Exploration Assignment #1. (Linear Systems)

Size: px
Start display at page:

Download "Exploration Assignment #1. (Linear Systems)"

Transcription

1 Math 0280 Introduction to Matrices and Linear Algebra Exploration Assignment #1 (Linear Systems) Acknowledgment The MATLAB assignments for Math 0280 were developed by Jonathan Rubin with the help of Matthew Badger SCHEDULE: The first exploration assignment is due within two weeks. One submission per group (no more than three people) is sufficient. Every member of the group assumes full responsibility for the final product and should be prepared to answer any questions related to the work submitted. GOAL: In these exploration assignments, our goal is to introduce you to various applications of linear algebra to real world problems. We will make use of the software package MATLAB, a useful tool for numerical computation using matrices and graphical interpretation of data. The first assignment begins with a gentle introduction to MATLAB. You will learn how to enter and carry out basic computations with matrices. In particular, linear systems of equations can be solved quickly and accurately using the rref command, which performs Gauss-Jordan elimination on a matrix. We also examine two applications: (1) Given n points (x 1, y 1 ),..., (x n, y n ) on the Euclidean plane, we can find a polynomial p(x) = a 0 +a 1 x+ +a n 1 x n 1 going through the points: p(x i ) = y i, for all 1 i n. (2) Using linear systems to calculate unknown flows through the junctions of a network. (For example, think of the speed of water through pipes or vehicle traffic on roads.) SAVING YOUR WORK IN THE GSCC COMPUTER LAB: When you save your MAT- LAB files in a computer in the GSCC lab, make sure you save it in a folder called AFS. Otherwise, you will lose everything when you log off of the computer. You can access this folder by double-clicking the link on the Desktop of any GSCC computer. If you want to access this folder using any other computer, you can open a web browser and in the address bar type: ftp://username:userpassword@unixs.cis.pitt.edu. Here username and userpasswword are the same as your pitt username and password. INTRODUCTION TO MATLAB: MATrix LABratory, or more simply called MATLAB, is an interactive software system for doing calculations with matrices. For those interested, several thorough introductions to MATLAB are available online. Here we will focus on just enough to get you through the first assignment. I. The Command Window Once you open MATLAB, several windows will open. Our primary focus is on the window called the Command Window. This is place where you enter commands and receive output. II. Inputing Matrices and Solving Linear Systems 1

2 2 First, suppose that we want to enter the following augmented matrix, A = Then, at the command window prompt, type the following: PROMPT>> A=[1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12] <enter> MATLAB has assigned the variable A to the matrix and prints the following output to the command window: A = To summarize, a matrix can be entered into MATLAB, by writing the matrix entries rowwise: put the entries between square brackets [... ], put commas, between the entries, and put semicolons ; between the rows. Second, suppose we want to change the bottom left entry in the matrix A from 9 to 9. Do we have to retype the entire matrix into MATLAB? The answer is no. Instead, just type the following into the command window prompt: PROMPT>> A(3,1) = -9 <enter> Then, MATLAB records the change: A = More generally, to change the ij entry of a matrix M, type M(i,j)=... Third, suppose we want to solve the linear system represented by A, x + 2y + 3z = 4 5x + 6y + 7z = 8 9x + 10y + 11z = 12 MATLAB implements Gauss-Jordan elimination, which reduces a matrix to its reduced row echelon form. The following command assigns the RREF of A to the matrix B: PROMPT>> B=rref(A) <enter> This outputs: B = Fourth, suppose we want to extract the solution vector b from B. In the command window, the following command assigns the fourth column of B to b: PROMPT>> b=b(:,4) <enter> MATLAB responds:

