Jie Hou. Education. Research Interest True Amplitude Seismic Imaging and Inversion Acceleration of Least Squares Migration Inversion Velocity Analysis

Size: px
Start display at page:

Download "Jie Hou. Education. Research Interest True Amplitude Seismic Imaging and Inversion Acceleration of Least Squares Migration Inversion Velocity Analysis"

Transcription

1 Jie Hou Education Rice University Ph.D. Candidate in Geophysics, Earth Science 09/2012 Present China University of Petroleum(East China) 09/ /2012 B.S. in Exploration Geophysics Thesis: High Order Finite-difference Modeling of Acoustic and Elastic Wave Research Interest True Amplitude Seismic Imaging and Inversion Acceleration of Least Squares Migration Inversion Velocity Analysis

2 .. An Approximate Inverse to the Extended Born Modeling Operator Jie Hou 2014 Review Meeting May 1st, 2015 Slides based on same title paper submitted to Geophysics

3 Linearized Inverse Problem Model m F[m] = d F 1 [d] = m Data d Born Approximation = Linearized Seismic Inverse Problem Model Separation First Order Approximation m = m 0 + δm F[m] F[m 0 ] + F[m 0 ]δm Linearized Map F[m 0 ]δm δd 1

4 From Imaging to Inversion Given m 0 (x), δd(x r, t; x s ), find δm(x) to fit the data: F[m 0 ]δm δd Imaging Locate the reflector Kinematically Adjoint Operator F RTM Inversion Recover the reflector Kinematically & Dynamically Inverse Operator F 1 True Amplitude RTM 2

5 Born Modeling and its Adjoint. Born Modeling and Migration Operator. F[v]δv(x r, t; x s ) = 2 t 2 dx F [v]d(x) = 2 v 3 (x). dτ 2δv(x) v 3 (x) G(x, t τ; x r)g(x, τ; x s ) dx s dx r dtdτg(x, τ; x s ) 2 d(x r, t; x s ) t 2 G(x, t τ; x r ) S R S R (a) Born Modeling (b) Born Migration 3

6 Extended Model Extended Model M E[m] = m X[ m] = m F m = d F 1 d = m Model M Fm = d F 1 d = m Data D M = physical model space M = bigger extended model space F : M D extended modeling operator Extension Property: E[M] M; m M Fm = Fm 4

7 Subsurface offset Extension S h h R Subsurface Extension : 2h = Difference between subsurface scattering points (subsurface offset) Physical meaning : action at a positive distance Extend the operator by permitting δv to also depend on (half) offset h.. Extended Born Modeling and Migration Operator. F[v]δv(x s, x r, t) = 2 t 2 F d(x, h) = 2. v 3 (x) dxdhdτg(x + h, t τ; x r ) 2δv(x, h) v 3 G(x h, τ; x s ) (x) dx s dx r dtdτg(x h, τ; x s )G(x + h, t τ; x r ) 2 d(x r, t; x s ) t 2 5

8 Extended Kirchhoff Operator Fons ten Kroode (2012) constructed the inverse of the extended Kirchhoff Operator (in asymptotic sense) :. Fons ten Kroode,2012. Ki = 1 dxdhdωe iωt G(x r, x + h, ω) 2π Ĩd = 32. πv 2 (x) i(x, h) G(x h, x s, ω) z dx r dx s dω( iω) G (x + h, x r, ω) z r d(x r, x s, ω) G (x s, x h, ω) z s ( Can we construct a similar operator to extended Born Modeling Operator? 6

9 Construction of the Inverse Operator Asymptotic Analysis of the Normal Operator F[v] F[v]δv(x, h). Extended Born Modeling Operator and its Adjoint. F[v]δv = 2 2δv(x, h) t 2 dxdhdτg(x + h, t τ; x r ) v 3 G(x h, τ; x s ) (x) F [v]d = 2. v 3 dx s dx r dtdτg(x h, τ; x s )G(x + h, t τ; x r ) 2 d(x r, t; x s ) (x) t 2 Step 1 High Frequency Approximation Step 2 Principle of Stationary Phase Step 3 Modify adjoint operator by some Scaling and Filters 7

10 Where miracle happens Key element left a 2 s a2 r det Hess Relation between amplitudes and Beylkin determinant (Bleistein, N.; Zhang, Y.; Xu, S.; Zhang, G.; Gray, S, 2005) x s θ s Surface θr x r a 2 sa 2 r cosθ s cosθ r det Hess v s v r x h x + h 8

11 An Approximate Inverse F[v 0 ] = W 1 model [v 0] F[v 0 ] W data [v 0 ]. W 1 model = 4v5 0 LP, W data = I 4 t D zs D zr L = 2 (x,z) 2 (h,z) P is integral operator with computable kernel (P 1 near h = 0 or if horizontal velocity variation is small) I t is the time integral D zs, D zr are the source and receiver depth derivative. 9

12 Setup for Numerical Examples 2-8 Finite Difference Hz Bandpass Wavelet dx = dz = dz = 10m, dt = 1ms Dense sampled sources (every 40m) Fixed Spread Receivers Absorbing Boundary, except free surface on the top 10

13 Numerical Test I Reflectivity Model One-shot Born Data 11

14 Extended Migration Result 12

15 Extended Inversion Result 13

16 Resimulated Data Resimulated Data Data Residual (= 13.6% observed data ) 14

17 One trace Comparison Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green). The difference is shown as the red line. 15

18 From extended to nonextended model Model M E[m] = m X[ m] = m Extended Model M x E[δv] : δv(x, h) = δv(x)δ(h) X [ δv] : δv(x) = δv(x, h)φ(h)dh z where Φ(0) = 1 16

