INTRO TO THE METROPOLIS ALGORITHM

Size: px
Start display at page:

Download "INTRO TO THE METROPOLIS ALGORITHM"

Transcription

1 INTRO TO THE METROPOLIS ALGORITHM A famous reliability experiment was performed where n = 23 ball bearings were tested and the number of revolutions were recorded. The observations in ballbearing2.dat are the number of revolutions (recorded in 0 6 units). A commonly used distribution for failure times is the Weibull distribution which has density given by f Y (y) = ( y { ( y ) ) where > 0 is called a shape parameter and > 0 is called a scale parameter. The R function dweibull(y,shape=kappa,scale=lambda) will evaluate () for you with the option log=true which will evaluate () on the log scale. Experts know that ball bearings should average about (0 6 revolutions) and that a revolution less than 0 is nearly impossible. For this assignment, we wish to fit the above Weibull distribution to the ball bearing data using Bayesian techniques. To do this we will follow the steps of a Bayesian analysis outlined in previous research assignments. Specifically, we will () choose appropriate prior distributions, (2) relate our data to the parameters and (3) combine the information in our prior with the information in our data to get a posterior distribution. Step : Choose prior distributions. The two parameters of the Weibull distribution are and which we know are both positive numbers. So, for this analysis lets use Gamma prior distributions of G(shape = a, rate = b ) and G(shape = a, rate = b ) where a, b, a and b are prior numbers that we get to choose according to our understanding of the problem. When initially thinking about and, we don t really have any idea what they should be so choosing a, b, a and b is rather difficult. But, we do know something about ball bearings so we ll try and use that to our advantage. Namely, the problem states that revolutions should be about 60 and a revolution less than 0 is impossible. Setting the expected value of the Weibull distribution equal to 60 we know Γ( + k ) 60 60/Γ( + k ) where Γ( ) is the mathematical gamma function defined by Γ(z) = 0 x z e x dx. To help us choose a, b, a and b, Figure shows 5 different Weibull density plots for 5 different combinations of and (these 5 combinations were chosen using trial and error). Both the green and blue curves seem to give Weibull densities that describe the information given in the problem so my a priori estimate of (, ) will be (3.25, 66.94) (the green curve). I am quite uncertain about this choice though so I ll pick a prior standard deviation of 3 for and a prior standard deviation of 0 for. I can now solve for a and b by solving the system of equations: E() = a /b = 3.25 Var() = a /b 2 = 3 2 a =.7 b = Similar math yields a = and b = Step 2: Link data to our parameters. Luckily, this was already done for us in the problem. Namely we will assume that Y i is the number of revolutions of the i th ball bearing and Y i iid W(, ) where W( ) is ()

2 0.06 wdens k.l k= l= 60 k= 0 l= k= 3.25 l= k= 5.5 l= k= 7.75 l= x Figure : Choices of (, ) for the ball bearing prior. the Weibull density given in Equation () above. Under this assumption, Pr(Data, ) = N ) = prod(dweibull(y,shape=kappa,scale=lambda)) (3) where the second line gives the R code to calculate the probability of our data (also known as the likelihood). Step 3: Update our priors to the posterior. Because we have two parameters ( and ) we will want to use a Gibbs sampler to sample values from the posterior distribution (because calculating it by hand would be impossible). As we learned earlier, the general Gibbs algorithm to do this is for(it in :n.it){ ## Step. Sample kappa from its posterior assuming we know lambda ## Step 2. Sample lambda from its posterior assuming we know kappa ## Step 3. Save (kappa,lambda) as a draw Let s start from Step in the Gibbs algorithm. From Bayes theorem, we know that post( Data, ) = Pr(Data, )Prior() [ N = ) ] Γ(a )b a a exp { b = prod(dweibull(y,shape=kappa,scale=lambda)) dgamma(kappa,shape=a.kappa,rate=b.kappa) (2) 2