3 b = More generally, to extract the ith row or jth column of a matrix M, type M(i,:) or M(:,j), respectively. III. Evaluating Polynomials and Plotting Graphs Suppose that we want to plot the polynomial P (x) = x on the interval [ 1, 1]. Apply the following procedure. First, we need to represent P (x) as a vector p: PROMPT>> p=[-1;0;3] <enter> More generally, to create a vector for the degree n polynomial P (x) = a n x n + + a 1 x + a 0, type p=[a n ; ; a 1 ; a 0 ]. Second, specify the domain u of the desired plot, as follows: PROMPT>> u=-1:0.2:1 <enter> The command above (-1:0.2:1) creates a vector u with entries between 1 (the left number) and 1 (the right number). The middle number 0.2, which is called the mesh or step size, specifies the detail of the plot. A smaller step size (or finer mesh ) produces a more accurate plot than a larger step size. Third, use the following command to evaluate P (x) on the domain specified by u: PROMPT>> v=polyval(p,u) <enter> Lastly, plot the graph by specifying the domain u and the range v: PROMPT>> plot(u,v) <enter> After entering the command, MATLAB will open a new window with its plot of x You will notice that the graph of x is not smooth; rather, it is a linear approximation using line segments, spaced 0.2 apart on the x-axis. Try repeating the procedure above, except replace 0.2 in step 3 with 0.1. The new plot is a finer approximation of x IV. Using M Files to Save Your Work Rather than type commands into the prompt one by one, MATLAB provides a mechanism for collecting your commands in one place. Let s use the previous section as an example. From the MATLAB menubar click File -> New -> M-File. A new window Editor Untitled will open. Retype the commands from the last section: % Any Line That Begins With A Percent Sign Is A Comment % These Commands Plot -x 2 +3 From -1 to +1 p=[-1;0;3] u=-1:0.2:1 v=polyval(p,u) plot(u,v) Save the M-file as test1.m and close the editor. At the command prompt, you can now type a single command to plot the graph of x 2 + 3: PROMPT>> test1 <enter> Completed assignments are to be submitted on paper, clearly indicating the names of all students in the group. A computer printout is preferred, but fully or partially handwritten submissions will be accepted. 3

4 4 ASSIGNMENT: (OUT OF 40 POINTS) Complete all three parts: I. Exercise on Linear Systems (14 POINTS) (a) Convert the following linear system to an augmented matrix, call it A. x 1 + x 2 + x 3 + x 4 = 0 x 1 + 2x 2 + 2x 3 + 2x 4 = 4 3x 2 + 2x 3 + x 4 = 10 2x 1 + x 4 = 4 (For each part, type the appropriate commands in the M-file.) (b) Find the reduced row echelon form of A, call it B. (c) Does the linear system above have a unique solution? If yes, what is the solution? If no, how do you know? (d) Change the matrix A as follows: increase the value of the (2,1) entry by 1. (e) Find the reduced row echelon form of the new A, call it C. (f) Does the new linear system (matrix A) have a unique solution? If yes, what is the solution? If no, how do you know? (g) Describe the difference between B and C. II. Finding Polynomials Cardiac Hill (14 POINTS) (a) Suppose we want a curve through the points (0,5), (1,3), (3,2). unique quadratic polynomial (degree 2) P (x) = ax 2 + bx + c We will find the whose graph goes through these points. Substituting the values for x and y, we get a linear system 0a + 0b + 1c = 5 1a + 1b + 1c = 3 9a + 3b + 1c = 2 (STOP! Make sure you understand how to get this system from the given points.) Solve for the unknown coefficients a, b, c. (b) Plot the polynomial P (x) = ax 2 + bx + c, with the coefficients from part (a), on the interval [0,3]. Use a step size of 0.1 or smaller. (c) Suppose we want a curve through (0,5), (1,3), (3,2) and (2,10). Since there are now four points, we need a cubic polynomial (degree 3) Q(x) = ax 3 + bx 2 + cx + d. (In general, to go through n points, one needs a polynomial of degree n 1.) Find the unknown coefficients of Q as in part (a). (d) Plot the polynomial Q(x) = ax 3 + bx 2 + cx + d, with the coefficients from part (c), on the interval [0,3]. Use a step size of 0.1 or smaller. (e) Does the plot in part (b) radically differ from the plot in part (d)? Justify your answer.

5 5 Figure 1 (f) A linear algebra student lives in Sutherland Hall. As part of his morning commute to MATH 0280, the student walks 200ft (vertical height) down cardiac hill, on the steps next to the Peterson Events Center. From the top of the hill to the bottom of the events center, there are three sets of stairs and two flats areas in between stairs. The first set of stairs drops 20ft, the first flat area is 100ft long, the second set of stairs drops 100ft, the second flat area is 200ft long, and the final set of stairs drops 80ft. Assuming that the vertical drop of each step equals its horizontal stride, find a polynomial that models cardiac hill. (g) Plot your polynomial from part (f). III. Network Analysis A Traffic Problem (12 POINTS) (a) The University of Pittsburgh in central Oakland is littered with one-way streets. For example, the intersection of Fifth and Forbes Avenues with Bouquet Street and Oakland Avenue is modeled by the Figure 1. The arrows represent the flow of traffic, measured by the average number of vehicles entering and exiting each intersection per minute. The rule of conservation states the the number of vehicles entering an intersection must equal the number of vehicles exiting an intersection. For instance, at the intersection of Forbes and Oakland (A), we get (cars in) = 20 = f 1 + f 2 (cars out). Form a linear system in variables f 1, f 2, f 3, f 4, by writing the relationships for the other three intersections. Write this as an augmented matrix, call it T. (b) Solve the linear system from part (a) in terms of the free variable f 4. (c) If the traffic is regulated on CD so that f 4 = 10, what will the average flows on the other streets be? (d) What is the minimum and maximum possible flows on each street? [Hint: Traffic flow cannot be negative.] (e) Would the solution change if all of the directions were reversed? Briefly explain your reasoning. (NOTE: If so, there is no need to compute the new solution.) (f) Would the solution change if we reversed the direction just along Fifth avenue (BC)? Briefly explain your reasoning. (NOTE: If so, there is no need to compute the new solution.)

