BACK TO MATH LET S START EASY.

Size: px
Start display at page:

Download "BACK TO MATH LET S START EASY."

Transcription

1 BACK TO MATH LET S START EASY. Of all rectangles of the same perimeter, which one has the largest area? (Yes, you have all solved this problem before, in Calc I. Apologies if this insults your intelligence. ) Objective function? Constraints, if any? How do we solve it? This is a simple nonlinear optimization problem. 15

2 ANOTHER EASY ONE. Sandwiches We want to make two kinds of sandwiches for a party from the ingredients below. At most how many can we make in total? Type 1 Type 2 Inventory cheese slices ham slices salami slices cucumbers 1-35 slices capers pieces 16

3 LINEAR OPTIMIZATION This is an example of a linear optimization problem, aka linear program, aka LP. The objective function is linear. The constraints are linear equations/inequalities. (The inequalities are not strict.) 17

4 18 LINEAR OPTIMIZATION This is an example of a linear optimization problem, aka linear program, aka LP. The objective function is linear. The constraints are linear equations/inequalities. How can we solve it? Don t try to set derivatives equal to zero. Remember the endpoints of the interval? More generally, the optimal solution may be at the boundary of the feasible region. In linear optimization, the boundary is where all the action is! Let s draw a picture

5 19 LINEAR OPTIMIZATION This is an example of a linear optimization problem, aka linear program, aka LP. The objective function is linear. The constraints are linear equations/inequalities. How can we solve it? Don t try to set derivatives equal to zero. Discussion Name as many things as you can that our model ignored or missed. If we add all of these, would we still have a linear optimization model?

6 20 LINEAR OPTIMIZATION MODELS: MORE EXAMPLES Multi-day sandwich production with or without expiration dates (inventory) Further problems (handout)

7 21 DEMO: SOLVING LINEAR OPTIMIZATION PROBLEMS Using Excel: Using Matlab: There are much more sophisticated tools, too for modeling and solution; we won t talk about them. (See 493 next semester.)

8 22 HOW DO COMPUTERS SOLVE THESE PROBLEMS?

9 23 EXISTENCE OF SOLUTIONS Is min f(x) x S well-defined? Does it exist? Is it unique? Do we care (and why)? inf/sup versus min/max Inf and sup always exist, although might be infinite (What is inf? And sup?) If the inf or sup is not attained, there is no optimal solution. Infeasible vs unbounded problems

10 INFEASIBLE AND UNBOUNDED PROBLEMS The brilliant Cerebron, attacking the problem analytically, discovered three distinct kinds of dragon: the mythical, the chimerical, and the purely hypothetical. They were all, one might say, nonexistent, but each nonexisted in an entirely different way. Infeasible Feasible region is empty. The objective function does not matter. Practically very common(!), especially in early stages of modeling Unbounded Feasible region is unbounded Objective function can take arbitrarily small (for minimization) or large (for maximization) values optimal value is ± Uncommon: in practical problems, it can be the sign of missing essential constraints (useless model) 24

11 INFEASIBLE AND UNBOUNDED PROBLEMS Three outcomes In linear optimization, there are only three possible outcomes: 1. There is an optimal solution (finite min/max) 2. The problem is infeasible 3. The problem is unbounded In nonlinear optimization, there is a fourth one: 4. The inf/sup is finite but not attained. Example: minimize e x. 25

12 26 WHAT IS A SOLUTION? Suppose we are trying to solve the equation: x 1 + 2x 2 = 7 2x 1 3x 2 = 0 We are told that the solution is x 1 = 3, x 2 = 2. Is that a satisfactory answer? Why?

13 27 WHAT IS A SOLUTION? Suppose we are trying to solve the equation: x 1 + 2x 2 = 7 2x 1 3x 2 = 0 We are told that the solution is x 1 = 3, x 2 = 2. Is that a satisfactory answer? Why? Now let s return to the sandwich example. We are told that the optimal solution is x 1 = 22, x 2 = 21. Is that a satisfactory answer? Why?