19 From extended to nonextended model Model M E[m] = m X[ m] = m Extended Model M h x E[δv] : δv(x, h) = δv(x)δ(h) X [ δv] : δv(x) = δv(x, h)φ(h)dh z where Φ(0) = 1 16

20 Non-extended Inversion Result Non-extended Inversion Result Model Residual (= 19.1% model ) δv(x) = h δv(x, h) 17

21 One trace Comparison Figure: One trace (middle) comparison between the reflectivity model (blue) and non-extended inversion result (green). The difference is shown as the red line. 18

22 Extended Migration Result-Wrong Background 19

23 Extended Inversion Result-Wrong Background 20

24 Resimulated Data-Wrong Background Resimulated Data Data Residual 21

25 One trace Comparison-Wrong Background Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green). The difference is shown as the red line. 22

26 Stacked Image-Wrong Background Stacked Image Reflectivity Model 23

27 Apply D zs D zr -Naive Implementation S R z = z 2 S + R + z = + z 2 d 11 = data(s, R ) d 12 = data(s, R + ) d 21 = data(s +, R ) d 22 = data(s +, R + ) D zs D zr data = d11 d12 d21+d22 ( z) 2 Reflector 24

28 Apply D zs D zr -Free Surface Simulation S R z = z 2 Surface z = 0 S + R + z = + z 2 +data(s, R ) data(s, R + ) data(s +, R ) +data(s +, R + ) D zs D zr data = Reflector freesurface data ( z) 2 25

29 Numerical Test II Velocity Model Wavefronts and Rays 26

30 Extended Inversion 27

31 Resimulated Data Resimulated Data Data Difference =10.4% observed data 28

32 One trace Comparison Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green). The difference is shown as the red line. 29

33 Non-extended Inversion Non-extended Inversion Result Model Difference =21.3% model 30

34 One trace Comparison Figure: One trace (middle) comparison between the reflectivity model (blue) and non-extended inversion result (green). The difference is shown as the red line. 31

35 Marmousi Model Marmousi Model Background Velocity Model 32

36 Extended Inversion Result 33

37 Resimulation Comparison Original Data 34

38 Resimulation Comparison Resimulated Data 34

39 Resimulation Comparison Data Difference 34

40 One Trace comparison Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green) 35

41 Marmousi Model Nonextended Inversion Result 36

42 Marmousi Model Reflectivity Model 36

43 One Trace comparison Figure: One trace (middle) comparison between the original data(blue) and resimulated data(green)) 37

44 SEG/EAGE Salt Model Reflectivity Model 38

45 SEG/EAGE Salt Model Background Model 39

46 SEG/EAGE Salt Model Background Model (Salt Removed) 40

47 SEG/EAGE Salt Model Extended Inversion Result 41

48 SEG/EAGE Salt Model-Salt Removed Extended Inversion Result 42

49 SEG/EAGE Salt Model Nonextended Inversion Result 43

50 SEG/EAGE Salt Model-Salt Removed Nonextended Inversion Result 44

51 Conclusion Takeaway Messages Subsurface offset extended RTM can be modified into an asymptotic inverse to the extended Born Modeling Operator Although the derivation is based on asymptotic theory, the implementation doesn t involve any ray computation The new inverse operator can approximate the ELSM result The new inverse operator can also produce non-extended inversion, which can approximate LSM 45

52 Acknowledgement Fons ten Kroode, Jon Sheiman, Henning Kuehl, Peng Shen, Yujin Liu Members and Sponsors Shell International Exploration and Production Madagascar, SU,TACC, RCSG Thank you for listening

53 SEG/EAGE Salt Model-Difference Nonextended Inversion Result Difference

Kinematics of Reverse Time S-G Migration

Kinematics of Reverse Time S-G Migration Kinematics of Reverse Time S-G Migration William W. Symes TRIP Seminar Rice University September 2003 www.trip.caam.rice.edu 1 Agenda: explore prestack focussing properties of RT S-G migration, proper

More information

THE RICE INVERSION PROJECT

THE RICE INVERSION PROJECT THE RICE INVERSION PROJECT Mario Bencomo, Jie Hou, Yin Huang, William Symes, and Muhong Zhou Annual Report 2014 Copyright c 2015-16 by Rice University i TRIP14 TABLE OF CONTENTS William W. Symes, Seismic

More information

Seismic Inversion: Progress and Prospects

Seismic Inversion: Progress and Prospects Seismic Inversion: Progress and Prospects William W. Symes Rice University SEG 07 William W. Symes ( Rice University) Seismic Inversion: Progress and Prospects 24-09-2007 1 / 18 Introduction Focus: recent

More information

Optimal Scaling of Prestack Migration

Optimal Scaling of Prestack Migration Optimal Scaling of Prestack Migration William W. Symes and Eric Dussaud Rice University, Total E&P USA SEG 07 William W. Symes and Eric Dussaud ( Rice University, Optimal Scaling Totalof E&P Prestack USA)

More information

SUMMARY. «u scat(x, t) = 2δv 2

SUMMARY. «u scat(x, t) = 2δv 2 Reverse time migration-inversion from single-shot data Christiaan C. Stolk, University of Amsterdam, Maarten V. de Hoop, Purdue University and Tim J.P.M. Op t Root, University of Twente SUMMARY Reverse

More information

Target-oriented wavefield tomography using demigrated Born data

Target-oriented wavefield tomography using demigrated Born data Target-oriented wavefield tomography using demigrated Born data Yaxun Tang and Biondo Biondi ABSTRACT We present a method to reduce the computational cost of image-domain wavefield tomography. Instead

More information

SUMMARY. amounts to solving the projected differential equation in model space by a marching method.

