Network-based auto-probit modeling for protein function prediction

Size: px
Start display at page:

Download "Network-based auto-probit modeling for protein function prediction"

Transcription

1 Network-based auto-probit modeling for protein function prediction Supplementary material Xiaoyu Jiang, David Gold, Eric D. Kolaczyk Derivation of Markov Chain Monte Carlo algorithm with the GO annotation uncertainty When we consider the Gene Ontology annotation uncertainty and include the probability of being incorrectly un-annotated, g, the fully conditional distribution for updating individual z i s is different from before, being expressed as P(z i z [ i],µ,β,g,y) = 2πΦ( zi ) exp { 2 (z i z i ) 2 }, z i, y i =,, z i <, y i =, g exp 2π[ Φ( zi )+gφ( z i )] { 2 (z i z i ) 2 }, z i, y i =, 2π[ Φ( zi )+gφ( z i )] exp { 2 (z i z i ) 2 }, z i <, y i =, where z [ i] is all of z except the ith element z i, z i = µ i +β j i di d j a ij (z j µ j ), and Φ is the standard normal cumulative density function. The deriva-

2 tion of the conditional probability is as follows. where P(z i z [ i],µ,β,g,y) = P(y z,g) P(z i z [ i],µ,β) z i P(y,z i z [ i],µ,β,g)dz i P(y i z i,g) = P(z i z z i P(y i z i,g) P(z i z [ i],µ,β)dz [ i],µ,β) i = C P(z i z [ i],µ,β), C = = = = P(y i z i,g) z i P(y i z i,g) P(z i z [ i],µ,β)dz i P(y i z i,g) z i P(y i z i,g) P(z i z [ i],µ,β)dz i + z i < P(y i z i,g) P(z i z [ i],µ,β)dz i P(y i z i,g) Rz i P(z i z [ i],µ,β)dz i + R z i < P(z, when y i z [ i],µ,β)dz i i =, P(y i z i,g) Rz i g P(z i z [ i],µ,β)dz i + R z i < P(z i z [ i],µ,β)dz i, when y i =, Φ( z i ), when y i =, z i,, when y i =, z i <, g gφ( z i )+ Φ( z i ), when y i =, z i, gφ( z i )+ Φ( z i ), when y i =, z i <. The Gibbs sampler can be used to update g, the fully conditional distribution of which is a beta distribution, P(g z,µ,β,y) P(y z,g) P(g) g N + ( g) N ++, where N + = #{i : y i =,z i }, N ++ = #{i : y i = +,z i }. 2

3 2 x 3 β for CC network Iterations 2 x 4 β for OOB network Iterations Web Figure : Traceplots of the posterior samples of β for the two networks. [Top]: the CC network; [Bottom]: the OOB network. 3

4 Frequency Frequency Posterior samples of β for CC network x 3 5 Posterior samples of β for OOB network 2 x 4 Web Figure 2: Histograms of the posterior samples of β for the two networks. [Top]: the CC network; [Bottom]: the OOB network. 4

5 3 25 Un annotated proteins Annotated proteins 2 Frequency Posterior estimates of µ for CC network 25 Un annotated proteins Annotated proteins 2 Frequency Posterior estimates of µ for OOB network Web Figure 3: Histogram of the posterior estimates of µ for the two networks. In both plots, color blue are based on proteins not annotated with the term in question while purple are for annotated ones. [Top]: the CC network; [Bottom]: the OOB network. 5

6 Web Figure 3 contains the histograms of the posterior estimates of probabilities of having the target function, given the observed GO annotations, for the two networks. Blue histograms are based on proteins which are not annotated with the term in question while purple ones are for annotated proteins. We also plot the histograms of the posterior estimates of µ as in Web Figure 4. Interestingly, in those plots, the histograms for the two classes of proteins are well separated, with the posterior mean of the un-annotated proteins lower than that of the annotated proteins in both cases, and little overlapping areas between the two classes. This indicates that the autoprobit model is capable of distinguishing proteins with different functional status, annotated and un-annotated, by utilizing the network topology and estimating the parameters in a globally coherent fashion. 6

7 8 6 Un annotated proteins Annotated proteins 4 2 Frequency Posterior predictive probabilities for CC network 2 8 Un annotated proteins Annotated proteins Frequency Posterior predictive probabilities for OOB network Web Figure 4: Histogram of the posterior estimates of the probability of having the target function. [Top]: intracellular signaling cascade in the CC network; [Bottom]: chromosome organization and biogenesis in the OOB network. 7