3 but looking at this equation we immediately run into a problem - the posterior distribution is nonconjugate meaning that the form of the posterior for is something we don t recognize (and we don t have a canned R function to sample it for us). The main issue with the above Gibbs sampler algorithm is that any prior we choose for will not have a complete conditional distribution that we recognize (note: if we choose a gamma prior for we would get a gamma complete conditional). So, we need a technique to still sample from its complete conditional distribution without relying on a function in R that will draw it for us. The tool we will be using is called the Metropolis algorithm. So, how do we draw? The answer is the Metropolis algorithm. The Metropolis algorithm is a method (technically it is a Markov chain if you have heard of those) that allows you to sample from any distribution (even ones we don t recognize as is the case here). The Metropolis algorithm uses three steps to sample from any distribution: () propose a value that could be from the distribution, (2) check to see how well the proposed value matches the distribution and then (3) decide whether to keep the value as a draw from the distribution or throw it out because it doesn t match the distribution we are trying to sample from. More technically, to use the Metropolis algorithm, to sample we would do the following: 0. Choose a starting value for. Let s just use = 3.25 from our prior distribution to start.. Propose a new value for from N (, s 2 ) where is the current value of the in the algorithm and s is a standard deviation that you get to pick. The value of s is called the proposal standard deviation and is actually very important but I am going to let you mess around with using different values of s to see what affect it has on the result. In, R code, this would be kappa.star <- rnorm(,kappa,sd=s). 2. If > 0, check to see how well the proposed matches the distribution by calculating: ( Pr(Data, ) Prior( ) ) r = log Pr(Data, ) Prior() = log(pr(data, )) + log(prior( )) log(pr(data, )) log(prior()) = sum(dweibull(y,shape=kappa.star,scale=lambda,log=true)) + dgamma(kappa.star,shape=a.kappa,rate=b.kappa,log=true) sum(dweibull(y,shape=kappa,scale=lambda,log=true)) dgamma(kappa,shape=a.kappa,rate=b.kappa,log=true) were the log scale makes the prod become a sum. Note a few things in this step. First, if < 0 we do not need to do this step because we already know that has to be bigger than zero. So, if we propose < 0 we can automatically throw it out. Second, the numerator in r is just evaluating the posterior for at the value of to see how well matches. The ratio r is essentially comparing the posterior under and to see which is better (we ll keep the better value of ). And, third, this ratio is evaluated on the log-scale for computational reasons. If we try to evaluate it on the original scale we will frequently run into errors because the computer will round r either to 0 or. 3. With probability min(, exp{r), keep as a draw of otherwise just keep the original. Using these steps we would get a draw of that we use as Step in our Gibbs algorithm from above. Now that we have (finally) figured out how to do step in our Gibbs algorithm we can continue on to 3

4 Step 2. From Bayes theorem, we know that, post( Data, ) = Pr(Data, )Prior() [ N = ) ] Γ(a )b a a exp { b = prod(dweibull(y,shape=kappa,scale=lambda)) dgamma(lambda,shape=a.lambda,rate=b.lambda) but immediately run into the same problem as we had with. Namely, the posterior for is non-conjugate meaning that the form of the posterior for is something we don t recognize (and we don t have a canned R function to sample it for us). Luckily, we have already solved this problem and can rely on the Metropolis algorithm to do this. At this point we now have all the tools to code an algorithm that will sample (, ) from their posterior distribution. For this assignment, use the following outline to code up your own Metropolis within Gibbs algorithm to obtain 5000 values of (, ) from their posterior distribution. ## Prior Distribution a.kappa <-.7 b.kappa < a.lambda < b.lambda < ## Starting Values for kappa and lambda kappa < #from prior lambda < #from prior ## Proposal standard deviations s.kappa <- s.lambda <- ## Number of Iterations n.it < ## Place holders to keep values as algorithm progresses post.draws <- data.frame(kappa=rep(na,n.it),lambda=rep(na,n.it)) ## Begin the algorithm for(it in :n.it){ ## Draw kappa using the 3 steps of the Metropolis algorithm kappa.star <- rnorm(,kappa,sd=s.kappa) if(kappa.star>0){ r <- Metropolis.prob <- min(,exp(r)) if(rbinom(,,metropolis.prob)==){ kappa <- kappa.star 4

5 ## Draw lambda using the 3 steps of the Metropolis algorithm ## Keep (kappa,lambda) as a draw post.draws$kappa[it] <- kappa post.draws$lambda[it] <- lambda 5

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea Bayesian Statistics Group 8th March 2000 Slice samplers (A very brief introduction) The basic idea lacements To sample from a distribution, simply sample uniformly from the region under the density function

More information

10.4 Linear interpolation method Newton s method

10.4 Linear interpolation method Newton s method 10.4 Linear interpolation method The next best thing one can do is the linear interpolation method, also known as the double false position method. This method works similarly to the bisection method by

More information

Markov Chain Monte Carlo (part 1)

Markov Chain Monte Carlo (part 1) Markov Chain Monte Carlo (part 1) Edps 590BAY Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2018 Depending on the book that you select for