SUMMARY. amounts to solving the projected differential equation in model space by a marching method. Subsurface Domain Image Warping by Horizontal Contraction and its Application to Wave-Equation Migration Velocity Analysis Peng Shen, Shell International E&P, William W. Symes, Rice University SUMMARY

More information

Coherent partial stacking by offset continuation of 2-D prestack data

Coherent partial stacking by offset continuation of 2-D prestack data Stanford Exploration Project, Report 82, May 11, 2001, pages 1 124 Coherent partial stacking by offset continuation of 2-D prestack data Nizar Chemingui and Biondo Biondi 1 ABSTRACT Previously, we introduced

More information

Equivalent offset migration: the implementation and application update

Equivalent offset migration: the implementation and application update Equivalent offset migration: the implementation and application update Xinxiang Li, Yong Xu and John C. Bancroft INTRODUCTION We have some improvements about equivalent offset migration (EOM) method. In

More information

Least squares Kirchhoff depth migration with. preconditioning

Least squares Kirchhoff depth migration with. preconditioning Least squares Kirchhoff depth migration with preconditioning Aaron Stanton University of Alberta, Department of Physics, 4-83 CCIS, Edmonton AB T6G E (April, 3) Running head: Least Squares Migration ABSTRACT

More information

Angle-domain parameters computed via weighted slant-stack

Angle-domain parameters computed via weighted slant-stack Angle-domain parameters computed via weighted slant-stack Claudio Guerra 1 INTRODUCTION Angle-domain common image gathers (ADCIGs), created from downward-continuation or reverse time migration, can provide

More information

Angle-gather time migration a

Angle-gather time migration a Angle-gather time migration a a Published in SEP report, 1, 141-15 (1999) Sergey Fomel and Marie Prucha 1 ABSTRACT Angle-gather migration creates seismic images for different reflection angles at the reflector.

More information

Target-oriented wavefield tomography: A field data example

Target-oriented wavefield tomography: A field data example Target-oriented wavefield tomography: A field data example Yaxun Tang and Biondo Biondi ABSTRACT We present a strategy for efficient migration velocity analysis in complex geological settings. The proposed

More information

3D angle decomposition for elastic reverse time migration Yuting Duan & Paul Sava, Center for Wave Phenomena, Colorado School of Mines

3D angle decomposition for elastic reverse time migration Yuting Duan & Paul Sava, Center for Wave Phenomena, Colorado School of Mines 3D angle decomposition for elastic reverse time migration Yuting Duan & Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY We propose 3D angle decomposition methods from elastic reverse

More information

Amplitude and kinematic corrections of migrated images for non-unitary imaging operators

Amplitude and kinematic corrections of migrated images for non-unitary imaging operators Stanford Exploration Project, Report 113, July 8, 2003, pages 349 363 Amplitude and kinematic corrections of migrated images for non-unitary imaging operators Antoine Guitton 1 ABSTRACT Obtaining true-amplitude

More information

Progress Report on: Interferometric Interpolation of 3D SSP Data

Progress Report on: Interferometric Interpolation of 3D SSP Data Progress Report on: Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy ABSTRACT We present the theory and numerical results for interferometrically interpolating and extrapolating 3D marine

More information

Yin Huang s Thesis, and Computing Gradients. William Symes

Yin Huang s Thesis, and Computing Gradients. William Symes Yin Huang s Thesis, and Computing Gradients William Symes Yin Huang PhD student in TRIP: 2010.08-2016.02 Thesis: Born Waveform Inversion in Shot Coordinate Domain Currently: Amazon, Seattle Chapter 2 Born

More information

Automatic wave equation migration velocity analysis by differential semblance optimization

Automatic wave equation migration velocity analysis by differential semblance optimization Automatic wave equation migration velocity analysis by differential semblance optimization Peng Shen, Christiaan Stolk, William W. Symes The Rice Inversion Project Rice University Thanks to Dr. Scott Morton

More information

Headwave Stacking in Terms of Partial Derivative Wavefield

Headwave Stacking in Terms of Partial Derivative Wavefield Geosystem Engineering, 7(1), 21-26 (March 2004) Headwave Stacking in Terms of Partial Derivative Wavefield Changsoo Shin School of Civil, Urban and Geosystem Engineering, Seoul National University, San

More information

Velocity Model Sampling and Interpolation: The Gradient Problem

Velocity Model Sampling and Interpolation: The Gradient Problem January 11, 2013 1 2 3 4 5 Kirchhoff migration uses raytracing equations for prestack depth migration. d x dt = v( x)2 p d p dt = v( x) v( x) These equations estimate the paths of seismic energy through

More information

Angle-dependent reflectivity by wavefront synthesis imaging

Angle-dependent reflectivity by wavefront synthesis imaging Stanford Exploration Project, Report 80, May 15, 2001, pages 1 477 Angle-dependent reflectivity by wavefront synthesis imaging Jun Ji 1 ABSTRACT Elsewhere in this report, Ji and Palacharla (1994) show

More information

Comments on wavefield propagation using Reverse-time and Downward continuation

Comments on wavefield propagation using Reverse-time and Downward continuation Comments on wavefield propagation using Reverse-time and Downward continuation John C. Bancroft ABSTRACT Each iteration a of Full-waveform inversion requires the migration of the difference between the

More information

Th G Surface-offset RTM Gathers - What Happens When the Velocity is Wrong?