8 Simulation study We conducted trials of simulation on the CC network. More specifically, for each trial, we fixed the network topology, pre-specified parameter values and simulated the protein annotations for each trial. The parameter values were those inferred from the original data. Then we applied our model on the simulated annotations in a -fold cross-validation to produce predictions. Predictive accuracy was evaluated against the simulated annotations and plotted the ROC curve. Web Figure 5 below shows the individual ROC curves for the simulation trials (grey). The red ROC curve is plotted with averaged sensitivity and specificity across all trials; its AUC is.867. Upper, lower 5th percentile and the 5th percentile curves are chosen based on the relative rank of their corresponding AUCs. They are colored as purple, blue and green, with AUC of.87,.988 and.887, respectively. The mean AUC is.8678 with a standard deviation.282. It is clear that the simulation results are fairly stable and satisfying, and our model has good reproducibility when prediction is of interest. Sensitivity Individual simulation.2 Averaged across simulations 5 percentile AUC. 95 percentile AUC 5 percentile AUC Specificity Web Figure 5: ROC curves for the trials of simulation 8

9 Network-based auto-probit model on large network We implemented our method on a large yeast network containing 585 proteins to predict the two terms studied in the paper - intracellular signal cascade, and chromosome organization and biogenesis, by a -fold crossvalidation study, and performed the same analysis as in Section 4.4. Below are the precision and recall plots. Sensitivity Auto Probit: with g Auto_Probit: without g specificity 9

10 Sensitivity Auto Probit: with g Auto_Probit: without g specificty Web Figure 6: Results for predicting function intracellular signal cascade on the network of 585 proteins by a -fold cross-validation. [Top]: recall versus threshold; [Bottom]: precision versus threshold. [Red]: auto-probit method with modeling annotation uncertainty; [Blue]: auto-probit method without modeling annotation uncertainty. Sensitivity Auto Probit: with g Auto_Probit: without g specificity

11 Sensitivity Auto Probit: with g Auto_Probit: without g Specificity Web Figure 7: Results for predicting function chromosome organization and biogenesis on the network of 585 proteins by a -fold cross-validation. [Top]: recall versus threshold; [Bottom]: precision versus threshold. [Red]: auto-probit method with modeling annotation uncertainty; [Blue]: auto-probit method without modeling annotation uncertainty.

12 Network-based auto-probit model with a different choice of path in Gene Ontology To show how our proposed method works with a different choice of path in the GO hierarchy, we chose a different path that leads to the term intracellular signal cascade (ISC) to predict it. That is, we used the path from the term regulation of cellular process (RCP) to ISC, instead of using the path from cellular communication (CC) as used in our manuscript. We chose to use the largest connected component of 655 genes that are annotated with RCP as our network, namely, the RCP network. Similar to what we did in the paper, we first compared the predictive accuracy of our autoprobit model, with the logistic kernel method and the Nearest-Neighbor (NN) algorithm. Then we studied the prediction improvement from modeling annotation uncertainty by our model. The results showed the same story: that our network-based auto-probit model is comparable in prediction ability and modeling the annotation uncertainty improves prediction. Web Figure 8 below shows the comparison of the ROC curves from the auto-probit model, the logistic kernel method and NN algorithm based on a -fold cross-validation study on the RCP network. AUC s from the autoprobit model, the logistic kernel method, and NN algorithm are.84,.8632 and.772, respectively. The p-value for comparing AUC from the auto-probit model and the logistic kernel method is.689; the p-value for comparing AUC s from the auto-probit model and NN algorithm is.439, indicating that our model has similar predictive capability as these commonly used methods. Web Figure 9 show the ROC curves from our model with and without annotation uncertainty by a -fold cross-validation study on RCP network. This is the same analysis as in Section 4.4 in the manuscript. The annotations used in the cross-validation study are updated in June 26, and model performance is evaluated against annotations updated in November 27. The AUC for modeling annotation uncertainty (under the red curve) is.6297, while the AUC for without annotation uncertainty is only It shows that predictive accuracy is greatly improved by incorporating the uncertainty in negative annotations. 2

13 ROC Curve Sensitivity Auto probit: weighted STRING. Logistic kernel method Nearest Neighbor Specificity Web Figure 8: ROC curves for method comparison for predicting intracellular signal cascade on the RCP network. [Red]: auto-probit method with modeling annotation uncertainty; [Blue]: auto-probit method without modeling annotation uncertainty. Sensitivity Auto Probit: with g Auto_Probit: without g specificity Web Figure 9: Recall plot for predicting function intracellular signal cascade on the RCP network. [Red]: auto-probit method with modeling 3

