Linear Programming & Optimizing the Resources

Size: px
Start display at page:

Download "Linear Programming & Optimizing the Resources"

Transcription

1 Linear Programming & Optimizing the Resources Abstract Maryam Solhi Lord Samira Mohebbi Bazardeh Sharareh Khoshnood Nastaran Mahmoodi Fatemeh Qowsi Rasht-Abadi Marjan-ol-Sadat Ojaghzadeh Mohammadi MA Students in Commercial Management (International Marketing), Islamic Azad University, Rasht, Iran Nowadays, managers are evaluated by their decision-making. Linear programming is one of the strongest techniques which can be used by managers to solve problems considering/subject to the settings of the problem. By applying the linear programming, the managers are trying to maximize their profit on one hand, and minimize their costs on the other. In this paper, the previous research background has been explained, followed by a discussion on the linear programming and its applications. Keywords: MAXIMIZING, SIMPLEX, OBJECTIVE FUNCTION, LINEAR CONSTRAINT. Introduction Linear programming, or linear optimization, is a mathematical method to achieve the minimum or maximum value of a linear function on a convex polyhedron. This convex polyhedron is, in fact, a graphical representation of some constraints as inequalities on/off functional variables. To put simply, we can achieve the best outcome (e.g. maximum profit or minimum cost) by using linear programming under specific settings and constraints. While linear programming is mainly used in management and economics, it can also be utilized for some engineering problems. (Hilier and Liberman, 2003). Background Linear Programming was developed as a mathematical pattern during World War II to plan expenditures and returns in order to reduce costs to the army and increase losses to the enemy. The method was kept secret until After the war, many industries began using it. The founders of linear programming are: George Dantzig who published the Simplex method in 1947, John von Neumann who developed the theory of duality, and Leonid Kantorovich - the Russian mathematician who applied similar techniques before Dantzig and won the Noble Prize in Leonid Kantorovich showed, for the first time, in 1979 that the linear-programming problem was solvable in polynomial time, but a larger theoretical and practical breakthrough in the field came in 1984 when Narendra Karmarkar introduced a new interior-point method for solving linear-programming problems. (Hilier and Liberman,2003). Linear programming is continuously applied by the researchers to improve operations. The Babcock & Wilcox applied the linear programming to help plan a major expansion of the company s Tubular Products Division (TPD) in Pennsylvania (Drayer & Seabury, 1975). Own has also used the linear programming method to design antenna array patterns that suppress interference from certain directions (Owen & Mason, 1984). Expressing the problem Linear programming is a set of techniques and methods inferred from mathematics and other sciences which can play an efficient role in improving the management decisions. Although it is still regarded as a new science, but it has well proved to be capable in solving problems such as production planning, allocating resources, inventory control, and advertising. Those managers who care about the best outcomes for their decisions cannot be indifferent to this. Bourton, Gidley, Baker, and Reda-Wilson used linear programming in a study to choose the appropriate marketing strategy. In their study, optimized solutions as well as rather optimized solutions were determined and evaluated. (Mehdipoor et al, 2006) COPY RIGHT 2013 Institute of Interdisciplinary Business Research 701