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices 6.1 Solving Systems of Linear Equations Using Matrices Objectives Write the augmented matrix for a linear system. Perform matrix row operations. Use matrices and Gaussian elimination to solve systems.

More information

The Interpolating Polynomial

The Interpolating Polynomial Math 45 Linear Algebra David Arnold David-Arnold@Eureka.redwoods.cc.ca.us Abstract A polynomial that passes through a given set of data points is called an interpolating polynomial. In this exercise you

More information

hp calculators hp 39g+ & hp 39g/40g Using Matrices How are matrices stored? How do I solve a system of equations? Quick and easy roots of a polynomial

hp calculators hp 39g+ & hp 39g/40g Using Matrices How are matrices stored? How do I solve a system of equations? Quick and easy roots of a polynomial hp calculators hp 39g+ Using Matrices Using Matrices The purpose of this section of the tutorial is to cover the essentials of matrix manipulation, particularly in solving simultaneous equations. How are

More information

Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo

Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo 1 Name Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo Below you will find copies of the notes provided on

More information

Solving Systems of Equations Using Matrices With the TI-83 or TI-84

Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Dimensions of a matrix: The dimensions of a matrix are the number of rows by the number of columns in the matrix. rows x columns *rows

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

Unit: Quadratic Functions

Unit: Quadratic Functions Unit: Quadratic Functions Learning increases when you have a goal to work towards. Use this checklist as guide to track how well you are grasping the material. In the center column, rate your understand

More information

Lesson 16: More on Modeling Relationships with a Line

Lesson 16: More on Modeling Relationships with a Line Student Outcomes Students use the least squares line to predict values for a given data set. Students use residuals to evaluate the accuracy of predictions based on the least squares line. Lesson Notes

More information

Applied Matrix Theory - Math Summer 09 MATLAB Project 3 Created by Prof. Diego Maldonado and Prof. Virginia Naibo

Applied Matrix Theory - Math Summer 09 MATLAB Project 3 Created by Prof. Diego Maldonado and Prof. Virginia Naibo Applied Matrix Theory - Math 551 - Summer 09 MATLAB Project Created by Prof. Diego Maldonado and Prof. Virginia Naibo In this project you will be introduced to MATLAB programming. What you have to submit:

More information

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as EXTENSION Using Matrix Row Operations to Solve Systems The elimination method used to solve systems introduced in the previous section can be streamlined into a systematic method by using matrices (singular:

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Precalculus Notes: Unit 7 Systems of Equations and Matrices

Precalculus Notes: Unit 7 Systems of Equations and Matrices Date: 7.1, 7. Solving Systems of Equations: Graphing, Substitution, Elimination Syllabus Objectives: 8.1 The student will solve a given system of equations or system of inequalities. Solution of a System

More information

CHAPTER HERE S WHERE YOU LL FIND THESE APPLICATIONS:

CHAPTER HERE S WHERE YOU LL FIND THESE APPLICATIONS: CHAPTER 8 You are being drawn deeper into cyberspace, spending more time online each week. With constantly improving high-resolution images, cyberspace is reshaping your life by nourishing shared enthusiasms.

More information

Matrices and Determinants

Matrices and Determinants pr8-78-88.i-hr /6/6 : PM Page 78 CHAPTER 8 Matrices and Determinants J ARON LANIER, WHO FIRST USED the term virtual reality, is chief scientist for the teleimmersion project, which explores the impact

More information

EE 216 Experiment 1. MATLAB Structure and Use

EE 216 Experiment 1. MATLAB Structure and Use EE216:Exp1-1 EE 216 Experiment 1 MATLAB Structure and Use This first laboratory experiment is an introduction to the use of MATLAB. The basic computer-user interfaces, data entry techniques, operations,

More information

Matrices and Systems of Linear Equations

Matrices and Systems of Linear Equations Chapter The variable x has now been eliminated from the first and third equations. Next, we eliminate x3 from the first and second equations and leave x3, with coefficient, in the third equation: System:

More information

For example, the system. 22 may be represented by the augmented matrix

For example, the system. 22 may be represented by the augmented matrix Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural of matrix) may be