14 annotation uncertainty; [Blue]: auto-probit method without modeling annotation uncertainty. 4

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

University of Wisconsin-Madison Spring 2018 BMI/CS 776: Advanced Bioinformatics Homework #2

University of Wisconsin-Madison Spring 2018 BMI/CS 776: Advanced Bioinformatics Homework #2 Assignment goals Use mutual information to reconstruct gene expression networks Evaluate classifier predictions Examine Gibbs sampling for a Markov random field Control for multiple hypothesis testing

More information

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example

The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example The Multi Stage Gibbs Sampling: Data Augmentation Dutch Example Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Module 8 1 Example: Data augmentation / Auxiliary variables A commonly-used

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

Supplementary Material

Supplementary Material Supplementary Material Figure 1S: Scree plot of the 400 dimensional data. The Figure shows the 20 largest eigenvalues of the (normalized) correlation matrix sorted in decreasing order; the insert shows

More information

Evaluation of different biological data and computational classification methods for use in protein interaction prediction.

Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Yanjun Qi, Ziv Bar-Joseph, Judith Klein-Seetharaman Protein 2006 Motivation Correctly

More information

Identifying and Understanding Differential Transcriptor Binding

Identifying and Understanding Differential Transcriptor Binding Identifying and Understanding Differential Transcriptor Binding 15-899: Computational Genomics David Koes Yong Lu Motivation Under different conditions, a transcription factor binds to different genes

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Weka ( )

Weka (  ) Weka ( http://www.cs.waikato.ac.nz/ml/weka/ ) The phases in which classifier s design can be divided are reflected in WEKA s Explorer structure: Data pre-processing (filtering) and representation Supervised

More information

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea

Bayesian Statistics Group 8th March Slice samplers. (A very brief introduction) The basic idea Bayesian Statistics Group 8th March 2000 Slice samplers (A very brief introduction) The basic idea lacements To sample from a distribution, simply sample uniformly from the region under the density function

More information

Structured prediction using the network perceptron

Structured prediction using the network perceptron Structured prediction using the network perceptron Ta-tsen Soong Joint work with Stuart Andrews and Prof. Tony Jebara Motivation A lot of network-structured data Social networks Citation networks Biological

More information

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning Partitioning Data IRDS: Evaluation, Debugging, and Diagnostics Charles Sutton University of Edinburgh Training Validation Test Training : Running learning algorithms Validation : Tuning parameters of learning

More information

Graphical Models, Bayesian Method, Sampling, and Variational Inference

Graphical Models, Bayesian Method, Sampling, and Variational Inference Graphical Models, Bayesian Method, Sampling, and Variational Inference With Application in Function MRI Analysis and Other Imaging Problems Wei Liu Scientific Computing and Imaging Institute University

More information

CS281 Section 9: Graph Models and Practical MCMC

CS281 Section 9: Graph Models and Practical MCMC CS281 Section 9: Graph Models and Practical MCMC Scott Linderman November 11, 213 Now that we have a few MCMC inference algorithms in our toolbox, let s try them out on some random graph models. Graphs

More information

MRF-based Algorithms for Segmentation of SAR Images

MRF-based Algorithms for Segmentation of SAR Images This paper originally appeared in the Proceedings of the 998 International Conference on Image Processing, v. 3, pp. 770-774, IEEE, Chicago, (998) MRF-based Algorithms for Segmentation of SAR Images Robert

More information

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24 MCMC Diagnostics Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) MCMC Diagnostics MATH 9810 1 / 24 Convergence to Posterior Distribution Theory proves that if a Gibbs sampler iterates enough,

More information

Model-Based Clustering for Online Crisis Identification in Distributed Computing

Model-Based Clustering for Online Crisis Identification in Distributed Computing Model-Based Clustering for Crisis Identification in Distributed Computing Dawn Woodard Operations Research and Information Engineering Cornell University with Moises Goldszmidt Microsoft Research 1 Outline

More information

SHARPR (Systematic High-resolution Activation and Repression Profiling with Reporter-tiling) User Manual (v1.0.2)

SHARPR (Systematic High-resolution Activation and Repression Profiling with Reporter-tiling) User Manual (v1.0.2) SHARPR (Systematic High-resolution Activation and Repression Profiling with Reporter-tiling) User Manual (v1.0.2) Overview Email any questions to Jason Ernst (jason.ernst@ucla.edu) SHARPR is software for

More information

Latent Variable Models for the Analysis, Visualization and Prediction of Network and Nodal Attribute Data. Isabella Gollini.