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Linear Modeling with Bayesian Statistics

Linear Modeling with Bayesian Statistics Linear Modeling with Bayesian Statistics Bayesian Approach I I I I I Estimate probability of a parameter State degree of believe in specific parameter values Evaluate probability of hypothesis given the

More information

Approximate (Monte Carlo) Inference in Bayes Nets. Monte Carlo (continued)

Approximate (Monte Carlo) Inference in Bayes Nets. Monte Carlo (continued) Approximate (Monte Carlo) Inference in Bayes Nets Basic idea: Let s repeatedly sample according to the distribution represented by the Bayes Net. If in 400/1000 draws, the variable X is true, then we estimate

More information

A noninformative Bayesian approach to small area estimation

A noninformative Bayesian approach to small area estimation A noninformative Bayesian approach to small area estimation Glen Meeden School of Statistics University of Minnesota Minneapolis, MN 55455 glen@stat.umn.edu September 2001 Revised May 2002 Research supported

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

Image Restoration using Markov Random Fields

Image Restoration using Markov Random Fields Image Restoration using Markov Random Fields Based on the paper Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images, PAMI, 1984, Geman and Geman. and the book Markov Random Field

More information

1 Methods for Posterior Simulation

1 Methods for Posterior Simulation 1 Methods for Posterior Simulation Let p(θ y) be the posterior. simulation. Koop presents four methods for (posterior) 1. Monte Carlo integration: draw from p(θ y). 2. Gibbs sampler: sequentially drawing

More information

MCMC Methods for data modeling

MCMC Methods for data modeling MCMC Methods for data modeling Kenneth Scerri Department of Automatic Control and Systems Engineering Introduction 1. Symposium on Data Modelling 2. Outline: a. Definition and uses of MCMC b. MCMC algorithms

More information

Monte Carlo Methods and Statistical Computing: My Personal E

Monte Carlo Methods and Statistical Computing: My Personal E Monte Carlo Methods and Statistical Computing: My Personal Experience Department of Mathematics & Statistics Indian Institute of Technology Kanpur November 29, 2014 Outline Preface 1 Preface 2 3 4 5 6

More information

Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization

Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization Bayesian Methods in Vision: MAP Estimation, MRFs, Optimization CS 650: Computer Vision Bryan S. Morse Optimization Approaches to Vision / Image Processing Recurring theme: Cast vision problem as an optimization

More information

Short-Cut MCMC: An Alternative to Adaptation

Short-Cut MCMC: An Alternative to Adaptation Short-Cut MCMC: An Alternative to Adaptation Radford M. Neal Dept. of Statistics and Dept. of Computer Science University of Toronto http://www.cs.utoronto.ca/ radford/ Third Workshop on Monte Carlo Methods,

More information

Euler s Method for Approximating Solution Curves

Euler s Method for Approximating Solution Curves Euler s Method for Approximating Solution Curves As you may have begun to suspect at this point, time constraints will allow us to learn only a few of the many known methods for solving differential equations.

More information

Lab 3: Sampling Distributions

Lab 3: Sampling Distributions Lab 3: Sampling Distributions Sampling from Ames, Iowa In this lab, we will investigate the ways in which the estimates that we make based on a random sample of data can inform us about what the population

More information

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24 MCMC Diagnostics Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) MCMC Diagnostics MATH 9810 1 / 24 Convergence to Posterior Distribution Theory proves that if a Gibbs sampler iterates enough,

More information

An Introduction to Markov Chain Monte Carlo

An Introduction to Markov Chain Monte Carlo An Introduction to Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) refers to a suite of processes for simulating a posterior distribution based on a random (ie. monte carlo) process. In other

More information

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week Statistics & Bayesian Inference Lecture 3 Joe Zuntz Overview Overview & Motivation Metropolis Hastings Monte Carlo Methods Importance sampling Direct sampling Gibbs sampling Monte-Carlo Markov Chains Emcee

More information

BART STAT8810, Fall 2017

BART STAT8810, Fall 2017 BART STAT8810, Fall 2017 M.T. Pratola November 1, 2017 Today BART: Bayesian Additive Regression Trees BART: Bayesian Additive Regression Trees Additive model generalizes the single-tree regression model:

More information

Chapter 2: Statistical Models for Distributions

Chapter 2: Statistical Models for Distributions Chapter 2: Statistical Models for Distributions 2.2 Normal Distributions In Chapter 2 of YMS, we learn that distributions of data can be approximated by a mathematical model known as a density curve. In