2 The linear programming model is used by the managers to determine the most economical arrangement of finance, to arrange the best times to start and finish projects, and to select projects to minimize the total net present cost of capital (Wijeratne & Harris, 1984). The linear programming is a utility to select the desired pattern from among a variety of production plans (Edward et al, 2011). Linear programming optimizes (maximizing or minimizing) a dependant variable subject to a set of independent variables in a linear relationship, given a number of linear constraints of independent variables. The value of dependent variables which is the value obtained from solving the problem, is subject to the independent variables set by the decision maker (or determined by solving the problem). The dependent variables are usually set as objective function which may be one of the economic concepts such as profit, cost, income, production, sales, distance and time, etc. The independent variables in linear programming are known as variables of unknown value, and the decision maker has to calculate the value of such variables by solving the problem (Mehdipoor et al, 2006). Modeling The successful utilization of linear programming in various fields expanded the scientific use of this technique. There are resource constraints such as labor, time, space, and technology in every field which have to be optimized. Formulating a linear programming problem involves optimization elements such as profit or income, or minimizing elements such as cost, time, and distance. When the problem is expressed, the management objective is set, and the capability of the linear programming technique for the given problem is ensured, the next step in a real problemsolving situation is to express the problem in a mathematical model. (Guilani-nia, 2005) The elements of a linear programming model are: decision variables, objective function, and model constraints. The objective function and constraints of a linear programming model are the decision variables and parameters respectively. The decision variables include mathematical symbols which represent the level of activity of any organization. The objective function is a mathematical linear relationship which expresses the objective of the organization in terms of decision variables. The objective function is always set as maximizing or minimizing. The model constraints also express the linear relation among the decision variables. The constraints are imposed on the organization by the operational environment, and are often due to limited resources or the organization s internal policies (Azar, 1999)) When one designs the real decision constraint model, he/she may begin with a simple model which covers a part of the problem. Later on, more real constraints can be added during the next steps. Those with the impression that the whole model could be designed in one step would encounter a very complicated difficult task (Orlin, 2007). The linear programming techniques can be used only when they embody the required assumptions: proportionality, additively, divisibility, and certainty (Mehregan, 1993) Here are the prerequisites to a linear programming model: 1- Set and define the solution variables 2- Determine the linear relationship of solution variables 3- Express the constraints as a linear relationship of solution variables which represents the problem resources constraints 4- Availability of a mathematical relation within the variables 5- Non-negativity of the variables; in linear programming, the value of the variables after solving the problem must be positive, equal or more than zero (Guilani-nia, 2005) The linear programming models are presented in various forms of maximizing or minimizing the objective function and limits. There are two presentation forms for solving problems of linear programming: Canonical and Standard. The standard form is directly applied to solve the model. The canonical form is particularly useful in presenting the theory of duality. COPY RIGHT 2013 Institute of Interdisciplinary Business Research 702

3 Canonical form: Maximize X 0 = X j 0 i = 1, 2,..., m j = 1, 2,..., n In this form of linear programming, all decision variables are negative, all limits as ) ( and objective functions are maximized. Standard form: A 1 x 1 +a 2 x 2 s 1 = b s 1 0 P 1 x 1 +p 2 x 2 +s 2 = q s 2 0 The standard form the following characteristics: 1- All limits are as equality except non-negativity limit which is as inequality (0 ) 2- The L non-negative for each limit 3- All variables are non-negative 4- Objective function is either minimized or maximized (Taha, 1996) One of the primary and most important uses of linear programming is solving transportation problems. The earliest application of this method was experienced during World War II. Therefore, most books and publications on applied linear programming make references to network patterns in solving transportation problems (Afandizadeh,2003). A linear programming problem has two main characteristics: 1- A determined objective 2- Constraints to be satisfied (Mehdipoor et al, 2006) Linear programming method is applicable to problems where the objective function and are linear and all variables are non-negative (Saadeghi and Doosti, 2010) Linear programming is a mathematical technique which can be widely used in management planning provided there is a defined objective to be maximized or minimized. It involves a number of constraints to be satisfied, and the objective equalities and the constraints inequalities need to be shown in linear relationships (Hadawy, 2007). Solving the LP problem by Graphical Method: To solve a linear programming problem for each product (or variable), two axes (dimensions) are required. Therefore, a graph for a 2-dimensional model is easy. But for solving linear programming problems with more dimensions (variables), we have to use Simplex method and often computer software. Then, it would be better to solve such problems by graphical method. Although drawing lines for model constraints limits the region of possible solutions, but still there are many more solutions left. The final optimal value (solution) for the linear programming model occurs at one of the vertices of the region determined by the constraints. Combinations of x 1 and x 2 which lie in one of these vertices are called the basic solution. There are only two more steps left for a graphical method as following: 1- Find the vertices of the region. 2- Test the objective function at each of the vertices (profit obtained from selling a product). The vertex that has the maximum value is the optimal solution. Linear programming problems with 2 variables (dimensions) can be easily solved graphically, but solving more complicated models (with 3 or more variables) could be done by Simplex method (manually or using a computer). The table in which all figures on the first line are negative, contains the final optimized solution. In addition to the final solution, other useful information such as shadow prices will be provided in the final Simplex table. Also, the COPY RIGHT 2013 Institute of Interdisciplinary Business Research 703