Latent Variable Models for the Analysis, Visualization and Prediction of Network and Nodal Attribute Data. Isabella Gollini. z i! z j Latent Variable Models for the Analysis, Visualization and Prediction of etwork and odal Attribute Data School of Engineering University of Bristol isabella.gollini@bristol.ac.uk January 4th,

More information

Lecture 21 : A Hybrid: Deep Learning and Graphical Models

Lecture 21 : A Hybrid: Deep Learning and Graphical Models 10-708: Probabilistic Graphical Models, Spring 2018 Lecture 21 : A Hybrid: Deep Learning and Graphical Models Lecturer: Kayhan Batmanghelich Scribes: Paul Liang, Anirudha Rayasam 1 Introduction and Motivation

More information

Multiplicative Mixture Models for Overlapping Clustering

Multiplicative Mixture Models for Overlapping Clustering Multiplicative Mixture Models for Overlapping Clustering Qiang Fu Dept of Computer Science & Engineering University of Minnesota, Twin Cities qifu@cs.umn.edu Arindam Banerjee Dept of Computer Science &

More information

Tutorial using BEAST v2.4.1 Troubleshooting David A. Rasmussen

Tutorial using BEAST v2.4.1 Troubleshooting David A. Rasmussen Tutorial using BEAST v2.4.1 Troubleshooting David A. Rasmussen 1 Background The primary goal of most phylogenetic analyses in BEAST is to infer the posterior distribution of trees and associated model

More information

An Empirical Study on Lazy Multilabel Classification Algorithms

An Empirical Study on Lazy Multilabel Classification Algorithms An Empirical Study on Lazy Multilabel Classification Algorithms Eleftherios Spyromitros, Grigorios Tsoumakas and Ioannis Vlahavas Machine Learning & Knowledge Discovery Group Department of Informatics

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

The Normal Distribution & z-scores

The Normal Distribution & z-scores & z-scores Distributions: Who needs them? Why are we interested in distributions? Important link between distributions and probabilities of events If we know the distribution of a set of events, then we

More information

Computer vision: models, learning and inference. Chapter 10 Graphical Models

Computer vision: models, learning and inference. Chapter 10 Graphical Models Computer vision: models, learning and inference Chapter 10 Graphical Models Independence Two variables x 1 and x 2 are independent if their joint probability distribution factorizes as Pr(x 1, x 2 )=Pr(x

More information

Modeling Criminal Careers as Departures From a Unimodal Population Age-Crime Curve: The Case of Marijuana Use

Modeling Criminal Careers as Departures From a Unimodal Population Age-Crime Curve: The Case of Marijuana Use Modeling Criminal Careers as Departures From a Unimodal Population Curve: The Case of Marijuana Use Donatello Telesca, Elena A. Erosheva, Derek A. Kreader, & Ross Matsueda April 15, 2014 extends Telesca

More information

STREAMING FRAGMENT ASSIGNMENT FOR REAL-TIME ANALYSIS OF SEQUENCING EXPERIMENTS. Supplementary Figure 1

STREAMING FRAGMENT ASSIGNMENT FOR REAL-TIME ANALYSIS OF SEQUENCING EXPERIMENTS. Supplementary Figure 1 STREAMING FRAGMENT ASSIGNMENT FOR REAL-TIME ANALYSIS OF SEQUENCING EXPERIMENTS ADAM ROBERTS AND LIOR PACHTER Supplementary Figure 1 Frequency 0 1 1 10 100 1000 10000 1 10 20 30 40 50 60 70 13,950 Bundle

More information

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution

Stat 528 (Autumn 2008) Density Curves and the Normal Distribution. Measures of center and spread. Features of the normal distribution Stat 528 (Autumn 2008) Density Curves and the Normal Distribution Reading: Section 1.3 Density curves An example: GRE scores Measures of center and spread The normal distribution Features of the normal

More information

Monte Carlo for Spatial Models

Monte Carlo for Spatial Models Monte Carlo for Spatial Models Murali Haran Department of Statistics Penn State University Penn State Computational Science Lectures April 2007 Spatial Models Lots of scientific questions involve analyzing

More information

MCMC Methods for data modeling

MCMC Methods for data modeling MCMC Methods for data modeling Kenneth Scerri Department of Automatic Control and Systems Engineering Introduction 1. Symposium on Data Modelling 2. Outline: a. Definition and uses of MCMC b. MCMC algorithms

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

Semiparametric Mixed Effecs with Hierarchical DP Mixture

Semiparametric Mixed Effecs with Hierarchical DP Mixture Semiparametric Mixed Effecs with Hierarchical DP Mixture R topics documented: April 21, 2007 hdpm-package........................................ 1 hdpm............................................ 2 hdpmfitsetup........................................