14 CERTIFICATES OF (IN)FEASBILITY AND OPTIMALITY It is usually easy to prove and verify feasibility Certificate of feasibility: a feasible solution How do we check it? Plug it back into the problem. Proving and verifying infeasibility is usually much trickier What is a certificate of infeasibility?? Stating that a solution is optimal always involves two statements: one feasibility, and one infeasibility The optimal solution is feasible No feasible solution has a better objective function value than the optimal solution. Ideally, we want a certificate of optimality with our optimal solutions. Or a certificate of infeasibility. Or a certificate of unboundedness. 28

15 29 CERTIFYING INFEASIBILITY IN LINEAR OPTIMIZATION Suppose a system of linear equations Ax b has no solution. Is there (and how do we get) a certificate of infeasibility? Farkas Lemma [pron: Farkash]: Theorem (Farkas). For every A R m n and b R m, precisely one of the following two statements holds: 1. Ax b has a solution x R n. 2. y 0, A T y = 0, and b T y < 0 has a solution y R m. Note: there are many syntactically different, but equivalent forms. (If you google it, you might find a different theorem.) Intuitively, this means

16 CERTIFYING OPTIMALITY Recall: a statement of optimality = a statement of feasibility and a statement of infeasibility. Feasibility is easy to certify We just saw how to certify infeasibility One can derive optimality certificates from this The details are somewhat complicated, we ll skip it this time. 30

17 CERTIFYING OPTIMALITY Again, why do we care? This is what all algorithms are based on. (They essentially have to be!) Generic optimization algorithm: start with a feasible solution. Certify that it s optimal; if not, find a better one, and recurse. Sounds familiar? (Compare to steepest descent from calculus.) 31

18 32 THE SIMPLEX METHOD The most commonly used algorithm for the solution of linear programs. The precise (linear algebraic) description of the method is fairly involved, but the geometric idea is simple. Relies on the fact that if the feasible region has a corner and there exists an optimal solution, then there is an optimal corner. The simplex method (sketch): Find a corner of the feasible region, or a certificate of infeasibility. (In the latter case, stop.) Find the adjacent corners; move to a better adjacent corner if there is one. If all adjacent corners are worse than the current one, stop. At the current corner, find an optimality certificate, or a certificate of unboundedness.

19 33 LINEAR OPTIMIZATION SOFTWARE Excel Solver. Not for serious work, but fantastically convenient. Demo: the sandwich example. Matlab s linprog function Provides interfaces similar to the hardcore optimization software. The simplest interface is a simple command: Objective coefficients lb x ub [x,fval] = linprog(f,aineq,bineq,aeq,beq,lb,ub,x0,opts) Inequality constraints, equality constraints, variable bounds Demo: the sandwich example. Military-grade (export controlled!) software: CPLEX, Gurobi. (Very expensive, though free student licenses exist for US students.) Open source libraries for C/C++, Python, Java, etc: SCIP, LPsolve, CLP, etc.

20 34 INTEGER AND MIXED- INTEGER OPTIMIZATION Conceptually, it s the same as linear optimization: Continue formulating everything using linear functions: Minimize/Maximize a linear function Subject to linear equality and inequality constraints New: some or all variables may be required to be integers. This is a real game changer as far as the expressivity of the models is concerned. Examples from the handout. No free lunch: these problems are way harder to solve than linear optimization problems.

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

INTEGER AND MIXED- INTEGER OPTIMIZATION

INTEGER AND MIXED- INTEGER OPTIMIZATION 34 INTEGER AND MIXED- INTEGER OPTIMIZATION Conceptually, it s the same as linear optimization: Continue formulating everything using linear functions: Minimize/Maximize a linear function Subject to linear

More information

NOTATION AND TERMINOLOGY

NOTATION AND TERMINOLOGY 15.053x, Optimization Methods in Business Analytics Fall, 2016 October 4, 2016 A glossary of notation and terms used in 15.053x Weeks 1, 2, 3, 4 and 5. (The most recent week's terms are in blue). NOTATION