4 allowed range of profit coefficient and limited capacities can be computed using the data in Simplex tables. The allowed range means that if the coefficients are altered within the defined range, the final solution will not change in terms of various combinations. Therefore, it may be said that estimating the coefficients which have a rather wide allowed range, is less risky. The shadow prices represent the value of objective function (profit or cost) for any increased unit of each of the limited resources (Hadawy, 2007). The Simplex algorithm developed by Dantzig solves LP problems by constructing a feasible solution at a vertex of the polytypic and then walking along a path on the edges of the polytypic to vertices with non-decreasing values of the objective function until an optimum is reached. Although the Simplex algorithm is, in practice, quite efficient and can find the global optimum if certain precautions against cycling are taken. In some cases, it has poor behavior known as worst-case. Some linear programming problems could be constructed for which the Simplex method takes a number of steps exponential in the problem size. For some time, it was not known whether the LP problem was solvable in polynomial time. Finally, this problem was solved by Leonid Khachiyan in 1979 by introducing the Ellipsoid method. This method was polynomial time. The algorithm of Khachiyan was not practically a break-through, as the simple method was more efficient for all but specially constructed linear programs. However, the theoretical aspect of Kachiyan's algorithm was of landmark importance. Khachiyan's algorithm inspired new lines of research to solve the linear programs called Interior-point method. The interior-point methods move through the interior of the feasible region towards the optimal point (Hilier and Lieberman, 2003). Conclusion In this paper, linear programming and its applications have been introduced, and one of the methods to solve LP problems has been completely explained. Linear programming is a skill/method involving mathematical techniques which can help many careers from management to engineering find the optimal solution. Given the limited resources in the ناآرام environment of today communities, using linear programming is organizations is an efficient solution. Knowing this skill and its characteristics could be a triumphant solution critical situations. COPY RIGHT 2013 Institute of Interdisciplinary Business Research 704

5 References 1- Afandizadeh, Sh & Doosti, R. (2003). Application of linear programming to improve transportation of wheat countrywide, the 6th International Conference of Civil Engineering. 2- Azar, A. (1999). Operations Research I. Payam-e Noor Publications. 3- Drayer,W & Seabury,S. (1975). "Linear programming A case example", Strategy & Leadership, Vol. 3 Iss: 5, pp Edwards. D. J & Malekzadeh.H & Silas B. Y. (2001). "A linear programming decision tool for selecting the optimum excavator", Structural Survey, Vol. 19 Iss: 2, pp Guilani-nia, Sh. (2005). Advanced Research in Operations (Applied Concepts). 6- Hadawy, A. (2006). Production Budgeting and Linear Programming, The Islamic Azad University of Boroojerd 7- Hamdi, Taha. (1996). An Introduction to Operations Research translated by Mohammad Bagher Bazargan. Tehran University s Publication Center 8- Hilier. F. S & Lieberman,J.D. (2003). Research in Operation translated by Mohammad Modarres and Ardawan Asef Vaziri, 10th printing in Tehran by Nashr-e Javan publications 9- Mehdipoor, E. & Sadr-ol-ashraafi, S. M. & Karbaasi, A. (2006) A Comparison of Canonical Linear Programming Techniques, Meaty Chicken Feed Framing With Linear Programming Models, Scientific- Research Magazine of Agriculture, 12th year, issue no Mehregan, M.R. (1993). Operational Research. Saalekaan Publications 11- Orlin,J. B.(2007). Optimization Methods in Management translated by Mohammad-Reza Hamidizadeh 12- Owen. P & MASON, J.C. (1984). "The use of linear programming the design of antenna pattern with prescribed nulls and other constraints", compel: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 3 Iss: 4, pp Saadeghi, Gh & Doosti, R. (2007).A review on published articles about various methods of optimized product distribution in Wijeratne. N.N, F.C. Harris. (1984). "Capital Budgeting Using a Linear Programming Model", International Journal of Operations & Production Management, Vol. 4 Iss: 2, pp COPY RIGHT 2013 Institute of Interdisciplinary Business Research 705

Linear Programming and its Applications

Linear Programming and its Applications Linear Programming and its Applications Outline for Today What is linear programming (LP)? Examples Formal definition Geometric intuition Why is LP useful? A first look at LP algorithms Duality Linear

