Cloud Computing Elaine

More information

Constraint Propagation: The Heart of Constraint Programming

Constraint Propagation: The Heart of Constraint Programming Constraint Propagation: The Heart of Constraint Programming Zeynep KIZILTAN Department of Computer Science University of Bologna Email: zeynep@cs.unibo.it URL: http://zeynep.web.cs.unibo.it/ What is it

More information

Flexible Execution of Plans with Choice and Uncertainty. Patrick Raymond Conrad

Flexible Execution of Plans with Choice and Uncertainty. Patrick Raymond Conrad Flexible Execution of Plans with Choice and Uncertainty by Patrick Raymond Conrad Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of

More information

Augmenting Disjunctive Temporal Problems with Finite-Domain Constraints

Augmenting Disjunctive Temporal Problems with Finite-Domain Constraints Augmenting Disjunctive Temporal Problems with Finite-Domain Constraints Michael D. Moffitt and Bart Peintner and Martha E. Pollack Department of Electrical Engineering and Computer Science University of

More information

Chapter 27. Other Approaches to Reasoning and Representation

Chapter 27. Other Approaches to Reasoning and Representation Chapter 27. Other Approaches to Reasoning and Representation The Quest for Artificial Intelligence, Nilsson, N. J., 2009. Lecture Notes on Artificial Intelligence Summarized by Ha, Jung-Woo and Lee, Beom-Jin

More information

Temporal Constraint Satisfaction Problems An Evaluation of Search Strategies

Temporal Constraint Satisfaction Problems An Evaluation of Search Strategies Introduction Temporal Constraint Satisfaction Problems An Evaluation of Search Strategies Bruce Lo, John Duchi, and James Connor brucelo@cs.stanford.edu, jduchi@stanford.edu, jconnor@stanford.edu Stanford

More information

A SAT-based Decision Procedure for the Boolean Combination of Difference Constraints

A SAT-based Decision Procedure for the Boolean Combination of Difference Constraints A SAT-based Decision Procedure for the Boolean Combination of Difference Constraints Alessandro Armando, Claudio Castellini, Enrico Giunchiglia, and Marco Maratea MRG-DIST, University of Genova viale Francesco

More information

On the Space-Time Trade-off in Solving Constraint Satisfaction Problems*

On the Space-Time Trade-off in Solving Constraint Satisfaction Problems* Appeared in Proc of the 14th Int l Joint Conf on Artificial Intelligence, 558-56, 1995 On the Space-Time Trade-off in Solving Constraint Satisfaction Problems* Roberto J Bayardo Jr and Daniel P Miranker

More information

Solving Over-constrained Disjunctive Temporal Problems with Preferences

Solving Over-constrained Disjunctive Temporal Problems with Preferences Solving Over-constrained Disjunctive Temporal Problems with Preferences Bart Peintner and Michael D. Moffitt and Martha E. Pollack Computer Science and Engineering University of Michigan Ann Arbor, MI

More information

Approximation Algorithms for Temporal Reasoning

Approximation Algorithms for Temporal Reasoning ppears in: Proceedings of the Eleventh International Joint Conference on rtificial Intelligence (IJCI), Detroit, Mich., 1989, 1291-1296. pproximation lgorithms for Temporal Reasoning Peter van Beek Department

More information

Implementation of Arc Consistency

Implementation of Arc Consistency Fall Semester, 2012 CSCE 421/821: Foundations of Constraint Processing B.Y. Choueiry Homework 2 Implementation of Arc Consistency Assigned: Friday, Sep 7, 2012 Due: Monday, Sep 17, 2012 Total value: 100

More information

Announcements. Homework 1: Search. Project 1: Search. Midterm date and time has been set:

Announcements. Homework 1: Search. Project 1: Search. Midterm date and time has been set: Announcements Homework 1: Search Has been released! Due Monday, 2/1, at 11:59pm. On edx online, instant grading, submit as often as you like. Project 1: Search Has been released! Due Friday 2/5 at 5pm.

More information