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

ISE203 Optimization 1 Linear Models. Dr. Arslan Örnek Chapter 4 Solving LP problems: The Simplex Method SIMPLEX

ISE203 Optimization 1 Linear Models. Dr. Arslan Örnek Chapter 4 Solving LP problems: The Simplex Method SIMPLEX ISE203 Optimization 1 Linear Models Dr. Arslan Örnek Chapter 4 Solving LP problems: The Simplex Method SIMPLEX Simplex method is an algebraic procedure However, its underlying concepts are geometric Understanding

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

4.7 Approximate Integration

4.7 Approximate Integration 4.7 Approximate Integration Some anti-derivatives are difficult to impossible to find. For example, 1 0 e x2 dx or 1 1 1 + x3 dx We came across this situation back in calculus I when we introduced the

More information

LECTURE NOTES Non-Linear Programming

LECTURE NOTES Non-Linear Programming CEE 6110 David Rosenberg p. 1 Learning Objectives LECTURE NOTES Non-Linear Programming 1. Write out the non-linear model formulation 2. Describe the difficulties of solving a non-linear programming model

More information

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization Introduction to Linear Programming Algorithmic and Geometric Foundations of Optimization Optimization and Linear Programming Mathematical programming is a class of methods for solving problems which ask

More information

Section Notes 4. Duality, Sensitivity, and the Dual Simplex Algorithm. Applied Math / Engineering Sciences 121. Week of October 8, 2018

Section Notes 4. Duality, Sensitivity, and the Dual Simplex Algorithm. Applied Math / Engineering Sciences 121. Week of October 8, 2018 Section Notes 4 Duality, Sensitivity, and the Dual Simplex Algorithm Applied Math / Engineering Sciences 121 Week of October 8, 2018 Goals for the week understand the relationship between primal and dual

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

II. Linear Programming

II. Linear Programming II. Linear Programming A Quick Example Suppose we own and manage a small manufacturing facility that produced television sets. - What would be our organization s immediate goal? - On what would our relative

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

CMPSCI611: The Simplex Algorithm Lecture 24

CMPSCI611: The Simplex Algorithm Lecture 24 CMPSCI611: The Simplex Algorithm Lecture 24 Let s first review the general situation for linear programming problems. Our problem in standard form is to choose a vector x R n, such that x 0 and Ax = b,

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

Chapter 3 Linear Programming: A Geometric Approach

Chapter 3 Linear Programming: A Geometric Approach Chapter 3 Linear Programming: A Geometric Approach Section 3.1 Graphing Systems of Linear Inequalities in Two Variables y 4x + 3y = 12 4 3 4 x 3 y 12 x y 0 x y = 0 2 1 P(, ) 12 12 7 7 1 1 2 3 x We ve seen

More information

Math 2250 Lab #3: Landing on Target

Math 2250 Lab #3: Landing on Target Math 2250 Lab #3: Landing on Target 1. INTRODUCTION TO THE LAB PROGRAM. Here are some general notes and ideas which will help you with the lab. The purpose of the lab program is to expose you to problems

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

A Survey of Software Packages for Teaching Linear and Integer Programming

A Survey of Software Packages for Teaching Linear and Integer Programming A Survey of Software Packages for Teaching Linear and Integer Programming By Sergio Toledo Spring 2018 In Partial Fulfillment of Math (or Stat) 4395-Senior Project Department of Mathematics and Statistics

More information

Integrated Mathematics I Performance Level Descriptors

Integrated Mathematics I Performance Level Descriptors Limited A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Integrated Mathematics I. A student at this level has an emerging ability to demonstrate

More information

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163

AP Calculus. Extreme Values: Graphically. Slide 1 / 163 Slide 2 / 163. Slide 4 / 163. Slide 3 / 163. Slide 5 / 163. Slide 6 / 163 Slide 1 / 163 Slide 2 / 163 AP Calculus Analyzing Functions Using Derivatives 2015-11-04 www.njctl.org Slide 3 / 163 Table of Contents click on the topic to go to that section Slide 4 / 163 Extreme Values