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 013 Lecture 1: Introduction to Optimization Instructor: Shaddin Dughmi Outline 1 Course Overview Administrivia 3 Linear Programming Outline 1 Course Overview

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 1 Why LP? Linear programming (LP, also called linear

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 50 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 50 CS 473: Algorithms, Spring 2018 Introduction to Linear Programming Lecture 18 March

More information

Linear Programming. L.W. Dasanayake Department of Economics University of Kelaniya

Linear Programming. L.W. Dasanayake Department of Economics University of Kelaniya Linear Programming L.W. Dasanayake Department of Economics University of Kelaniya Linear programming (LP) LP is one of Management Science techniques that can be used to solve resource allocation problem

More information

A Real Life Application of Linear Programming

A Real Life Application of Linear Programming Dagon University Research Journal 2012, Vol. 4 A Real Life Application of Linear Programming Win Win Myo * Abstract Linear programming is heavily used in microeconomics and company management, such as

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

(67686) Mathematical Foundations of AI July 30, Lecture 11

(67686) Mathematical Foundations of AI July 30, Lecture 11 (67686) Mathematical Foundations of AI July 30, 2008 Lecturer: Ariel D. Procaccia Lecture 11 Scribe: Michael Zuckerman and Na ama Zohary 1 Cooperative Games N = {1,...,n} is the set of players (agents).

More information

Quantitative Technique

Quantitative Technique Quantitative Technique Subject Course Code Number : MMAS 521 : Optimization Techniques for Managerial Decisions Instructor : Dr. Umesh Rajopadhyaya Credit Hours : 2 Main Objective : The objective of the

More information

EARLY INTERIOR-POINT METHODS

EARLY INTERIOR-POINT METHODS C H A P T E R 3 EARLY INTERIOR-POINT METHODS An interior-point algorithm is one that improves a feasible interior solution point of the linear program by steps through the interior, rather than one that

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for

More information

Math 273a: Optimization Linear programming

Math 273a: Optimization Linear programming Math 273a: Optimization Linear programming Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from the textbook Chong-Zak, 4th Ed. History The word programming used traditionally

More information

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 4 LINEAR PROGRAMMING (LP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Mathematical programming (optimization) problem: min f (x) s.t. x X R n set of feasible solutions with linear objective function

More information

Linear Programming: Introduction

Linear Programming: Introduction CSC 373 - Algorithm Design, Analysis, and Complexity Summer 2016 Lalla Mouatadid Linear Programming: Introduction A bit of a historical background about linear programming, that I stole from Jeff Erickson

More information

CHAPTER 3 LINEAR PROGRAMMING: SIMPLEX METHOD

CHAPTER 3 LINEAR PROGRAMMING: SIMPLEX METHOD CHAPTER 3 LINEAR PROGRAMMING: SIMPLEX METHOD Linear programming is optimization problem where the objective function is linear and all equality and inequality constraints are linear. This problem was first

More information

Introduction to Linear Programming

Introduction to Linear Programming Introduction to Linear Programming Eric Feron (updated Sommer Gentry) (updated by Paul Robertson) 16.410/16.413 Historical aspects Examples of Linear programs Historical contributor: G. Dantzig, late 1940

More information

The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints

The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints CS601: Great Works in Computer Science 11 April 2013 Wei Wang The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints George B. Dantzig, Alex Orden, Philip Wolfe

More information

A linear program is an optimization problem of the form: minimize subject to

A linear program is an optimization problem of the form: minimize subject to Lec11 Page 1 Lec11p1, ORF363/COS323 This lecture: Linear Programming (LP) Applications of linear programming History of linear programming Geometry of linear programming Geometric and algebraic definition

More information

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar http://www.robots.ox.ac.uk/~oval/ Outline Linear Programming Matroid Polytopes Polymatroid Polyhedron Ax b A : m x n matrix b:

More information

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization

Introduction to Linear Programming. Algorithmic and Geometric Foundations of Optimization Introduction to Linear Programming Algorithmic and Geometric Foundations of Optimization Optimization and Linear Programming Mathematical programming is a class of methods for solving problems which ask

More information

Linear Programming 1

Linear Programming 1 Linear Programming 1 Fei Li March 5, 2012 1 With references of Algorithms by S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Many of the problems for which we want algorithms are optimization tasks.