More information

INF4820, Algorithms for AI and NLP: Hierarchical Clustering

INF4820, Algorithms for AI and NLP: Hierarchical Clustering INF4820, Algorithms for AI and NLP: Hierarchical Clustering Erik Velldal University of Oslo Sept. 25, 2012 Agenda Topics we covered last week Evaluating classifiers Accuracy, precision, recall and F-score

More information

Identifying network modules

Identifying network modules Network biology minicourse (part 3) Algorithmic challenges in genomics Identifying network modules Roded Sharan School of Computer Science, Tel Aviv University Gene/Protein Modules A module is a set of

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Hierarchical Shape Classification Using Bayesian Aggregation

Hierarchical Shape Classification Using Bayesian Aggregation Hierarchical Shape Classification Using Bayesian Aggregation Zafer Barutcuoglu Princeton University Christopher DeCoro Abstract In 3D shape classification scenarios with classes arranged in a hierarchy

More information

CSCI 599 Class Presenta/on. Zach Levine. Markov Chain Monte Carlo (MCMC) HMM Parameter Es/mates

CSCI 599 Class Presenta/on. Zach Levine. Markov Chain Monte Carlo (MCMC) HMM Parameter Es/mates CSCI 599 Class Presenta/on Zach Levine Markov Chain Monte Carlo (MCMC) HMM Parameter Es/mates April 26 th, 2012 Topics Covered in this Presenta2on A (Brief) Review of HMMs HMM Parameter Learning Expecta2on-

More information

Linear Modeling with Bayesian Statistics

Linear Modeling with Bayesian Statistics Linear Modeling with Bayesian Statistics Bayesian Approach I I I I I Estimate probability of a parameter State degree of believe in specific parameter values Evaluate probability of hypothesis given the

More information

Collective classification in network data

Collective classification in network data 1 / 50 Collective classification in network data Seminar on graphs, UCSB 2009 Outline 2 / 50 1 Problem 2 Methods Local methods Global methods 3 Experiments Outline 3 / 50 1 Problem 2 Methods Local methods

More information

INTRO TO THE METROPOLIS ALGORITHM

INTRO TO THE METROPOLIS ALGORITHM INTRO TO THE METROPOLIS ALGORITHM A famous reliability experiment was performed where n = 23 ball bearings were tested and the number of revolutions were recorded. The observations in ballbearing2.dat

More information

Markov Chain Monte Carlo (part 1)

Markov Chain Monte Carlo (part 1) Markov Chain Monte Carlo (part 1) Edps 590BAY Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2018 Depending on the book that you select for

More information

BeviMed Guide. Daniel Greene

BeviMed Guide. Daniel Greene BeviMed Guide Daniel Greene 1 Introduction BeviMed [1] is a procedure for evaluating the evidence of association between allele configurations across rare variants, typically within a genomic locus, and

More information

Dealing with Categorical Data Types in a Designed Experiment

Dealing with Categorical Data Types in a Designed Experiment Dealing with Categorical Data Types in a Designed Experiment Part II: Sizing a Designed Experiment When Using a Binary Response Best Practice Authored by: Francisco Ortiz, PhD STAT T&E COE The goal of

More information

Quantitative Biology II!

Quantitative Biology II! Quantitative Biology II! Lecture 3: Markov Chain Monte Carlo! March 9, 2015! 2! Plan for Today!! Introduction to Sampling!! Introduction to MCMC!! Metropolis Algorithm!! Metropolis-Hastings Algorithm!!

More information

Principles of Machine Learning

Principles of Machine Learning Principles of Machine Learning Lab 3 Improving Machine Learning Models Overview In this lab you will explore techniques for improving and evaluating the performance of machine learning models. You will

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Classification and Clustering Classification and clustering are classical pattern recognition / machine learning problems

More information

A GENERAL GIBBS SAMPLING ALGORITHM FOR ANALYZING LINEAR MODELS USING THE SAS SYSTEM

A GENERAL GIBBS SAMPLING ALGORITHM FOR ANALYZING LINEAR MODELS USING THE SAS SYSTEM A GENERAL GIBBS SAMPLING ALGORITHM FOR ANALYZING LINEAR MODELS USING THE SAS SYSTEM Jayawant Mandrekar, Daniel J. Sargent, Paul J. Novotny, Jeff A. Sloan Mayo Clinic, Rochester, MN 55905 ABSTRACT A general

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

Tutorials Case studies

Tutorials Case studies 1. Subject Three curves for the evaluation of supervised learning methods. Evaluation of classifiers is an important step of the supervised learning process. We want to measure the performance of the classifier.