Th G Surface-offset RTM Gathers - What Happens When the Velocity is Wrong? Th G103 01 Surface-offset RTM Gathers - What Happens When the Velocity is Wrong? J.P. Montel* (CGG) SUMMARY Surface offset migrated common image gathers (SOCIGs) built by wave equation migration (WEM)

More information

A least-squares shot-profile application of time-lapse inverse scattering theory

A least-squares shot-profile application of time-lapse inverse scattering theory A least-squares shot-profile application of time-lapse inverse scattering theory Mostafa Naghizadeh and Kris Innanen ABSTRACT The time-lapse imaging problem is addressed using least-squares shot-profile

More information

Least squares Kirchhoff depth migration: important details

Least squares Kirchhoff depth migration: important details Least squares Kirchhoff depth migration: important details Daniel Trad CREWES-University of Calgary Summary Least squares migration has been an important research topic in the academia for about two decades,

More information

IMAGING USING MULTI-ARRIVALS: GAUSSIAN BEAMS OR MULTI-ARRIVAL KIRCHHOFF?

IMAGING USING MULTI-ARRIVALS: GAUSSIAN BEAMS OR MULTI-ARRIVAL KIRCHHOFF? IMAGING USING MULTI-ARRIVALS: GAUSSIAN BEAMS OR MULTI-ARRIVAL KIRCHHOFF? Summary Samuel H. Gray* Veritas DGC Inc., 715 Fifth Ave. SW, Suite 2200, Calgary, AB Sam_gray@veritasdgc.com Carl Notfors Veritas

More information

Improvements in time domain FWI and its applications Kwangjin Yoon*, Sang Suh, James Cai and Bin Wang, TGS

Improvements in time domain FWI and its applications Kwangjin Yoon*, Sang Suh, James Cai and Bin Wang, TGS Downloaded 0/7/13 to 05.196.179.38. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ Improvements in time domain FWI and its applications Kwangjin Yoon*,

More information

e. \ 2-99 Calculation ofray Amplitudes: We seek a computationally tractable method to estimate ray

e. \ 2-99 Calculation ofray Amplitudes: We seek a computationally tractable method to estimate ray 2-99 e. \ Michael C. Fehler, Steven T. Hildebrand, Lianjie Huang, and Douglas Alde MS 044; Los Alamos National Laboratiory; Los Alamos, NM 87545 USA Summary: Kirchhoff migration using ray tracing travel

More information

Interpolation using asymptote and apex shifted hyperbolic Radon transform

Interpolation using asymptote and apex shifted hyperbolic Radon transform Interpolation using asymptote and apex shifted hyperbolic Radon transform Amr Ibrahim, Paolo Terenghi and Mauricio D. Sacchi Department of Physics, University of Alberta PGS Abstract The asymptote and

More information

Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion

Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion N. Bleistein J.K. Cohen J.W. Stockwell, Jr. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion With 71 Illustrations Springer Contents Preface List of Figures vii xxiii 1 Multidimensional

More information

Reverse-time migration imaging with/without multiples

Reverse-time migration imaging with/without multiples Reverse-time migration imaging with/without multiples Zaiming Jiang, John C. Bancroft, and Laurence R. Lines Imaging with/without multiples ABSTRACT One of the challenges with reverse-time migration based

More information

Multi-source Least-squares Migration of Gulf of Mexico Data

Multi-source Least-squares Migration of Gulf of Mexico Data Multi-source Least-squares Migration of Gulf of Mexico Data Xin Wang. King Abdullah University of Science and Technology, Thuwal 955-69, Kingdom of Saudi Arabia Corresponding author is Xin Wang. E-mail

More information

Low-rank representation of extended image volumes applications to imaging and velocity continuation

Low-rank representation of extended image volumes applications to imaging and velocity continuation Low-rank representation of extended image volumes applications to imaging and velocity continuation Rajiv Kumar 1, Marie Graff-Kray 2, Tristan van Leeuwen 3, and Felix J. Herrmann 1 1 Georgia Institute

More information

Lab 3: Depth imaging using Reverse Time Migration

Lab 3: Depth imaging using Reverse Time Migration Due Wednesday, May 1, 2013 TA: Yunyue (Elita) Li Lab 3: Depth imaging using Reverse Time Migration Your Name: Anne of Cleves ABSTRACT In this exercise you will familiarize yourself with full wave-equation

More information

SUMMARY INTRODUCTION THEORY. Objective function of ERWI

SUMMARY INTRODUCTION THEORY. Objective function of ERWI Extended Reflection Waveform Inversion via Differential Semblance Optimization Yujin Liu, William W. Symes and Zhenchun Li, China University of Petroleum (Huadong), Rice University SUMMARY Reflection-based

More information

Amplitude within the Fresnel zone for the zero-offset case

Amplitude within the Fresnel zone for the zero-offset case Amplitude within the Fresnel zone for the zero-offset case Shuang Sun and John C. Bancroft ABSTRACT Reflection energy from a linear reflector comes from an integrant over an aperture often described by

More information

DSR Migration Velocity Analysis by Differential Semblance Optimization

DSR Migration Velocity Analysis by Differential Semblance Optimization DSR Migration Velocity Analysis by Differential Semblance Optimization A. Khoury (Total E&P France), W. W. Symes (Rice University), P. Williamson and P. Shen (Total E&P USA Inc.) Society of Exploration