More information

Linear Programming. Meaning of Linear Programming. Basic Terminology

Linear Programming. Meaning of Linear Programming. Basic Terminology Linear Programming Linear Programming (LP) is a versatile technique for assigning a fixed amount of resources among competing factors, in such a way that some objective is optimized and other defined conditions

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

x Boundary Intercepts Test (0,0) Conclusion 2x+3y=12 (0,4), (6,0) 0>12 False 2x-y=2 (0,-2), (1,0) 0<2 True

x Boundary Intercepts Test (0,0) Conclusion 2x+3y=12 (0,4), (6,0) 0>12 False 2x-y=2 (0,-2), (1,0) 0<2 True MATH 34 (Finite Mathematics or Business Math I) Lecture Notes MATH 34 Module 3 Notes: SYSTEMS OF INEQUALITIES & LINEAR PROGRAMMING 3. GRAPHING SYSTEMS OF INEQUALITIES Simple Systems of Linear Inequalities

More information

1. Lecture notes on bipartite matching

1. Lecture notes on bipartite matching Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans February 5, 2017 1. Lecture notes on bipartite matching Matching problems are among the fundamental problems in

More information

AB Calculus: Extreme Values of a Function

AB Calculus: Extreme Values of a Function AB Calculus: Extreme Values of a Function Name: Extrema (plural for extremum) are the maximum and minimum values of a function. In the past, you have used your calculator to calculate the maximum and minimum

More information

Graphical Methods in Linear Programming

Graphical Methods in Linear Programming Appendix 2 Graphical Methods in Linear Programming We can use graphical methods to solve linear optimization problems involving two variables. When there are two variables in the problem, we can refer

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

More information

Lesson 13: Exploring Factored Form

Lesson 13: Exploring Factored Form Opening Activity Below is a graph of the equation y = 6(x 3)(x + 2). It is also the graph of: y = 3(2x 6)(x + 2) y = 2(3x 9)(x + 2) y = 2(x 3)(3x + 6) y = 3(x 3)(2x + 4) y = (3x 9)(2x + 4) y = (2x 6)(3x

More information

Name: THE SIMPLEX METHOD: STANDARD MAXIMIZATION PROBLEMS

Name: THE SIMPLEX METHOD: STANDARD MAXIMIZATION PROBLEMS Name: THE SIMPLEX METHOD: STANDARD MAXIMIZATION PROBLEMS A linear programming problem consists of a linear objective function to be maximized or minimized subject to certain constraints in the form of

More information

Foundations of Computing

Foundations of Computing Foundations of Computing Darmstadt University of Technology Dept. Computer Science Winter Term 2005 / 2006 Copyright c 2004 by Matthias Müller-Hannemann and Karsten Weihe All rights reserved http://www.algo.informatik.tu-darmstadt.de/

More information

Agenda. Understanding advanced modeling techniques takes some time and experience No exercises today Ask questions!

Agenda. Understanding advanced modeling techniques takes some time and experience No exercises today Ask questions! Modeling 2 Agenda Understanding advanced modeling techniques takes some time and experience No exercises today Ask questions! Part 1: Overview of selected modeling techniques Background Range constraints

More information

Notes for Lecture 18

Notes for Lecture 18 U.C. Berkeley CS17: Intro to CS Theory Handout N18 Professor Luca Trevisan November 6, 21 Notes for Lecture 18 1 Algorithms for Linear Programming Linear programming was first solved by the simplex method

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

4 Fractional Dimension of Posets from Trees

4 Fractional Dimension of Posets from Trees 57 4 Fractional Dimension of Posets from Trees In this last chapter, we switch gears a little bit, and fractionalize the dimension of posets We start with a few simple definitions to develop the language

More information

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required.