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

PIANOS requirements specifications

PIANOS requirements specifications PIANOS requirements specifications Group Linja Helsinki 7th September 2005 Software Engineering Project UNIVERSITY OF HELSINKI Department of Computer Science Course 581260 Software Engineering Project

More information

LAB #2: SAMPLING, SAMPLING DISTRIBUTIONS, AND THE CLT

LAB #2: SAMPLING, SAMPLING DISTRIBUTIONS, AND THE CLT NAVAL POSTGRADUATE SCHOOL LAB #2: SAMPLING, SAMPLING DISTRIBUTIONS, AND THE CLT Statistics (OA3102) Lab #2: Sampling, Sampling Distributions, and the Central Limit Theorem Goal: Use R to demonstrate sampling

More information

Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation

Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation Purdue University: Digital Image Processing Laboratories Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation December, 205 Introduction This laboratory explores the use

More information

Computer vision: models, learning and inference. Chapter 10 Graphical Models

Computer vision: models, learning and inference. Chapter 10 Graphical Models Computer vision: models, learning and inference Chapter 10 Graphical Models Independence Two variables x 1 and x 2 are independent if their joint probability distribution factorizes as Pr(x 1, x 2 )=Pr(x

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

Math 5320, 3/28/18 Worksheet 26: Ruler and compass constructions. 1. Use your ruler and compass to construct a line perpendicular to the line below:

Math 5320, 3/28/18 Worksheet 26: Ruler and compass constructions. 1. Use your ruler and compass to construct a line perpendicular to the line below: Math 5320, 3/28/18 Worksheet 26: Ruler and compass constructions Name: 1. Use your ruler and compass to construct a line perpendicular to the line below: 2. Suppose the following two points are spaced

More information

4.3, Math 1410 Name: And now for something completely different... Well, not really.

4.3, Math 1410 Name: And now for something completely different... Well, not really. 4.3, Math 1410 Name: And now for something completely different... Well, not really. How derivatives affect the shape of a graph. Please allow me to offer some explanation as to why the first couple parts

More information

Grade 6 Math Circles October 16 & Non-Euclidean Geometry and the Globe

Grade 6 Math Circles October 16 & Non-Euclidean Geometry and the Globe Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 16 & 17 2018 Non-Euclidean Geometry and the Globe (Euclidean) Geometry Review:

More information

Bayesian Estimation for Skew Normal Distributions Using Data Augmentation

Bayesian Estimation for Skew Normal Distributions Using Data Augmentation The Korean Communications in Statistics Vol. 12 No. 2, 2005 pp. 323-333 Bayesian Estimation for Skew Normal Distributions Using Data Augmentation Hea-Jung Kim 1) Abstract In this paper, we develop a MCMC

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

Regularization and model selection

Regularization and model selection CS229 Lecture notes Andrew Ng Part VI Regularization and model selection Suppose we are trying select among several different models for a learning problem. For instance, we might be using a polynomial

More information

MSA101/MVE Lecture 5

MSA101/MVE Lecture 5 MSA101/MVE187 2017 Lecture 5 Petter Mostad Chalmers University September 12, 2017 1 / 15 Importance sampling MC integration computes h(x)f (x) dx where f (x) is a probability density function, by simulating

More information

Estimation of Item Response Models

Estimation of Item Response Models Estimation of Item Response Models Lecture #5 ICPSR Item Response Theory Workshop Lecture #5: 1of 39 The Big Picture of Estimation ESTIMATOR = Maximum Likelihood; Mplus Any questions? answers Lecture #5:

More information

Samuel Coolidge, Dan Simon, Dennis Shasha, Technical Report NYU/CIMS/TR

Samuel Coolidge, Dan Simon, Dennis Shasha, Technical Report NYU/CIMS/TR Detecting Missing and Spurious Edges in Large, Dense Networks Using Parallel Computing Samuel Coolidge, sam.r.coolidge@gmail.com Dan Simon, des480@nyu.edu Dennis Shasha, shasha@cims.nyu.edu Technical Report

More information

Inference. Inference: calculating some useful quantity from a joint probability distribution Examples: Posterior probability: Most likely explanation:

Inference. Inference: calculating some useful quantity from a joint probability distribution Examples: Posterior probability: Most likely explanation: Inference Inference: calculating some useful quantity from a joint probability distribution Examples: Posterior probability: B A E J M Most likely explanation: This slide deck courtesy of Dan Klein at

More information

Intro. Scheme Basics. scm> 5 5. scm>

Intro. Scheme Basics. scm> 5 5. scm> Intro Let s take some time to talk about LISP. It stands for LISt Processing a way of coding using only lists! It sounds pretty radical, and it is. There are lots of cool things to know about LISP; if

More information

What is a... Manifold?