More information

Migration from a non-flat datum via reverse-time extrapolation

Migration from a non-flat datum via reverse-time extrapolation Stanford Exploration Project, Report 84, May 9, 2001, pages 1 50 Migration from a non-flat datum via reverse-time extrapolation Gopal Palacharla 1 ABSTRACT Land surveys usually have elevation changes,

More information

Writing Kirchhoff migration/modelling in a matrix form

Writing Kirchhoff migration/modelling in a matrix form Writing Kirchhoff migration/modelling in a matrix form Abdolnaser Yousefzadeh and John C. Bancroft Kirchhoff migration matrix ABSTRACT Kirchhoff prestack migration and modelling are linear operators. Therefore,

More information

SEG/San Antonio 2007 Annual Meeting

SEG/San Antonio 2007 Annual Meeting Imaging steep salt flanks by super-wide angle one-way method Xiaofeng Jia* and Ru-Shan Wu, Modeling and Imaging Laboratory, IGPP, University of California, Santa Cruz Summary The super-wide angle one-way

More information

Seismic Modeling, Migration and Velocity Inversion

Seismic Modeling, Migration and Velocity Inversion Seismic Modeling, Migration and Velocity Inversion Full Waveform Inversion Bee Bednar Panorama Technologies, Inc. 14811 St Marys Lane, Suite 150 Houston TX 77079 May 18, 2014 Bee Bednar (Panorama Technologies)

More information

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at ACQUISITION APERTURE CORRECTION IN ANGLE-DOMAIN TOWARDS THE TRUE- REFLECTION RTM Rui Yan 1*, Huimin Guan 2, Xiao-Bi Xie 1, Ru-Shan Wu 1, 1 IGPP, Earth and Planetary Sciences Department, University of California,

More information

Full waveform inversion of physical model data Jian Cai*, Jie Zhang, University of Science and Technology of China (USTC)

Full waveform inversion of physical model data Jian Cai*, Jie Zhang, University of Science and Technology of China (USTC) of physical model data Jian Cai*, Jie Zhang, University of Science and Technology of China (USTC) Summary (FWI) is a promising technology for next generation model building. However, it faces with many

More information

We N Converted-phase Seismic Imaging - Amplitudebalancing Source-independent Imaging Conditions

We N Converted-phase Seismic Imaging - Amplitudebalancing Source-independent Imaging Conditions We N106 02 Converted-phase Seismic Imaging - Amplitudebalancing -independent Imaging Conditions A.H. Shabelansky* (Massachusetts Institute of Technology), A.E. Malcolm (Memorial University of Newfoundland)

More information

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material!

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material! GG450 April 6, 2010 Seismic Reflection I Today s material comes from p. 32-33 and 81-116 in the text book. Please read and understand all of this material! Back to seismic waves Last week we talked about

More information

Source-receiver migration of multiple reflections

Source-receiver migration of multiple reflections Stanford Exploration Project, Report 113, July 8, 2003, pages 75 85 Source-receiver migration of multiple reflections Guojian Shan 1 ABSTRACT Multiple reflections are usually considered to be noise and

More information

Downloaded 09/16/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/16/13 to Redistribution subject to SEG license or copyright; see Terms of Use at Time-domain incomplete Gauss-Newton full-waveform inversion of Gulf of Mexico data Abdullah AlTheyab*, Xin Wang, Gerard T. Schuster, King Abdullah University of Science and Technology Downloaded 9// to

More information

Crosswell Imaging by 2-D Prestack Wavepath Migration

Crosswell Imaging by 2-D Prestack Wavepath Migration Crosswell Imaging by 2-D Prestack Wavepath Migration Hongchuan Sun ABSTRACT Prestack wavepath migration (WM) is applied to 2-D synthetic crosswell data, and the migrated images are compared to those from

More information

Q-compensation in complex media ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco.

Q-compensation in complex media ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco. ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco. Summary We apply and compare three model-based Q-compensation approaches. The first two approaches

More information

Matched Source Waveform Inversion: Volume Extension

Matched Source Waveform Inversion: Volume Extension Overview of Source-based WI MSWI: Volume Extension Analysis of Transmission Problem Numerical Examples Matched Source Waveform Inversion: Volume Extension Guanghui Huang, William W. Symes and Rami Nammour

More information

On the Scattering Effect of Lateral Discontinuities on AVA Migration

On the Scattering Effect of Lateral Discontinuities on AVA Migration On the Scattering Effect of Lateral Discontinuities on AVA Migration Juefu Wang* and Mauricio D. Sacchi Department of Physics, University of Alberta, 4 Avadh Bhatia Physics Laboratory, Edmonton, AB, T6G

More information

SUMMARY LEAST-SQUARES MIGRATION THEORY

SUMMARY LEAST-SQUARES MIGRATION THEORY Making the most out of the least (squares migration) Gaurav Dutta, Yunsong Huang, Wei Dai, Xin Wang, and G.T. Schuster King Abdullah University of Science and Technology SUMMARY Standard migration images

More information

Separation of specular reflection and diffraction images in Kirchhoff depth migration Faruq E Akbar and Jun Ma, SEIMAX Technologies, LP

Separation of specular reflection and diffraction images in Kirchhoff depth migration Faruq E Akbar and Jun Ma, SEIMAX Technologies, LP Separation of specular reflection and diffraction images in Kirchhoff depth migration Faruq E Akbar and Jun Ma, SEIMAX Technologies, LP Summary Seismic diffractions may occur from faults, fractures, rough

More information

Separation of diffracted waves in TI media

Separation of diffracted waves in TI media CWP-829 Separation of diffracted waves in TI media Yogesh Arora & Ilya Tsvankin Center for Wave Phenomena, Colorado School of Mines Key words: Diffractions, Kirchhoff, Specularity, Anisotropy ABSTRACT

More information

Overview and classification of wavefield seismic imaging methods

Overview and classification of wavefield seismic imaging methods Overview and classification of wavefield seismic imaging methods Paul Sava and Stephen J. Hill, Colorado School of Mines Prepared for The Leading Edge Introduction. The literature and seismic processing

More information

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Velocity models used for wavefield-based seismic

More information

Inversion after depth imaging

Inversion after depth imaging Robin P. Fletcher *, Stewart Archer, Dave Nichols, and Weijian Mao, WesternGeco Summary In many areas, depth imaging of seismic data is required to construct an accurate view of the reservoir structure.