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required. 1 of 10 23/07/2016 05:15 Paul's Online Math Notes Calculus III (Notes) / Line Integrals / Line Integrals - Part I Problems] [Notes] [Practice Problems] [Assignment Calculus III - Notes Line Integrals Part

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

Mathematics. Linear Programming

Mathematics. Linear Programming Mathematics Linear Programming Table of Content 1. Linear inequations. 2. Terms of Linear Programming. 3. Mathematical formulation of a linear programming problem. 4. Graphical solution of two variable

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Linear programming II João Carlos Lourenço

Linear programming II João Carlos Lourenço Decision Support Models Linear programming II João Carlos Lourenço joao.lourenco@ist.utl.pt Academic year 2012/2013 Readings: Hillier, F.S., Lieberman, G.J., 2010. Introduction to Operations Research,

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology Madras.

Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology Madras. Fundamentals of Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras Lecture No # 06 Simplex Algorithm Initialization and Iteration (Refer Slide

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

Chapter 7. Linear Programming Models: Graphical and Computer Methods

Chapter 7. Linear Programming Models: Graphical and Computer Methods Chapter 7 Linear Programming Models: Graphical and Computer Methods To accompany Quantitative Analysis for Management, Eleventh Edition, by Render, Stair, and Hanna Power Point slides created by Brian

More information

Use the Move tool to drag A around and see how the automatically constructed objects (like G or the perpendicular and parallel lines) are updated.

Use the Move tool to drag A around and see how the automatically constructed objects (like G or the perpendicular and parallel lines) are updated. Math 5335 Fall 2015 Lab #0: Installing and using GeoGebra This semester you will have a number of lab assignments which require you to use GeoGebra, a dynamic geometry program. GeoGebra lets you explore

More information

Solving Linear and Integer Programs

Solving Linear and Integer Programs Solving Linear and Integer Programs Robert E. Bixby Gurobi Optimization, Inc. and Rice University Overview Linear Programming: Example and introduction to basic LP, including duality Primal and dual simplex

More information

Combinatorial Optimization

Combinatorial Optimization Combinatorial Optimization Frank de Zeeuw EPFL 2012 Today Introduction Graph problems - What combinatorial things will we be optimizing? Algorithms - What kind of solution are we looking for? Linear Programming

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

1 Better Approximation of the Traveling Salesman

1 Better Approximation of the Traveling Salesman Stanford University CS261: Optimization Handout 4 Luca Trevisan January 13, 2011 Lecture 4 In which we describe a 1.5-approximate algorithm for the Metric TSP, we introduce the Set Cover problem, observe

More information

Linear Programming: Introduction

Linear Programming: Introduction CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2016 Lalla Mouatadid Linear Programming: Introduction A bit of a historical background about linear programming, that I stole from Jeff Erickson

More information

Bulgarian Math Olympiads with a Challenge Twist

Bulgarian Math Olympiads with a Challenge Twist Bulgarian Math Olympiads with a Challenge Twist by Zvezdelina Stankova Berkeley Math Circle Beginners Group September 0, 03 Tasks throughout this session. Harder versions of problems from last time appear

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Compact Sets. James K. Peterson. September 15, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Compact Sets James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 15, 2017 Outline 1 Closed Sets 2 Compactness 3 Homework Closed Sets

More information

Graphing Linear Inequalities in Two Variables.

Graphing Linear Inequalities in Two Variables. Many applications of mathematics involve systems of inequalities rather than systems of equations. We will discuss solving (graphing) a single linear inequality in two variables and a system of linear

More information

Modelling of LP-problems (2WO09)

Modelling of LP-problems (2WO09) Modelling of LP-problems (2WO09) assignor: Judith Keijsper room: HG 9.31 email: J.C.M.Keijsper@tue.nl course info : http://www.win.tue.nl/ jkeijspe Technische Universiteit Eindhoven meeting 1 J.Keijsper

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

Econ 172A - Slides from Lecture 2

Econ 172A - Slides from Lecture 2 Econ 205 Sobel Econ 172A - Slides from Lecture 2 Joel Sobel September 28, 2010 Announcements 1. Sections this evening (Peterson 110, 8-9 or 9-10). 2. Podcasts available when I remember to use microphone.

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

Using Linear Programming for Management Decisions

Using Linear Programming for Management Decisions Using Linear Programming for Management Decisions By Tim Wright Linear programming creates mathematical models from real-world business problems to maximize profits, reduce costs and allocate resources.