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

MATHS METHODS QUADRATICS REVIEW. A reminder of some of the laws of expansion, which in reverse are a quick reference for rules of factorisation

MATHS METHODS QUADRATICS REVIEW. A reminder of some of the laws of expansion, which in reverse are a quick reference for rules of factorisation MATHS METHODS QUADRATICS REVIEW LAWS OF EXPANSION A reminder of some of the laws of expansion, which in reverse are a quick reference for rules of factorisation a) b) c) d) e) FACTORISING Exercise 4A Q6ace,7acegi

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

Core Mathematics 1 Transformations of Graphs

Core Mathematics 1 Transformations of Graphs Regent College Maths Department Core Mathematics 1 Transformations of Graphs Transformations of Graphs September 2011 C1 Note Knowledge of the effect of simple transformations on the graph of y f( x)

More information

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form:

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form: Name: Date: Period: Chapter 2: Polynomial and Rational Functions Topic 6: Rational Functions & Their Graphs Rational functions, like rational numbers, will involve a fraction. We will discuss rational

More information

Module 3: Graphing Quadratic Functions

Module 3: Graphing Quadratic Functions Haberman MTH 95 Section V Quadratic Equations and Functions Module 3 Graphing Quadratic Functions In this module, we'll review the graphing quadratic functions (you should have studied the graphs of quadratic

More information

College Algebra. Fifth Edition. James Stewart Lothar Redlin Saleem Watson

College Algebra. Fifth Edition. James Stewart Lothar Redlin Saleem Watson College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson 4 Polynomial and Rational Functions 4.6 Rational Functions Rational Functions A rational function is a function of the form Px (

More information

Chapter 12: Quadratic and Cubic Graphs

Chapter 12: Quadratic and Cubic Graphs Chapter 12: Quadratic and Cubic Graphs Section 12.1 Quadratic Graphs x 2 + 2 a 2 + 2a - 6 r r 2 x 2 5x + 8 2y 2 + 9y + 2 All the above equations contain a squared number. They are therefore called quadratic

More information

Assignment 2. with (a) (10 pts) naive Gauss elimination, (b) (10 pts) Gauss with partial pivoting

Assignment 2. with (a) (10 pts) naive Gauss elimination, (b) (10 pts) Gauss with partial pivoting Assignment (Be sure to observe the rules about handing in homework). Solve: with (a) ( pts) naive Gauss elimination, (b) ( pts) Gauss with partial pivoting *You need to show all of the steps manually.

More information

ALGEBRA 2 W/ TRIGONOMETRY MIDTERM REVIEW

ALGEBRA 2 W/ TRIGONOMETRY MIDTERM REVIEW Name: Block: ALGEBRA W/ TRIGONOMETRY MIDTERM REVIEW Algebra 1 Review Find Slope and Rate of Change Graph Equations of Lines Write Equations of Lines Absolute Value Functions Transformations Piecewise Functions

More information

,!7IA3C1-cjfcei!:t;K;k;K;k ISBN Graphing Calculator Reference Card. Addison-Wesley s. Basics. Created in conjuction with

,!7IA3C1-cjfcei!:t;K;k;K;k ISBN Graphing Calculator Reference Card. Addison-Wesley s. Basics. Created in conjuction with Addison-Wesley s Graphing Calculator Reference Card Created in conjuction with Basics Converting Fractions to Decimals The calculator will automatically convert a fraction to a decimal. Type in a fraction,

More information

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus

How do you roll? Fig. 1 - Capstone screen showing graph areas and menus How do you roll? Purpose: Observe and compare the motion of a cart rolling down hill versus a cart rolling up hill. Develop a mathematical model of the position versus time and velocity versus time for

More information

Algebra 1 Semester 2 Final Review

Algebra 1 Semester 2 Final Review Team Awesome 011 Name: Date: Period: Algebra 1 Semester Final Review 1. Given y mx b what does m represent? What does b represent?. What axis is generally used for x?. What axis is generally used for y?

More information

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang Maths for Signals and Systems Linear Algebra in Engineering Some problems by Gilbert Strang Problems. Consider u, v, w to be non-zero vectors in R 7. These vectors span a vector space. What are the possible

More information

Select the Points You ll Use. Tech Assignment: Find a Quadratic Function for College Costs

Select the Points You ll Use. Tech Assignment: Find a Quadratic Function for College Costs In this technology assignment, you will find a quadratic function that passes through three of the points on each of the scatter plots you created in an earlier technology assignment. You will need the

More information

practice: quadratic functions [102 marks]

practice: quadratic functions [102 marks] practice: quadratic functions [102 marks] A quadratic function, f(x) = a x 2 + bx, is represented by the mapping diagram below. 1a. Use the mapping diagram to write down two equations in terms of a and