What is a... Manifold? What is a... Manifold? Steve Hurder Manifolds happens all the time! We just have to know them when we see them. Manifolds have dimension, just like Euclidean space: 1-dimension is the line, 2-dimension

More information

4.7 Approximate Integration

4.7 Approximate Integration 4.7 Approximate Integration Some anti-derivatives are difficult to impossible to find. For example, 1 0 e x2 dx or 1 1 1 + x3 dx We came across this situation back in calculus I when we introduced the

More information

Lab 7: Bayesian analysis of a dice toss problem using C++ instead of python

Lab 7: Bayesian analysis of a dice toss problem using C++ instead of python Lab 7: Bayesian analysis of a dice toss problem using C++ instead of python Due date: Monday March 27, 11:59pm Short version of the assignment Take your python file from lab 6 and convert it into lab7

More information

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data

A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data A Nonparametric Bayesian Approach to Detecting Spatial Activation Patterns in fmri Data Seyoung Kim, Padhraic Smyth, and Hal Stern Bren School of Information and Computer Sciences University of California,

More information

Sampling informative/complex a priori probability distributions using Gibbs sampling assisted by sequential simulation

Sampling informative/complex a priori probability distributions using Gibbs sampling assisted by sequential simulation Sampling informative/complex a priori probability distributions using Gibbs sampling assisted by sequential simulation Thomas Mejer Hansen, Klaus Mosegaard, and Knud Skou Cordua 1 1 Center for Energy Resources

More information

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea Chapter 3 Bootstrap 3.1 Introduction The estimation of parameters in probability distributions is a basic problem in statistics that one tends to encounter already during the very first course on the subject.

More information

Hot X: Algebra Exposed

Hot X: Algebra Exposed Hot X: Algebra Exposed Solution Guide for Chapter 10 Here are the solutions for the Doing the Math exercises in Hot X: Algebra Exposed! DTM from p.137-138 2. To see if the point is on the line, let s plug

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Shortest Paths Date: 10/13/15 14.1 Introduction Today we re going to talk about algorithms for computing shortest

More information

Warm-up as you walk in

Warm-up as you walk in arm-up as you walk in Given these N=10 observations of the world: hat is the approximate value for P c a, +b? A. 1/10 B. 5/10. 1/4 D. 1/5 E. I m not sure a, b, +c +a, b, +c a, b, +c a, +b, +c +a, b, +c

More information

Approximate Bayesian Computation. Alireza Shafaei - April 2016

Approximate Bayesian Computation. Alireza Shafaei - April 2016 Approximate Bayesian Computation Alireza Shafaei - April 2016 The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested

More information

Topic 3: Fractions. Topic 1 Integers. Topic 2 Decimals. Topic 3 Fractions. Topic 4 Ratios. Topic 5 Percentages. Topic 6 Algebra

Topic 3: Fractions. Topic 1 Integers. Topic 2 Decimals. Topic 3 Fractions. Topic 4 Ratios. Topic 5 Percentages. Topic 6 Algebra Topic : Fractions Topic Integers Topic Decimals Topic Fractions Topic Ratios Topic Percentages Duration / weeks Content Outline PART (/ week) Introduction Converting Fractions to Decimals Converting Decimals

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

Nested Sampling: Introduction and Implementation

Nested Sampling: Introduction and Implementation UNIVERSITY OF TEXAS AT SAN ANTONIO Nested Sampling: Introduction and Implementation Liang Jing May 2009 1 1 ABSTRACT Nested Sampling is a new technique to calculate the evidence, Z = P(D M) = p(d θ, M)p(θ

More information

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 8 1 Example: Data augmentation / Auxiliary variables A commonly-used

More information

Network-based auto-probit modeling for protein function prediction

Network-based auto-probit modeling for protein function prediction Network-based auto-probit modeling for protein function prediction Supplementary material Xiaoyu Jiang, David Gold, Eric D. Kolaczyk Derivation of Markov Chain Monte Carlo algorithm with the GO annotation