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

Artificial Neural Networks (Feedforward Nets)

Artificial Neural Networks (Feedforward Nets) Artificial Neural Networks (Feedforward Nets) y w 03-1 w 13 y 1 w 23 y 2 w 01 w 21 w 22 w 02-1 w 11 w 12-1 x 1 x 2 6.034 - Spring 1 Single Perceptron Unit y w 0 w 1 w n w 2 w 3 x 0 =1 x 1 x 2 x 3... x

More information

FUNCTIONAL magnetic resonance imaging (fmri) is

FUNCTIONAL magnetic resonance imaging (fmri) is IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, MARCH 2 A Bayesian Mixture Approach to Modeling Spatial Activation Patterns in Multi-site fmri Data Seyoung Kim, Padhraic Smyth, Member, IEEE, and Hal

More information

4.3 The Normal Distribution

4.3 The Normal Distribution 4.3 The Normal Distribution Objectives. Definition of normal distribution. Standard normal distribution. Specialties of the graph of the standard normal distribution. Percentiles of the standard normal

More information

Supplementary Materials for. A gene ontology inferred from molecular networks

Supplementary Materials for. A gene ontology inferred from molecular networks Supplementary Materials for A gene ontology inferred from molecular networks Janusz Dutkowski, Michael Kramer, Michal A Surma, Rama Balakrishnan, J Michael Cherry, Nevan J Krogan & Trey Ideker 1. Supplementary

More information

A New Bayesian Framework for Object Recognition

A New Bayesian Framework for Object Recognition Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR), 1999 vol. II, p.517 A New Bayesian Framework for Object Recognition Yuri Boykov Daniel P. Huttenlocher Computer Science

More information

Expectation-Maximization Methods in Population Analysis. Robert J. Bauer, Ph.D. ICON plc.

Expectation-Maximization Methods in Population Analysis. Robert J. Bauer, Ph.D. ICON plc. Expectation-Maximization Methods in Population Analysis Robert J. Bauer, Ph.D. ICON plc. 1 Objective The objective of this tutorial is to briefly describe the statistical basis of Expectation-Maximization

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

The Normal Distribution & z-scores

The Normal Distribution & z-scores & z-scores Distributions: Who needs them? Why are we interested in distributions? Important link between distributions and probabilities of events If we know the distribution of a set of events, then we

More information

Using the DATAMINE Program

Using the DATAMINE Program 6 Using the DATAMINE Program 304 Using the DATAMINE Program This chapter serves as a user s manual for the DATAMINE program, which demonstrates the algorithms presented in this book. Each menu selection

More information

Applications of the k-nearest neighbor method for regression and resampling

Applications of the k-nearest neighbor method for regression and resampling Applications of the k-nearest neighbor method for regression and resampling Objectives Provide a structured approach to exploring a regression data set. Introduce and demonstrate the k-nearest neighbor

More information

Bayesian Modelling with JAGS and R

Bayesian Modelling with JAGS and R Bayesian Modelling with JAGS and R Martyn Plummer International Agency for Research on Cancer Rencontres R, 3 July 2012 CRAN Task View Bayesian Inference The CRAN Task View Bayesian Inference is maintained

More information

ISyE 6416 Basic Statistical Methods - Spring 2016 Bonus Project: Big Data Analytics Final Report. Team Member Names: Xi Yang, Yi Wen, Xue Zhang

ISyE 6416 Basic Statistical Methods - Spring 2016 Bonus Project: Big Data Analytics Final Report. Team Member Names: Xi Yang, Yi Wen, Xue Zhang ISyE 6416 Basic Statistical Methods - Spring 2016 Bonus Project: Big Data Analytics Final Report Team Member Names: Xi Yang, Yi Wen, Xue Zhang Project Title: Improve Room Utilization Introduction Problem

More information

CS 195-5: Machine Learning Problem Set 5

CS 195-5: Machine Learning Problem Set 5 CS 195-5: Machine Learning Problem Set 5 Douglas Lanman dlanman@brown.edu 26 November 26 1 Clustering and Vector Quantization Problem 1 Part 1: In this problem we will apply Vector Quantization (VQ) to