More information

LAB 2: Linear Equations and Matrix Algebra. Preliminaries

LAB 2: Linear Equations and Matrix Algebra. Preliminaries Math 250C, Section C2 Hard copy submission Matlab # 2 1 Revised 07/13/2016 LAB 2: Linear Equations and Matrix Algebra In this lab you will use Matlab to study the following topics: Solving a system of

More information

EE168 Lab/Homework #1 Introduction to Digital Image Processing Handout #3

EE168 Lab/Homework #1 Introduction to Digital Image Processing Handout #3 EE168 Lab/Homework #1 Introduction to Digital Image Processing Handout #3 We will be combining laboratory exercises with homework problems in the lab sessions for this course. In the scheduled lab times,

More information

Algebra. Chapter 4: FUNCTIONS. Name: Teacher: Pd:

Algebra. Chapter 4: FUNCTIONS. Name: Teacher: Pd: Algebra Chapter 4: FUNCTIONS Name: Teacher: Pd: Table of Contents Day1: Chapter 4-1: Relations SWBAT: (1) Identify the domain and range of relations and functions (2) Match simple graphs with situations

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation

Math 2 Spring Unit 5 Bundle Transformational Graphing and Inverse Variation Math 2 Spring 2017 Unit 5 Bundle Transformational Graphing and Inverse Variation 1 Contents Transformations of Functions Day 1... 3 Transformations with Functions Day 1 HW... 10 Transformations with Functions

More information

MAFS Algebra 1. Quadratic Functions. Day 17 - Student Packet

MAFS Algebra 1. Quadratic Functions. Day 17 - Student Packet MAFS Algebra 1 Quadratic Functions Day 17 - Student Packet Day 17: Quadratic Functions MAFS.912.F-IF.3.7a, MAFS.912.F-IF.3.8a I CAN graph a quadratic function using key features identify and interpret

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

Yimin Math Centre. Year 10 Term 2 Homework. 3.1 Graphs in the number plane The minimum and maximum value of a quadratic function...

Yimin Math Centre. Year 10 Term 2 Homework. 3.1 Graphs in the number plane The minimum and maximum value of a quadratic function... Year 10 Term 2 Homework Student Name: Grade: Date: Score: Table of contents 3 Year 10 Term 2 Week 3 Homework 1 3.1 Graphs in the number plane................................. 1 3.1.1 The parabola....................................

More information

Core Mathematics 1 Graphs of Functions

Core Mathematics 1 Graphs of Functions Regent College Maths Department Core Mathematics 1 Graphs of Functions Graphs of Functions September 2011 C1 Note Graphs of functions; sketching curves defined by simple equations. Here are some curves

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Chapter 3 Polynomial and Rational Functions Review sections as needed from Chapter 0, Basic Techniques, page 8. Refer to page 187 for an example of the work required on paper for all graded homework unless

More information

Computer Project: Getting Started with MATLAB

Computer Project: Getting Started with MATLAB Computer Project: Getting Started with MATLAB Name Purpose: To learn to create matrices and use various MATLAB commands. Examples here can be useful for reference later. MATLAB functions: [ ] : ; + - *

More information

STRAIGHT LINE GRAPHS THE COORDINATES OF A POINT. The coordinates of any point are written as an ordered pair (x, y)

STRAIGHT LINE GRAPHS THE COORDINATES OF A POINT. The coordinates of any point are written as an ordered pair (x, y) THE COORDINATES OF A POINT STRAIGHT LINE GRAPHS The coordinates of any point are written as an ordered pair (x, y) Point P in the diagram has coordinates (2, 3). Its horizontal distance along the x axis

More information

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120 Whitman-Hanson Regional High School provides all students with a high- quality education in order to develop reflective, concerned citizens and contributing members of the global community. Course Number

More information

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7 Warm-Up Exercises Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; 3 2. y = 2x + 7 7 2 ANSWER ; 7 Chapter 1.1 Graph Quadratic Functions in Standard Form A quadratic function is a function that

More information

Meeting 1 Introduction to Functions. Part 1 Graphing Points on a Plane (REVIEW) Part 2 What is a function?