More information

Downloaded 12/02/12 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 12/02/12 to Redistribution subject to SEG license or copyright; see Terms of Use at Phase-space computation of multi-arrival traveltimes: Part II Implementation and application to angle-domain imaging Vladimir Bashkardin 1, Thomas J. Browaeys 2, Sergey Fomel 1, Fuchun Gao 3, Scott A.

More information

3-D prestack migration of common-azimuth data

3-D prestack migration of common-azimuth data Stanford Exploration Project, Report 80, May 15, 2001, pages 1 126 3-D prestack migration of common-azimuth data Biondo Biondi and Gopal Palacharla 1 ABSTRACT In principle, downward continuation of 3-D

More information

SEG/New Orleans 2006 Annual Meeting

SEG/New Orleans 2006 Annual Meeting Accuracy improvement for super-wide angle one-way waves by wavefront reconstruction Ru-Shan Wu* and Xiaofeng Jia, Modeling and Imaging Laboratory, IGPP, University of California, Santa Cruz Summary To

More information

DYNAMICALLY-FOCUSED GAUSSIAN BEAMS FOR SEISMIC IMAGING

DYNAMICALLY-FOCUSED GAUSSIAN BEAMS FOR SEISMIC IMAGING Proceedings of the Project Review, Geo-Mathematical Imaging Group (Purdue University, West Lafayette IN), Vol. 1 (2009) pp. 59-70. DYNAMICALLY-FOCUSED GAUSSIAN BEAMS FOR SEISMIC IMAGING ROBERT L. NOWACK

More information

1D internal multiple prediction in a multidimensional world: errors and recommendations

1D internal multiple prediction in a multidimensional world: errors and recommendations 1D internal multiple prediction 1D internal multiple prediction in a multidimensional world: errors and recommendations Pan Pan and Kris Innanen ABSTRACT Internal multiples are more difficult to estimate

More information

Main Menu. providing relatively fast and extremely high-quality and high-resolution performance.

Main Menu. providing relatively fast and extremely high-quality and high-resolution performance. Full-Aimuth Angle Domain Imaging Zvi Koren, Igor Ravve, Evgeny Ragoa, Allon Bartana, Paradigm Geophysical, Dan Kosloff, Tel Aviv University and Paradigm Geophysical Summary This work presents a new seismic

More information

Modelling, migration, and inversion using Linear Algebra

Modelling, migration, and inversion using Linear Algebra Modelling, mid., and inv. using Linear Algebra Modelling, migration, and inversion using Linear Algebra John C. Bancroft and Rod Blais ABSRAC Modelling migration and inversion can all be accomplished using

More information

GEOPHYS 242: Near Surface Geophysical Imaging. Class 5: Refraction Migration Methods Wed, April 13, 2011

GEOPHYS 242: Near Surface Geophysical Imaging. Class 5: Refraction Migration Methods Wed, April 13, 2011 GEOPHYS 242: Near Surface Geophysical Imaging Class 5: Refraction Migration Methods Wed, April 13, 2011 Migration versus tomography Refraction traveltime and wavefield migration The theory of interferometry

More information

Target-oriented wave-equation inversion with regularization in the subsurface-offset domain

Target-oriented wave-equation inversion with regularization in the subsurface-offset domain Stanford Exploration Project, Report 124, April 4, 2006, pages 1?? Target-oriented wave-equation inversion with regularization in the subsurface-offset domain Alejandro A. Valenciano ABSTRACT A complex

More information

Model parametrization strategies for Newton-based acoustic full waveform

Model parametrization strategies for Newton-based acoustic full waveform Model parametrization strategies for Newton-based acoustic full waveform inversion Amsalu Y. Anagaw, University of Alberta, Edmonton, Canada, aanagaw@ualberta.ca Summary This paper studies the effects

More information

Design of Surface Seismic Programs for CO2 Storage Monitoring. WesternGeco North America Geophysics Manager Houston

Design of Surface Seismic Programs for CO2 Storage Monitoring. WesternGeco North America Geophysics Manager Houston Design of Surface Seismic Programs for CO2 Storage Monitoring Mark S. Egan WesternGeco North America Geophysics Manager Houston Objectives Baseline seismic program Structure & stratigraphy of the storage

More information

Marmousi synthetic dataset

Marmousi synthetic dataset Stanford Exploration Project, Report DATALIB, January 16, 2002, pages 1?? Marmousi synthetic dataset Carmen B. Mora 1 ABSTRACT Marmousi is a 2-D synthetic dataset generated at the Institut Français du

More information

SUMMARY ELASTIC SCALAR IMAGING CONDITION

SUMMARY ELASTIC SCALAR IMAGING CONDITION Robust 3D scalar imaging condition for elastic RTM Yuting Duan, presently at Shell International Exploration and Production Inc., formerly at Center for Wave Phenomena, Colorado School of Mines Paul Sava,