More information

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm LECTURE 6: INTERIOR POINT METHOD 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm Motivation Simplex method works well in general, but suffers from exponential-time

More information

Linear Programming. them such that they

Linear Programming. them such that they Linear Programming l Another "Sledgehammer" in our toolkit l Many problems fit into the Linear Programming approach l These are optimization tasks where both the constraints and the objective are linear

More information

EE/AA 578: Convex Optimization

EE/AA 578: Convex Optimization EE/AA 578: Convex Optimization Instructor: Maryam Fazel University of Washington Fall 2016 1. Introduction EE/AA 578, Univ of Washington, Fall 2016 course logistics mathematical optimization least-squares;

More information

CDG2A/CDZ4A/CDC4A/ MBT4A ELEMENTS OF OPERATIONS RESEARCH. Unit : I - V

CDG2A/CDZ4A/CDC4A/ MBT4A ELEMENTS OF OPERATIONS RESEARCH. Unit : I - V CDG2A/CDZ4A/CDC4A/ MBT4A ELEMENTS OF OPERATIONS RESEARCH Unit : I - V UNIT I Introduction Operations Research Meaning and definition. Origin and History Characteristics and Scope Techniques in Operations

More information

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage).

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage). Linear Programming Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory: Feasible Set, Vertices, Existence of Solutions. Equivalent formulations. Outline

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D.

BCN Decision and Risk Analysis. Syed M. Ahmed, Ph.D. Linear Programming Module Outline Introduction The Linear Programming Model Examples of Linear Programming Problems Developing Linear Programming Models Graphical Solution to LP Problems The Simplex Method

More information

Constrained Optimization COS 323

Constrained Optimization COS 323 Constrained Optimization COS 323 Last time Introduction to optimization objective function, variables, [constraints] 1-dimensional methods Golden section, discussion of error Newton s method Multi-dimensional

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 16: Mathematical Programming I Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 8, 2010 E. Frazzoli

More information

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology

Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Tribhuvan University Institute Of Science and Technology Tribhuvan University Institute of Science and Technology Course Title: Linear Programming Full Marks: 50 Course No. : Math 403 Pass Mark: 17.5 Level

More information

Application of Cutting Stock Problem in Minimizing The Waste of Al-Quran Cover

Application of Cutting Stock Problem in Minimizing The Waste of Al-Quran Cover Kaunia, Vol.XII, Num., April 206, pp. 7~22 Available online at http://ejournal.uin-suka.ac.id/saintek/kaunia Application of Cutting Stock Problem in Minimizing The Waste of Al-Quran Cover Noor Saif Muhammad

More information

Introduction to Linear Programing Problems

Introduction to Linear Programing Problems Paper: Linear Programming and Theory of Games Lesson: Introduction to Linear Programing Problems Lesson Developers: DR. MANOJ KUMAR VARSHNEY, College/Department: Department of Statistics, Hindu College,

More information

LINEAR PROGRAMMING INTRODUCTION 12.1 LINEAR PROGRAMMING. Three Classical Linear Programming Problems (L.P.P.)

LINEAR PROGRAMMING INTRODUCTION 12.1 LINEAR PROGRAMMING. Three Classical Linear Programming Problems (L.P.P.) LINEAR PROGRAMMING 12 INTRODUCTION ou are familiar with linear equations and linear inequations in one and two variables. They can be solved algebraically or graphically (by drawing a line diagram in case

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

Notes for Lecture 18

Notes for Lecture 18 U.C. Berkeley CS17: Intro to CS Theory Handout N18 Professor Luca Trevisan November 6, 21 Notes for Lecture 18 1 Algorithms for Linear Programming Linear programming was first solved by the simplex method

More information

Linear Programming Duality and Algorithms

Linear Programming Duality and Algorithms COMPSCI 330: Design and Analysis of Algorithms 4/5/2016 and 4/7/2016 Linear Programming Duality and Algorithms Lecturer: Debmalya Panigrahi Scribe: Tianqi Song 1 Overview In this lecture, we will cover