Meeting 1 Introduction to Functions. Part 1 Graphing Points on a Plane (REVIEW) Part 2 What is a function? Meeting 1 Introduction to Functions Part 1 Graphing Points on a Plane (REVIEW) A plane is a flat, two-dimensional surface. We describe particular locations, or points, on a plane relative to two number

More information

BIOE 198MI Biomedical Data Analysis. Spring Semester 2019 Lab 1b. Matrices, arrays, m-files, I/O, custom functions

BIOE 198MI Biomedical Data Analysis. Spring Semester 2019 Lab 1b. Matrices, arrays, m-files, I/O, custom functions BIOE 198MI Biomedical Data Analysis. Spring Semester 2019 Lab 1b. Matrices, arrays, m-files, I/O, custom functions A. Scalars, vectors, and matrices versus arrays and the associated syntax In terms of

More information

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values:

II. Functions. 61. Find a way to graph the line from the problem 59 on your calculator. Sketch the calculator graph here, including the window values: II Functions Week 4 Functions: graphs, tables and formulas Problem of the Week: The Farmer s Fence A field bounded on one side by a river is to be fenced on three sides so as to form a rectangular enclosure

More information

Lesson 6 - Practice Problems

Lesson 6 - Practice Problems Lesson 6 - Practice Problems Section 6.1: Characteristics of Quadratic Functions 1. For each of the following quadratic functions: Identify the coefficients a, b and c. Determine if the parabola opens

More information

WEEK 4 REVIEW. Graphing Systems of Linear Inequalities (3.1)

WEEK 4 REVIEW. Graphing Systems of Linear Inequalities (3.1) WEEK 4 REVIEW Graphing Systems of Linear Inequalities (3.1) Linear Programming Problems (3.2) Checklist for Exam 1 Review Sample Exam 1 Graphing Linear Inequalities Graph the following system of inequalities.

More information

Mathematics Scope & Sequence Algebra I

Mathematics Scope & Sequence Algebra I Mathematics Scope & Sequence 2016-17 Algebra I Revised: June 20, 2016 First Grading Period (24 ) Readiness Standard(s) Solving Equations and Inequalities A.5A solve linear equations in one variable, including

More information

Lesson 1: Analyzing Quadratic Functions

Lesson 1: Analyzing Quadratic Functions UNIT QUADRATIC FUNCTIONS AND MODELING Lesson 1: Analyzing Quadratic Functions Common Core State Standards F IF.7 F IF.8 Essential Questions Graph functions expressed symbolically and show key features

More information

Teaching Manual Math 2131

Teaching Manual Math 2131 Math 2131 Linear Algebra Labs with MATLAB Math 2131 Linear algebra with Matlab Teaching Manual Math 2131 Contents Week 1 3 1 MATLAB Course Introduction 5 1.1 The MATLAB user interface...........................

More information

Computer Project #2 (Matrix Operations)

Computer Project #2 (Matrix Operations) Math 0280 Introduction to Matrices and Linear Algebra Fall 2006 Computer Project #2 (Matrix Operations) SCHEDULE: This assignment is due in class on Monday, October 23, 2006. One submission per group is

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

Section 3.1 Gaussian Elimination Method (GEM) Key terms

Section 3.1 Gaussian Elimination Method (GEM) Key terms Section 3.1 Gaussian Elimination Method (GEM) Key terms Rectangular systems Consistent system & Inconsistent systems Rank Types of solution sets RREF Upper triangular form & back substitution Nonsingular

More information

Getting Started with MATLAB

Getting Started with MATLAB Getting Started with MATLAB Math 315, Fall 2003 Matlab is an interactive system for numerical computations. It is widely used in universities and industry, and has many advantages over languages such as

More information

Rational Numbers: Graphing: The Coordinate Plane

Rational Numbers: Graphing: The Coordinate Plane Rational Numbers: Graphing: The Coordinate Plane A special kind of plane used in mathematics is the coordinate plane, sometimes called the Cartesian plane after its inventor, René Descartes. It is one

More information

OVERVIEW DISPLAYING NUMBERS IN SCIENTIFIC NOTATION ENTERING NUMBERS IN SCIENTIFIC NOTATION

OVERVIEW DISPLAYING NUMBERS IN SCIENTIFIC NOTATION ENTERING NUMBERS IN SCIENTIFIC NOTATION OVERVIEW The intent of this material is to provide instruction for the TI-86 graphing calculator that may be used in conjunction with the second edition of Gary Rockswold's College Algebra Through Modeling

More information

`Three sides of a 500 square foot rectangle are fenced. Express the fence s length f as a function of height x.