More information

3D PRESTACK DEPTH MIGRATION WITH FACTORIZATION FOUR-WAY SPLITTING SCHEME

3D PRESTACK DEPTH MIGRATION WITH FACTORIZATION FOUR-WAY SPLITTING SCHEME INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume, Supp, Pages 183 196 c 5 Institute for Scientific Computing and Information 3D PRESTACK DEPTH MIGRATION WITH FACTORIZATION FOUR-WAY SPLITTING

More information

SUMMARY METHOD. d(t 2 = τ 2 + x2

SUMMARY METHOD. d(t 2 = τ 2 + x2 Yujin Liu, Zhi Peng, William W. Symes and Wotao Yin, China University of Petroleum (Huadong), Rice University SUMMARY The Radon transform suffers from the typical problems of loss of resolution and aliasing

More information

SUMMARY THE ISS INTERNAL-MULTIPLE-ATTENUATION AL- GORITHM

SUMMARY THE ISS INTERNAL-MULTIPLE-ATTENUATION AL- GORITHM Comparing the new Inverse Scattering Series (ISS) internal-multiple-elimination algorithm and the industry-standard ISS internal-multiple-attenuation algorithm plus adaptive subtraction when primaries

More information

The. Reverse-time depth migration in elastic media. Introduction FOCUS ARTICLE. Zaiming Jiang. Coordinated by Rob Holt

The. Reverse-time depth migration in elastic media. Introduction FOCUS ARTICLE. Zaiming Jiang. Coordinated by Rob Holt FOCUS ARTICLE Coordinated by Rob Holt Reverse-time depth migration in elastic media Zaiming Jiang KEY SEISMIC SOLUTIONS, CALGARY, ALBERTA, CANADA The main objective of this paper is to sketch a reverse-time

More information

Reverse-time migration by fan filtering plus wavefield decomposition Sang Yong Suh, KIGAM and Jun Cai, TGS-NOPEC

Reverse-time migration by fan filtering plus wavefield decomposition Sang Yong Suh, KIGAM and Jun Cai, TGS-NOPEC Reverse-time migration by fan filtering plus wavefield decomposition Sang Yong Suh, KIGAM and Jun Cai, TGS-NOPEC SUMMARY The conventional zero-lag crosscorrealtion imaging condition of reverse-time migration

More information

Summary. Figure 1: Simplified CRS-based imaging workflow. This paper deals with the boxes highlighted in green.

Summary. Figure 1: Simplified CRS-based imaging workflow. This paper deals with the boxes highlighted in green. Smoothing and automated picking of kinematic wavefield attributes Tilman Klüver and Jürgen Mann, Geophysical Institute, University of Karlsruhe, Germany Copyright 2005, SBGf Sociedade Brasiliera de Geofísica

More information

Main Menu. Summary. Introduction

Main Menu. Summary. Introduction Local-angle domain illumination for full-wave propagators Jun Cao* and Ru-Shan Wu Department of Earth and Planetary Sciences/IGPP, University of California, Santa Cruz Summary We propose an efficient split-step

More information

SUMMARY. Pursuit De-Noise (BPDN) problem, Chen et al., 2001; van den Berg and Friedlander, 2008):

SUMMARY. Pursuit De-Noise (BPDN) problem, Chen et al., 2001; van den Berg and Friedlander, 2008): Controlling linearization errors in l 1 regularized inversion by rerandomization Ning Tu, Xiang Li and Felix J. Herrmann, Earth and Ocean Sciences, University of British Columbia SUMMARY Linearized inversion

More information

1.5D internal multiple prediction on physical modeling data

1.5D internal multiple prediction on physical modeling data 1.5D internal multiple prediction on physical modeling data Pan Pan*, Kris Innanen and Joe Wong CREWES, University of Calgary Summary Multiple attenuation is a key aspect of seismic data processing, with

More information

F031 Application of Time Domain and Single Frequency Waveform Inversion to Real Data

F031 Application of Time Domain and Single Frequency Waveform Inversion to Real Data F031 Application of Time Domain and Single Frequency Waveform Inversion to Real Data D Yingst (ION Geophysical), C. Wang* (ION Geophysical), J. Park (ION Geophysical), R. Bloor (ION Geophysical), J. Leveille

More information

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Summary We present a new method for performing full-waveform inversion that appears

More information

96 Alkhalifah & Biondi

96 Alkhalifah & Biondi Stanford Exploration Project, Report 97, July 8, 1998, pages 95 116 The azimuth moveout operator for vertically inhomogeneous media Tariq Alkhalifah and Biondo L. Biondi 1 keywords: AMO, DMO, dip moveout

More information

Z-99 3D Sub-salt Tomography Based on Wave Equation Migration Perturbation Scans

Z-99 3D Sub-salt Tomography Based on Wave Equation Migration Perturbation Scans 1 Z-99 3D Sub-salt Tomography Based on Wave Equation Migration Perturbation Scans BIN WANG 1, VOLKER DIRKS 1, PATRICE GUILLAUME 2, FRANÇOIS AUDEBERT 1, ANNING HOU 1 AND DURYODHAN EPILI 1 1 CGG Americas;

More information

Least Squares Kirchhoff Depth Migration: potentials, challenges and its relation to interpolation

Least Squares Kirchhoff Depth Migration: potentials, challenges and its relation to interpolation Least Squares Kirchhoff Depth Migration: potentials, challenges and its relation to interpolation Daniel Trad CGG Summary Least Squares Migration (LSM), like interpolation, has the potential to address