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

1 GIAPETTO S WOODCARVING PROBLEM

1 GIAPETTO S WOODCARVING PROBLEM 1 GIAPETTO S WOODCARVING PROBLEM EZGİ ÇALLI OBJECTIVES CCSS.MATH.CONTENT.HSA.REI.D.12: Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of

More information

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008

LP-Modelling. dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven. January 30, 2008 LP-Modelling dr.ir. C.A.J. Hurkens Technische Universiteit Eindhoven January 30, 2008 1 Linear and Integer Programming After a brief check with the backgrounds of the participants it seems that the following

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Recap, and outline of Lecture 18

Recap, and outline of Lecture 18 Recap, and outline of Lecture 18 Previously Applications of duality: Farkas lemma (example of theorems of alternative) A geometric view of duality Degeneracy and multiple solutions: a duality connection

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation 1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation functions vertical line test function notation evaluate

More information

Section 3.1 Graphing Systems of Linear Inequalities in Two Variables

Section 3.1 Graphing Systems of Linear Inequalities in Two Variables Section 3.1 Graphing Systems of Linear Inequalities in Two Variables Procedure for Graphing Linear Inequalities: 1. Draw the graph of the equation obtained for the given inequality by replacing the inequality

More information

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient Optimization Last time Root finding: definition, motivation Algorithms: Bisection, false position, secant, Newton-Raphson Convergence & tradeoffs Example applications of Newton s method Root finding in

More information

Real life Problem. Review

Real life Problem. Review Linear Programming The Modelling Cycle in Decision Maths Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

a) Alternative Optima, b) Infeasible(or non existing) solution, c) unbounded solution.

a) Alternative Optima, b) Infeasible(or non existing) solution, c) unbounded solution. Unit 1 Lesson 5. : Special cases of LPP Learning Outcomes Special cases of linear programming problems Alternative Optima Infeasible Solution Unboundedness In the previous lecture we have discussed some

More information

MATLAB: The greatest thing ever. Why is MATLAB so great? Nobody s perfect, not even MATLAB. Prof. Dionne Aleman. Excellent matrix/vector handling

MATLAB: The greatest thing ever. Why is MATLAB so great? Nobody s perfect, not even MATLAB. Prof. Dionne Aleman. Excellent matrix/vector handling MATLAB: The greatest thing ever Prof. Dionne Aleman MIE250: Fundamentals of object-oriented programming University of Toronto MIE250: Fundamentals of object-oriented programming (Aleman) MATLAB 1 / 1 Why

More information

An iteration of the simplex method (a pivot )

An iteration of the simplex method (a pivot ) Recap, and outline of Lecture 13 Previously Developed and justified all the steps in a typical iteration ( pivot ) of the Simplex Method (see next page). Today Simplex Method Initialization Start with

More information

AP Calculus AB Summer Assignment 2018

AP Calculus AB Summer Assignment 2018 AP Calculus AB Summer Assignment 2018 Welcome to AP Calculus. In order to accomplish our goals this year, we will need to begin a little in the summer. Your Algebra skills are important in Calculus. Things

More information

Using the Graphical Method to Solve Linear Programs J. Reeb and S. Leavengood

Using the Graphical Method to Solve Linear Programs J. Reeb and S. Leavengood PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8719-E October 1998 $2.50 Using the Graphical Method to Solve Linear Programs J. Reeb and S. Leavengood A key problem faced by managers is how to

More information

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs

3. The Simplex algorithmn The Simplex algorithmn 3.1 Forms of linear programs 11 3.1 Forms of linear programs... 12 3.2 Basic feasible solutions... 13 3.3 The geometry of linear programs... 14 3.4 Local search among basic feasible solutions... 15 3.5 Organization in tableaus...