More information

Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex

Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex CORRECTION NOTICE Nat. Struct. Mol. Biol. advance online publication, doi:10.1038/nsmb.1618 (7 June 2009) Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex

More information

Logistic Regression

Logistic Regression Logistic Regression ddebarr@uw.edu 2016-05-26 Agenda Model Specification Model Fitting Bayesian Logistic Regression Online Learning and Stochastic Optimization Generative versus Discriminative Classifiers

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane

DATA MINING AND MACHINE LEARNING. Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane DATA MINING AND MACHINE LEARNING Lecture 6: Data preprocessing and model selection Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Data preprocessing Feature normalization Missing

More information

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München Evaluation Measures Sebastian Pölsterl Computer Aided Medical Procedures Technische Universität München April 28, 2015 Outline 1 Classification 1. Confusion Matrix 2. Receiver operating characteristics

More information

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer

Model Assessment and Selection. Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer Model Assessment and Selection Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Model Training data Testing data Model Testing error rate Training error

More information

Classification. Slide sources:

Classification. Slide sources: Classification Slide sources: Gideon Dror, Academic College of TA Yaffo Nathan Ifill, Leicester MA4102 Data Mining and Neural Networks Andrew Moore, CMU : http://www.cs.cmu.edu/~awm/tutorials 1 Outline

More information

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York Clustering Robert M. Haralick Computer Science, Graduate Center City University of New York Outline K-means 1 K-means 2 3 4 5 Clustering K-means The purpose of clustering is to determine the similarity

More information

6-1 THE STANDARD NORMAL DISTRIBUTION

6-1 THE STANDARD NORMAL DISTRIBUTION 6-1 THE STANDARD NORMAL DISTRIBUTION The major focus of this chapter is the concept of a normal probability distribution, but we begin with a uniform distribution so that we can see the following two very

More information

Discovery of the Source of Contaminant Release

Discovery of the Source of Contaminant Release Discovery of the Source of Contaminant Release Devina Sanjaya 1 Henry Qin Introduction Computer ability to model contaminant release events and predict the source of release in real time is crucial in

More information

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week Statistics & Bayesian Inference Lecture 3 Joe Zuntz Overview Overview & Motivation Metropolis Hastings Monte Carlo Methods Importance sampling Direct sampling Gibbs sampling Monte-Carlo Markov Chains Emcee

More information

Nested Sampling: Introduction and Implementation

Nested Sampling: Introduction and Implementation UNIVERSITY OF TEXAS AT SAN ANTONIO Nested Sampling: Introduction and Implementation Liang Jing May 2009 1 1 ABSTRACT Nested Sampling is a new technique to calculate the evidence, Z = P(D M) = p(d θ, M)p(θ

More information

A web app for guided and interactive generation of multimarker panels (www.combiroc.eu)

A web app for guided and interactive generation of multimarker panels (www.combiroc.eu) COMBIROC S TUTORIAL. A web app for guided and interactive generation of multimarker panels (www.combiroc.eu) Overview of the CombiROC workflow. CombiROC delivers a simple workflow to help researchers in

More information

Chapter 2 Modeling Distributions of Data

Chapter 2 Modeling Distributions of Data Chapter 2 Modeling Distributions of Data Section 2.1 Describing Location in a Distribution Describing Location in a Distribution Learning Objectives After this section, you should be able to: FIND and

More information

2. On classification and related tasks

2. On classification and related tasks 2. On classification and related tasks In this part of the course we take a concise bird s-eye view of different central tasks and concepts involved in machine learning and classification particularly.

More information

Composite Likelihood Data Augmentation for Within-Network Statistical Relational Learning

Composite Likelihood Data Augmentation for Within-Network Statistical Relational Learning Composite Likelihood Data Augmentation for Within-Network Statistical Relational Learning Joseph J. Pfeiffer III 1 Jennifer Neville 1 Paul Bennett 2 1 Purdue University 2 Microsoft Research ICDM 2014,

More information

1 Review of RJMCMC. α(o, o ) = min(1, π(o ) Q(o ; o ) ), (1)

1 Review of RJMCMC. α(o, o ) = min(1, π(o ) Q(o ; o ) ), (1) Review of RJMCMC Starting with an initial state, RJMCMC proposes a new state o from a proposal distribution Q(o ; o) that depends on the current state o. The proposed state is probabilistically accepted