More information

Migration Resolution. Chapter Time Migration vs Depth Migration

Migration Resolution. Chapter Time Migration vs Depth Migration Chapter 3 Migration Resolution In this section time migration is defined and its pitfalls and benefits are compared to depth migration. In the far-field approximation the resolution formula for analyzing

More information

Converted wave dip moveout

Converted wave dip moveout Stanford Exploration Project, Report 111, June 9, 2002, pages 47 59 Converted wave dip moveout Daniel Rosales 1 ABSTRACT Dip moveout (DMO) introduces a dip-dependent correction for a more appropiate transformation

More information

Wave-equation inversion prestack Hessian

Wave-equation inversion prestack Hessian Stanford Exploration Project, Report 125, January 16, 2007, pages 201 209 Wave-equation inversion prestack Hessian Alejandro A. Valenciano and Biondo Biondi ABSTRACT The angle-domain Hessian can be computed

More information

UNIVERSITY OF CALGARY. Iterative Multiparameter Elastic Waveform Inversion Using Prestack Time Imaging and Kirchhoff approximation.

UNIVERSITY OF CALGARY. Iterative Multiparameter Elastic Waveform Inversion Using Prestack Time Imaging and Kirchhoff approximation. UNIVERSITY OF CALGARY Iterative Multiparameter Elastic Waveform Inversion Using Prestack Time Imaging and Kirchhoff approximation by Hassan Khaniani A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

More information

Summary. Introduction

Summary. Introduction Yaofeng He and Ru-Shan Wu Institute of Geophysics and Planetary Physics, University of California, Santa Cruz, C 9564 Summary We propose an approach to perform migration and imaging using secondary scattered

More information

Velocity analysis using surface-seismic primaries-only data obtained without removing multiples

Velocity analysis using surface-seismic primaries-only data obtained without removing multiples Delft University of Technology Velocity analysis using surface-seismic primaries-only data obtained without removing multiples Dokter, E.; Meles, Giovanni; Curtis, A; Wapenaar, Kees DOI.3997/4-469.7 Publication

More information

SUMMARY THEORY. Extended reverse-time migration with phase encoding INTRODUCTION

SUMMARY THEORY. Extended reverse-time migration with phase encoding INTRODUCTION Multisource Least-squares Extended Reverse-time Migration with Preconditioning Guided Gradient Method Yujin Liu, William W. Symes and Zhenchun Li, China University of Petroleum (Huadong), Rice University

More information

3D image-domain wavefield tomography using time-lag extended images

3D image-domain wavefield tomography using time-lag extended images CWP-748 3D image-domain wavefield tomography using time-lag extended images Tongning Yang and Paul Sava Center for Wave Phenomena, Colorado School of Mines ABSTRACT Image-domain wavefield tomography is

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting Yueming Ye *1, Ru-Shan Wu and Zhenchun Li 2 Modeling and Imaging Laboratory, IGPP, University of California, Santa Cruz, CA 95064 Summary Migration with data acquired on surface with irregular topography

More information

Amplitude and kinematic corrections of migrated images for nonunitary imaging operators

Amplitude and kinematic corrections of migrated images for nonunitary imaging operators GEOPHYSICS, VOL. 69, NO. 4 (JULY-AUGUST 2004); P. 1017 1024, 19 FIGS. 10.1190/1.1778244 Amplitude and kinematic corrections of migrated images for nonunitary imaging operators Antoine Guitton ABSTRACT

More information

Prestack Kirchhoff time migration for complex media

Prestack Kirchhoff time migration for complex media Stanford Exploration Project, Report 97, July 8, 998, pages 45 6 Prestack Kirchhoff time migration for complex media Tariq Alkhalifah keywords: time migration, anisotropy ABSTRACT Constructing the seismic

More information

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media M. Cavalca* (WesternGeco), I. Moore (WesternGeco), L. Zhang (WesternGeco), S.L. Ng (WesternGeco), R.P. Fletcher (WesternGeco)

More information

Recovering the Reflectivity Matrix and Angledependent Plane-wave Reflection Coefficients from Imaging of Multiples

Recovering the Reflectivity Matrix and Angledependent Plane-wave Reflection Coefficients from Imaging of Multiples Recovering the Reflectivity Matrix and Angledependent Plane-wave Reflection Coefficients from Imaging of Multiples A. Ordoñez* (PGS), W.F. Sollner (PGS), T. Klüver (PGS) & L.G. Gelius (UiO) SUMMARY A joint

More information

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Didier Lecerf*, Philippe Herrmann, Gilles Lambaré, Jean-Paul Tourré and Sylvian Legleut, CGGVeritas Summary

More information

We Fast Beam Migration Using Plane Wave Destructor (PWD) Beam Forming SUMMARY

We Fast Beam Migration Using Plane Wave Destructor (PWD) Beam Forming SUMMARY We-02-12 Fast Beam Migration Using Plane Wave Destructor (PWD) Beam Forming A.M. Popovici* (Z-Terra Inc.), N. Tanushev (Z-Terra Inc.), I. Sturzu (Z-Terra Inc.), I. Musat (Z-Terra Inc.), C. Tsingas (Saudi

More information

Approximate Constant Density Acoustic Inverse Scattering Using Dip-Dependent Scaling Rami Nammour and William Symes, Rice University

Approximate Constant Density Acoustic Inverse Scattering Using Dip-Dependent Scaling Rami Nammour and William Symes, Rice University Approximate Constant Density Acoustic Inverse Scattering Using Dip-Dependent Scaling Rami Nammour and William Symes, Rice University SUMMARY This abstract presents a computationally efficient method to

More information