More information

An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics

An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics Practical 1: Getting started in OpenBUGS Slide 1 An Introduction to Using WinBUGS for Cost-Effectiveness Analyses in Health Economics Dr. Christian Asseburg Centre for Health Economics Practical 1 Getting

More information

Chapter 1. Math review. 1.1 Some sets

Chapter 1. Math review. 1.1 Some sets Chapter 1 Math review This book assumes that you understood precalculus when you took it. So you used to know how to do things like factoring polynomials, solving high school geometry problems, using trigonometric

More information

Cost Functions in Machine Learning

Cost Functions in Machine Learning Cost Functions in Machine Learning Kevin Swingler Motivation Given some data that reflects measurements from the environment We want to build a model that reflects certain statistics about that data Something

More information

Laboratorio di Problemi Inversi Esercitazione 4: metodi Bayesiani e importance sampling

Laboratorio di Problemi Inversi Esercitazione 4: metodi Bayesiani e importance sampling Laboratorio di Problemi Inversi Esercitazione 4: metodi Bayesiani e importance sampling Luca Calatroni Dipartimento di Matematica, Universitá degli studi di Genova May 19, 2016. Luca Calatroni (DIMA, Unige)

More information

The Addition Formulas in Trigonometry. Scott Fallstrom Faculty Director, Math Learning Center

The Addition Formulas in Trigonometry. Scott Fallstrom Faculty Director, Math Learning Center The Addition Formulas in Trigonometry Scott Fallstrom Faculty Director, Math Learning Center Why not the usual? In Mathematics, we know that the distributive property allows 7(x + 5) = 7x + 35 With derivatives,

More information

Math 494: Mathematical Statistics

Math 494: Mathematical Statistics Math 494: Mathematical Statistics Instructor: Jimin Ding jmding@wustl.edu Department of Mathematics Washington University in St. Louis Class materials are available on course website (www.math.wustl.edu/

More information

Mar. 20 Math 2335 sec 001 Spring 2014

Mar. 20 Math 2335 sec 001 Spring 2014 Mar. 20 Math 2335 sec 001 Spring 2014 Chebyshev Polynomials Definition: For an integer n 0 define the function ( ) T n (x) = cos n cos 1 (x), 1 x 1. It can be shown that T n is a polynomial of degree n.

More information

Grade 6 Math Circles October 16 & Non-Euclidean Geometry and the Globe

Grade 6 Math Circles October 16 & Non-Euclidean Geometry and the Globe Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 16 & 17 2018 Non-Euclidean Geometry and the Globe (Euclidean) Geometry Review:

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Lesson 13: The Graph of a Linear Equation in Two Variables

Lesson 13: The Graph of a Linear Equation in Two Variables Student Outcomes Students predict the shape of a graph of a linear equation by finding and plotting solutions on a coordinate plane. Students informally explain why the graph of a linear equation is not

More information

Bayesian analysis of genetic population structure using BAPS: Exercises

Bayesian analysis of genetic population structure using BAPS: Exercises Bayesian analysis of genetic population structure using BAPS: Exercises p S u k S u p u,s S, Jukka Corander Department of Mathematics, Åbo Akademi University, Finland Exercise 1: Clustering of groups of

More information

EGR 102 Introduction to Engineering Modeling. Lab 10A Nested Programming II Iterative Nesting

EGR 102 Introduction to Engineering Modeling. Lab 10A Nested Programming II Iterative Nesting EGR 102 Introduction to Engineering Modeling Lab 10A Nested Programming II Iterative Nesting 1 Overview 1. Nested loops 2. Nested loop: Creating Arrays 3. Nested Loops: 2 Variable functions 4. Nested Loops

More information

PR3 & PR4 CBR Activities Using EasyData for CBL/CBR Apps

PR3 & PR4 CBR Activities Using EasyData for CBL/CBR Apps Summer 2006 I2T2 Process Page 23. PR3 & PR4 CBR Activities Using EasyData for CBL/CBR Apps The TI Exploration Series for CBR or CBL/CBR books, are all written for the old CBL/CBR Application. Now we can

More information

Statistical Analysis of the 3WAY Block Cipher

Statistical Analysis of the 3WAY Block Cipher Statistical Analysis of the 3WAY Block Cipher By Himanshu Kale Project Report Submitted In Partial Fulfilment of the Requirements for the Degree of Master of Science In Computer Science Supervised by Professor