More information

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where

LP Geometry: outline. A general LP. minimize x c T x s.t. a T i. x b i, i 2 M 1 a T i x = b i, i 2 M 3 x j 0, j 2 N 1. where LP Geometry: outline I Polyhedra I Extreme points, vertices, basic feasible solutions I Degeneracy I Existence of extreme points I Optimality of extreme points IOE 610: LP II, Fall 2013 Geometry of Linear

More information

LINEAR PROGRAMMING INTRODUCTION 12.1 LINEAR PROGRAMMING. Three Classical Linear Programming Problems (L.P.P.)

LINEAR PROGRAMMING INTRODUCTION 12.1 LINEAR PROGRAMMING. Three Classical Linear Programming Problems (L.P.P.) LINEAR PROGRAMMING 12 INTRODUCTION ou are familiar with linear equations and linear inequations in one and two variables. They can be solved algebraically or graphically (by drawing a line diagram in case

More information

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way.

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way. University of Southern California Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research - Deterministic Models Fall

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems]

Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] 1 of 9 25/04/2016 13:15 Paul's Online Math Notes Calculus III (Notes) / Applications of Partial Derivatives / Lagrange Multipliers Problems][Assignment Problems] [Notes] [Practice Calculus III - Notes

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

2 The Fractional Chromatic Gap

2 The Fractional Chromatic Gap C 1 11 2 The Fractional Chromatic Gap As previously noted, for any finite graph. This result follows from the strong duality of linear programs. Since there is no such duality result for infinite linear

More information

Sample tasks from: Algebra Assessments Through the Common Core (Grades 6-12)

Sample tasks from: Algebra Assessments Through the Common Core (Grades 6-12) Sample tasks from: Algebra Assessments Through the Common Core (Grades 6-12) A resource from The Charles A Dana Center at The University of Texas at Austin 2011 About the Dana Center Assessments More than

More information

Computational Geometry

Computational Geometry Casting a polyhedron CAD/CAM systems CAD/CAM systems allow you to design objects and test how they can be constructed Many objects are constructed used a mold Casting Casting A general question: Given

More information

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS Linear programming is a mathematical technique for finding optimal solutions to problems that can be expressed using linear equations and inequalities. If a real-world problem can be represented accurately

More information

Area and Perimeter EXPERIMENT. How are the area and perimeter of a rectangle related? You probably know the formulas by heart:

Area and Perimeter EXPERIMENT. How are the area and perimeter of a rectangle related? You probably know the formulas by heart: Area and Perimeter How are the area and perimeter of a rectangle related? You probably know the formulas by heart: Area Length Width Perimeter (Length Width) But if you look at data for many different

More information

Material from Recitation 1

Material from Recitation 1 Material from Recitation 1 Darcey Riley Frank Ferraro January 18, 2011 1 Introduction In CSC 280 we will be formalizing computation, i.e. we will be creating precise mathematical models for describing

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

2. Getting Started When you start GeoGebra, you will see a version of the following window. 1

2. Getting Started When you start GeoGebra, you will see a version of the following window. 1 Math 5335 Fall 2018 Lab #0: Installing and using GeoGebra This semester you will have a number of lab assignments which require you to use GeoGebra, a dynamic geometry program. GeoGebra lets you explore

More information

The Ascendance of the Dual Simplex Method: A Geometric View

The Ascendance of the Dual Simplex Method: A Geometric View The Ascendance of the Dual Simplex Method: A Geometric View Robert Fourer 4er@ampl.com AMPL Optimization Inc. www.ampl.com +1 773-336-AMPL U.S.-Mexico Workshop on Optimization and Its Applications Huatulco

More information

AMATH 383 Lecture Notes Linear Programming

AMATH 383 Lecture Notes Linear Programming AMATH 8 Lecture Notes Linear Programming Jakob Kotas (jkotas@uw.edu) University of Washington February 4, 014 Based on lecture notes for IND E 51 by Zelda Zabinsky, available from http://courses.washington.edu/inde51/notesindex.htm.

More information

An introduction to pplex and the Simplex Method

An introduction to pplex and the Simplex Method An introduction to pplex and the Simplex Method Joanna Bauer Marc Bezem Andreas Halle November 16, 2012 Abstract Linear programs occur frequently in various important disciplines, such as economics, management,

More information