More information

Package BKPC. March 13, 2018

Package BKPC. March 13, 2018 Type Package Title Bayesian Kernel Projection Classifier Version 1.0.1 Date 2018-03-06 Author K. Domijan Maintainer K. Domijan Package BKPC March 13, 2018 Description Bayesian kernel

More information

Package hmeasure. February 20, 2015

Package hmeasure. February 20, 2015 Type Package Package hmeasure February 20, 2015 Title The H-measure and other scalar classification performance metrics Version 1.0 Date 2012-04-30 Author Christoforos Anagnostopoulos

More information

Chapter 6 Normal Probability Distributions

Chapter 6 Normal Probability Distributions Chapter 6 Normal Probability Distributions 6-1 Review and Preview 6-2 The Standard Normal Distribution 6-3 Applications of Normal Distributions 6-4 Sampling Distributions and Estimators 6-5 The Central

More information

Warped Mixture Models

Warped Mixture Models Warped Mixture Models Tomoharu Iwata, David Duvenaud, Zoubin Ghahramani Cambridge University Computational and Biological Learning Lab March 11, 2013 OUTLINE Motivation Gaussian Process Latent Variable

More information

Rank Measures for Ordering

Rank Measures for Ordering Rank Measures for Ordering Jin Huang and Charles X. Ling Department of Computer Science The University of Western Ontario London, Ontario, Canada N6A 5B7 email: fjhuang33, clingg@csd.uwo.ca Abstract. Many

More information

1 Methods for Posterior Simulation

1 Methods for Posterior Simulation 1 Methods for Posterior Simulation Let p(θ y) be the posterior. simulation. Koop presents four methods for (posterior) 1. Monte Carlo integration: draw from p(θ y). 2. Gibbs sampler: sequentially drawing

More information

1. Start WinBUGS by double clicking on the WinBUGS icon (or double click on the file WinBUGS14.exe in the WinBUGS14 directory in C:\Program Files).

1. Start WinBUGS by double clicking on the WinBUGS icon (or double click on the file WinBUGS14.exe in the WinBUGS14 directory in C:\Program Files). Hints on using WinBUGS 1 Running a model in WinBUGS 1. Start WinBUGS by double clicking on the WinBUGS icon (or double click on the file WinBUGS14.exe in the WinBUGS14 directory in C:\Program Files). 2.

More information

Orange3 Data Fusion Documentation. Biolab

Orange3 Data Fusion Documentation. Biolab Biolab Mar 07, 2018 Widgets 1 IMDb Actors 1 2 Chaining 5 3 Completion Scoring 9 4 Fusion Graph 13 5 Latent Factors 17 6 Matrix Sampler 21 7 Mean Fuser 25 8 Movie Genres 29 9 Movie Ratings 33 10 Table

More information

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set.

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set. Evaluate what? Evaluation Charles Sutton Data Mining and Exploration Spring 2012 Do you want to evaluate a classifier or a learning algorithm? Do you want to predict accuracy or predict which one is better?

More information

Topic 6 Representation and Description

Topic 6 Representation and Description Topic 6 Representation and Description Background Segmentation divides the image into regions Each region should be represented and described in a form suitable for further processing/decision-making Representation

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2015 11. Non-Parameteric Techniques

More information

CS313 Exercise 4 Cover Page Fall 2017

CS313 Exercise 4 Cover Page Fall 2017 CS313 Exercise 4 Cover Page Fall 2017 Due by the start of class on Thursday, October 12, 2017. Name(s): In the TIME column, please estimate the time you spent on the parts of this exercise. Please try

More information

1 RefresheR. Figure 1.1: Soy ice cream flavor preferences

1 RefresheR. Figure 1.1: Soy ice cream flavor preferences 1 RefresheR Figure 1.1: Soy ice cream flavor preferences 2 The Shape of Data Figure 2.1: Frequency distribution of number of carburetors in mtcars dataset Figure 2.2: Daily temperature measurements from

More information

INLA: Integrated Nested Laplace Approximations

INLA: Integrated Nested Laplace Approximations INLA: Integrated Nested Laplace Approximations John Paige Statistics Department University of Washington October 10, 2017 1 The problem Markov Chain Monte Carlo (MCMC) takes too long in many settings.

More information

Dynamic Thresholding for Image Analysis

Dynamic Thresholding for Image Analysis Dynamic Thresholding for Image Analysis Statistical Consulting Report for Edward Chan Clean Energy Research Center University of British Columbia by Libo Lu Department of Statistics University of British

More information