More information

Math 182. Assignment #4: Least Squares

Math 182. Assignment #4: Least Squares Introduction Math 182 Assignment #4: Least Squares In any investigation that involves data collection and analysis, it is often the goal to create a mathematical function that fits the data. That is, a

More information

Today s outline: pp

Today s outline: pp Chapter 3 sections We will SKIP a number of sections Random variables and discrete distributions Continuous distributions The cumulative distribution function Bivariate distributions Marginal distributions

More information

Clustering & Dimensionality Reduction. 273A Intro Machine Learning

Clustering & Dimensionality Reduction. 273A Intro Machine Learning Clustering & Dimensionality Reduction 273A Intro Machine Learning What is Unsupervised Learning? In supervised learning we were given attributes & targets (e.g. class labels). In unsupervised learning

More information

Polygons and Angles: Student Guide

Polygons and Angles: Student Guide Polygons and Angles: Student Guide You are going to be using a Sphero to figure out what angle you need the Sphero to move at so that it can draw shapes with straight lines (also called polygons). The

More information

Monte Carlo Integration

Monte Carlo Integration Lab 18 Monte Carlo Integration Lab Objective: Implement Monte Carlo integration to estimate integrals. Use Monte Carlo Integration to calculate the integral of the joint normal distribution. Some multivariable

More information

Markov Random Fields and Gibbs Sampling for Image Denoising

Markov Random Fields and Gibbs Sampling for Image Denoising Markov Random Fields and Gibbs Sampling for Image Denoising Chang Yue Electrical Engineering Stanford University changyue@stanfoed.edu Abstract This project applies Gibbs Sampling based on different Markov

More information

I can solve simultaneous equations algebraically, where one is quadratic and one is linear.

I can solve simultaneous equations algebraically, where one is quadratic and one is linear. A* I can manipulate algebraic fractions. I can use the equation of a circle. simultaneous equations algebraically, where one is quadratic and one is linear. I can transform graphs, including trig graphs.

More information

Case Study IV: Bayesian clustering of Alzheimer patients

Case Study IV: Bayesian clustering of Alzheimer patients Case Study IV: Bayesian clustering of Alzheimer patients Mike Wiper and Conchi Ausín Department of Statistics Universidad Carlos III de Madrid Advanced Statistics and Data Mining Summer School 2nd - 6th

More information

Grade 7/8 Math Circles Fall Nov.4/5 The Pythagorean Theorem

Grade 7/8 Math Circles Fall Nov.4/5 The Pythagorean Theorem 1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2014 - Nov.4/5 The Pythagorean Theorem Introduction A right triangle is any triangle

More information

Data Analysis & Probability

Data Analysis & Probability Unit 5 Probability Distributions Name: Date: Hour: Section 7.2: The Standard Normal Distribution (Area under the curve) Notes By the end of this lesson, you will be able to Find the area under the standard

More information

Math 205 Test 3 Grading Guidelines Problem 1 Part a: 1 point for figuring out r, 2 points for setting up the equation P = ln 2 P and 1 point for the initial condition. Part b: All or nothing. This is really

More information

6.001 Notes: Section 4.1

6.001 Notes: Section 4.1 6.001 Notes: Section 4.1 Slide 4.1.1 In this lecture, we are going to take a careful look at the kinds of procedures we can build. We will first go back to look very carefully at the substitution model,

More information

I can solve simultaneous equations algebraically and graphically. I can solve inequalities algebraically and graphically.

I can solve simultaneous equations algebraically and graphically. I can solve inequalities algebraically and graphically. B I can factorise and expand complex expressions. I can factorise Quadratics I can recognise the Difference of Two Squares (D.O.T.S) simultaneous equations algebraically and graphically. inequalities algebraically

More information

x y

x y 10. LECTURE 10 Objectives I understand the difficulty in finding an appropriate function for a data set in general. In some cases, I can define a function type that may fit a data set well. Last time,

More information

Describe the Squirt Studio Open Office Version

Describe the Squirt Studio Open Office Version Name: Recitation: Describe the Squirt Studio Open Office Version Most of this studio is done with a java applet online. There is one problem where you need to carry out a quadratic regression. Unfortunately,

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Applications of the Chinese Remainder Theorem

Applications of the Chinese Remainder Theorem Applications of the Chinese Remainder Theorem L. Felipe Martins Department of Mathematics Cleveland State University l.martins@csuohio.edu Work licensed under a Creative Commons License available at http://creativecommons.org/licenses/by-nc-sa/3.0/us/