`Three sides of a 500 square foot rectangle are fenced. Express the fence s length f as a function of height x. Math 140 Lecture 9 See inside text s front cover for area and volume formulas Classwork, remember units Don t just memorize steps, try to understand instead If you understand, every test problem will be

More information

MATLAB Demo. Preliminaries and Getting Started with Matlab

MATLAB Demo. Preliminaries and Getting Started with Matlab Math 250C Sakai submission Matlab Demo 1 Created by G. M. Wilson, revised 12/23/2015 Revised 09/05/2016 Revised 01/07/2017 MATLAB Demo In this lab, we will learn how to use the basic features of Matlab

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

MATLAB Project: Getting Started with MATLAB

MATLAB Project: Getting Started with MATLAB Name Purpose: To learn to create matrices and use various MATLAB commands for reference later MATLAB functions used: [ ] : ; + - * ^, size, help, format, eye, zeros, ones, diag, rand, round, cos, sin,

More information

Basic Matrix Manipulation with a TI-89/TI-92/Voyage 200

Basic Matrix Manipulation with a TI-89/TI-92/Voyage 200 Basic Matrix Manipulation with a TI-89/TI-92/Voyage 200 Often, a matrix may be too large or too complex to manipulate by hand. For these types of matrices, we can employ the help of graphing calculators

More information

ALGEBRA 1 NOTES. Quarter 3. Name: Block

ALGEBRA 1 NOTES. Quarter 3. Name: Block 2016-2017 ALGEBRA 1 NOTES Quarter 3 Name: Block Table of Contents Unit 8 Exponent Rules Exponent Rules for Multiplication page 4 Negative and Zero Exponents page 8 Exponent Rules Involving Quotients page

More information

Student Exploration: Quadratics in Polynomial Form

Student Exploration: Quadratics in Polynomial Form Name: Date: Student Exploration: Quadratics in Polynomial Form Vocabulary: axis of symmetry, parabola, quadratic function, vertex of a parabola Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

Lesson 8: Graphs and Graphing Linear Equations

Lesson 8: Graphs and Graphing Linear Equations A critical skill required for the study of algebra is the ability to construct and interpret graphs. In this lesson we will learn how the Cartesian plane is used for constructing graphs and plotting data.

More information

Students interpret the meaning of the point of intersection of two graphs and use analytic tools to find its coordinates.

Students interpret the meaning of the point of intersection of two graphs and use analytic tools to find its coordinates. Student Outcomes Students interpret the meaning of the point of intersection of two graphs and use analytic tools to find its coordinates. Classwork Example 1 (7 minutes) Have students read the situation

More information

Section 6.1: Quadratic Functions and their Characteristics Vertical Intercept Vertex Axis of Symmetry Domain and Range Horizontal Intercepts

Section 6.1: Quadratic Functions and their Characteristics Vertical Intercept Vertex Axis of Symmetry Domain and Range Horizontal Intercepts Lesson 6 Quadratic Functions and Equations Lesson 6 Quadratic Functions and Equations We are leaving exponential functions behind and entering an entirely different world. As you work through this lesson,

More information

MAT 003 Brian Killough s Instructor Notes Saint Leo University

MAT 003 Brian Killough s Instructor Notes Saint Leo University MAT 003 Brian Killough s Instructor Notes Saint Leo University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

Quadratic Functions Dr. Laura J. Pyzdrowski

Quadratic Functions Dr. Laura J. Pyzdrowski 1 Names: (8 communication points) About this Laboratory A quadratic function in the variable x is a polynomial where the highest power of x is 2. We will explore the domains, ranges, and graphs of quadratic

More information

Lesson 20: Every Line is a Graph of a Linear Equation

Lesson 20: Every Line is a Graph of a Linear Equation Student Outcomes Students know that any non vertical line is the graph of a linear equation in the form of, where is a constant. Students write the equation that represents the graph of a line. Lesson

More information

Lab of COMP 406. MATLAB: Quick Start. Lab tutor : Gene Yu Zhao Mailbox: or Lab 1: 11th Sep, 2013

Lab of COMP 406. MATLAB: Quick Start. Lab tutor : Gene Yu Zhao Mailbox: or Lab 1: 11th Sep, 2013 Lab of COMP 406 MATLAB: Quick Start Lab tutor : Gene Yu Zhao Mailbox: csyuzhao@comp.polyu.edu.hk or genexinvivian@gmail.com Lab 1: 11th Sep, 2013 1 Where is Matlab? Find the Matlab under the folder 1.

More information

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation:

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation: UNIT 8: SOLVING AND GRAPHING QUADRATICS 8-1 Factoring to Solve Quadratic Equations Zero Product Property For all numbers a & b Solve each equation: If: ab 0, 1. (x + 3)(x 5) = 0 Then one of these is true:

More information

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 Name GRAPHICAL REPRESENTATION OF DATA: You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 ) and (x, y ) is x1 x y1 y,.