More information

Circulation density and an argument for Stokes Theorem

Circulation density and an argument for Stokes Theorem MATH 221A Multivariate Calculus pring 2004 Circulation density and an argument for tokes Theorem Version 1 (May 13, 2004) There are three sections in these notes. The goal for the first section is to see

More information

Machine Learning. Sourangshu Bhattacharya

Machine Learning. Sourangshu Bhattacharya Machine Learning Sourangshu Bhattacharya Bayesian Networks Directed Acyclic Graph (DAG) Bayesian Networks General Factorization Curve Fitting Re-visited Maximum Likelihood Determine by minimizing sum-of-squares

More information

Math 32B Discussion Session Week 2 Notes January 17 and 24, 2017

Math 32B Discussion Session Week 2 Notes January 17 and 24, 2017 Math 3B Discussion Session Week Notes January 7 and 4, 7 This week we ll finish discussing the double integral for non-rectangular regions (see the last few pages of the week notes) and then we ll touch

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 17 EM CS/CNS/EE 155 Andreas Krause Announcements Project poster session on Thursday Dec 3, 4-6pm in Annenberg 2 nd floor atrium! Easels, poster boards and cookies

More information

Sparse & Redundant Representations and Their Applications in Signal and Image Processing

Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparseland: An Estimation Point of View Michael Elad The Computer Science Department The Technion Israel Institute

More information

Computer Science 21b (Spring Term, 2015) Structure and Interpretation of Computer Programs. Lexical addressing

Computer Science 21b (Spring Term, 2015) Structure and Interpretation of Computer Programs. Lexical addressing Computer Science 21b (Spring Term, 2015) Structure and Interpretation of Computer Programs Lexical addressing The difference between a interpreter and a compiler is really two points on a spectrum of possible

More information

From Bayesian Analysis of Item Response Theory Models Using SAS. Full book available for purchase here.

From Bayesian Analysis of Item Response Theory Models Using SAS. Full book available for purchase here. From Bayesian Analysis of Item Response Theory Models Using SAS. Full book available for purchase here. Contents About this Book...ix About the Authors... xiii Acknowledgments... xv Chapter 1: Item Response

More information

Hierarchical Bayesian Modeling with Ensemble MCMC. Eric B. Ford (Penn State) Bayesian Computing for Astronomical Data Analysis June 12, 2014

Hierarchical Bayesian Modeling with Ensemble MCMC. Eric B. Ford (Penn State) Bayesian Computing for Astronomical Data Analysis June 12, 2014 Hierarchical Bayesian Modeling with Ensemble MCMC Eric B. Ford (Penn State) Bayesian Computing for Astronomical Data Analysis June 12, 2014 Simple Markov Chain Monte Carlo Initialise chain with θ 0 (initial

More information

A Quick Introduction to R

A Quick Introduction to R Math 4501 Fall 2012 A Quick Introduction to R The point of these few pages is to give you a quick introduction to the possible uses of the free software R in statistical analysis. I will only expect you

More information

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one.

a. divided by the. 1) Always round!! a) Even if class width comes out to a, go up one. Probability and Statistics Chapter 2 Notes I Section 2-1 A Steps to Constructing Frequency Distributions 1 Determine number of (may be given to you) a Should be between and classes 2 Find the Range a The

More information

Texture. Announcements. 2) Synthesis. Issues: 1) Discrimination/Analysis

Texture. Announcements. 2) Synthesis. Issues: 1) Discrimination/Analysis Announcements For future problems sets: email matlab code by 11am, due date (same as deadline to hand in hardcopy). Today s reading: Chapter 9, except 9.4. Texture Edge detectors find differences in overall

More information

Drexel University Electrical and Computer Engineering Department. ECEC 672 EDA for VLSI II. Statistical Static Timing Analysis Project

Drexel University Electrical and Computer Engineering Department. ECEC 672 EDA for VLSI II. Statistical Static Timing Analysis Project Drexel University Electrical and Computer Engineering Department ECEC 672 EDA for VLSI II Statistical Static Timing Analysis Project Andrew Sauber, Julian Kemmerer Implementation Outline Our implementation

More information

Specific Objectives Students will understand that that the family of equation corresponds with the shape of the graph. Students will be able to create a graph of an equation by plotting points. In lesson

More information

Describe the Squirt Studio

Describe the Squirt Studio Name: Recitation: Describe the Squirt Studio This sheet includes both instruction sections (labeled with letters) and problem sections (labeled with numbers). Please work through the instructions and answer

More information