More information

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

Algebra 2 Semester 1 (#2221)

Algebra 2 Semester 1 (#2221) Instructional Materials for WCSD Math Common Finals The Instructional Materials are for student and teacher use and are aligned to the 2016-2017 Course Guides for the following course: Algebra 2 Semester

More information

MAT 343 Laboratory 1 Matrix and Vector Computations in MATLAB

MAT 343 Laboratory 1 Matrix and Vector Computations in MATLAB MAT 343 Laboratory 1 Matrix and Vector Computations in MATLAB In this laboratory session we will learn how to 1. Create matrices and vectors. 2. Manipulate matrices and create matrices of special types

More information

Lab 1 Intro to MATLAB and FreeMat

Lab 1 Intro to MATLAB and FreeMat Lab 1 Intro to MATLAB and FreeMat Objectives concepts 1. Variables, vectors, and arrays 2. Plotting data 3. Script files skills 1. Use MATLAB to solve homework problems 2. Plot lab data and mathematical

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

Let s review some things we learned earlier about the information we can gather from the graph of a quadratic.

Let s review some things we learned earlier about the information we can gather from the graph of a quadratic. Section 6: Quadratic Equations and Functions Part 2 Section 6 Topic 1 Observations from a Graph of a Quadratic Function Let s review some things we learned earlier about the information we can gather from

More information

Geometry: Conic Sections

Geometry: Conic Sections Conic Sections Introduction When a right circular cone is intersected by a plane, as in figure 1 below, a family of four types of curves results. Because of their relationship to the cone, they are called

More information

BIG IDEAS. A.REI.D.10: Interpret Graphs as Sets of Solutions. Lesson Plan

BIG IDEAS. A.REI.D.10: Interpret Graphs as Sets of Solutions. Lesson Plan A.REI.D.10: Interpret Graphs as Sets of Solutions EQUATIONS AND INEQUALITIES A.REI.D.10: Interpret Graphs as Sets of Solutions D. Represent and solve equations and inequalities graphically. 10. Understand

More information

1.6 Modeling with Equations

1.6 Modeling with Equations 1.6 Modeling with Equations Steps to Modeling Problems with Equations 1. Identify the variable you want to solve for. 2. Express all unknown quantities in terms of this variable. 3. Set up the model by

More information

Digraphs and Matlab. 1 Digraphs. David Arnold. August 31, 1996

Digraphs and Matlab. 1 Digraphs. David Arnold. August 31, 1996 Digraphs and Matlab David Arnold August 3, 996 Abstract Digraphs are introduced along with their adjacency matrix. An algorithm is proposed for counting paths of length n. Prerequisites. Matrix multiplication.

More information

The Rectangular Coordinate System and Equations of Lines. College Algebra

The Rectangular Coordinate System and Equations of Lines. College Algebra The Rectangular Coordinate System and Equations of Lines College Algebra Cartesian Coordinate System A grid system based on a two-dimensional plane with perpendicular axes: horizontal axis is the x-axis

More information

Matrices and three-dimensional graphing

Matrices and three-dimensional graphing Matrices and three-dimensional graphing Module Summary Technical Tasks: 1. Create matrices in Matlab by assigning values, using for loops, or importing data 2. Do simple arithmetic with matrices in Matlab

More information

Introduction: Equipment: Getting Started Collecting the data:

Introduction: Equipment: Getting Started Collecting the data: Introduction: Collecting Ball Bounce data. Many aspects relating to the motion of a bouncing ball can be modelled mathematically. The first stage in modelling the motion is to collect some data. The Calculator

More information

Mathematical Reasoning. Lesson 37: Graphing Quadratic Equations. LESSON 37: Graphing Quadratic Equations

Mathematical Reasoning. Lesson 37: Graphing Quadratic Equations. LESSON 37: Graphing Quadratic Equations LESSON 37: Graphing Quadratic Equations Weekly Focus: quadratic equations Weekly Skill: graphing Lesson Summary: For the warm-up, students will solve a problem about mean, median, and mode. In Activity

More information

School Year:

School Year: School Year: 2010 2011 1 McDougal Littell CA Math Algebra 1 Pacing Guide Begin First Semester During the first two weeks of school, teachers will work with students on study skills and diagnostic assessments

More information

Course of study- Algebra Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by

Course of study- Algebra Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by Course of study- Algebra 1-2 1. Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by students in Grades 9 and 10, but since all students must

More information

KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations

KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations Name: KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations Date: Test Bank Part I: Answer all 15 questions in this part. Each correct answer will receive credits. No partial credit will

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

A/D Converter. Sampling. Figure 1.1: Block Diagram of a DSP System

A/D Converter. Sampling. Figure 1.1: Block Diagram of a DSP System CHAPTER 1 INTRODUCTION Digital signal processing (DSP) technology has expanded at a rapid rate to include such diverse applications as CDs, DVDs, MP3 players, ipods, digital cameras, digital light processing

More information