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

A Computer Technique for Duality Theory in Linear Programs

A Computer Technique for Duality Theory in Linear Programs American Journal of Applied Mathematics 2015; 3(3): 95-99 Published online April 23, 2015 (http://www.sciencepublishinggroup.com/j/ajam) doi: 10.11648/j.ajam.20150303.13 ISSN: 2330-0043 (Print); ISSN:

More information

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748

COT 6936: Topics in Algorithms! Giri Narasimhan. ECS 254A / EC 2443; Phone: x3748 COT 6936: Topics in Algorithms! Giri Narasimhan ECS 254A / EC 2443; Phone: x3748 giri@cs.fiu.edu http://www.cs.fiu.edu/~giri/teach/cot6936_s12.html https://moodle.cis.fiu.edu/v2.1/course/view.php?id=174

More information

Real life Problem. Review

Real life Problem. Review Linear Programming The Modelling Cycle in Decision Maths Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution

More information

Discrete Optimization. Lecture Notes 2

Discrete Optimization. Lecture Notes 2 Discrete Optimization. Lecture Notes 2 Disjunctive Constraints Defining variables and formulating linear constraints can be straightforward or more sophisticated, depending on the problem structure. The

More information

Introduction. Linear because it requires linear functions. Programming as synonymous of planning.

Introduction. Linear because it requires linear functions. Programming as synonymous of planning. LINEAR PROGRAMMING Introduction Development of linear programming was among the most important scientific advances of mid-20th cent. Most common type of applications: allocate limited resources to competing

More information

Integer Programming Explained Through Gomory s Cutting Plane Algorithm and Column Generation

Integer Programming Explained Through Gomory s Cutting Plane Algorithm and Column Generation Integer Programming Explained Through Gomory s Cutting Plane Algorithm and Column Generation Banhirup Sengupta, Dipankar Mondal, Prajjal Kumar De, Souvik Ash Proposal Description : ILP [integer linear

More information

4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1

4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1 4 Linear Programming (LP) E. Amaldi -- Foundations of Operations Research -- Politecnico di Milano 1 Definition: A Linear Programming (LP) problem is an optimization problem: where min f () s.t. X n the

More information

Polyhedral Compilation Foundations

Polyhedral Compilation Foundations Polyhedral Compilation Foundations Louis-Noël Pouchet pouchet@cse.ohio-state.edu Dept. of Computer Science and Engineering, the Ohio State University Feb 15, 2010 888.11, Class #4 Introduction: Polyhedral

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

Chapter II. Linear Programming

Chapter II. Linear Programming 1 Chapter II Linear Programming 1. Introduction 2. Simplex Method 3. Duality Theory 4. Optimality Conditions 5. Applications (QP & SLP) 6. Sensitivity Analysis 7. Interior Point Methods 1 INTRODUCTION

More information

OPERATIONS RESEARCH. Dr. Mohd Vaseem Ismail. Assistant Professor. Faculty of Pharmacy Jamia Hamdard New Delhi

OPERATIONS RESEARCH. Dr. Mohd Vaseem Ismail. Assistant Professor. Faculty of Pharmacy Jamia Hamdard New Delhi OPERATIONS RESEARCH OPERATIONS RESEARCH By Dr. Qazi Shoeb Ahmad Professor Department of Mathematics Integral University Lucknow Dr. Shakeel Javed Assistant Professor Department of Statistics & O.R. AMU,

More information

Lecture 4: Linear Programming

Lecture 4: Linear Programming COMP36111: Advanced Algorithms I Lecture 4: Linear Programming Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2017 18 Outline The Linear Programming Problem Geometrical analysis The Simplex

More information

Origins of Operations Research: World War II

Origins of Operations Research: World War II ESD.83 Historical Roots Assignment METHODOLOGICAL LINKS BETWEEN OPERATIONS RESEARCH AND STOCHASTIC OPTIMIZATION Chaiwoo Lee Jennifer Morris 11/10/2010 Origins of Operations Research: World War II Need

More information

Mathematics. Linear Programming

Mathematics. Linear Programming Mathematics Linear Programming Table of Content 1. Linear inequations. 2. Terms of Linear Programming. 3. Mathematical formulation of a linear programming problem. 4. Graphical solution of two variable

More information

Convex Optimization. August 26, 2008

Convex Optimization. August 26, 2008 Convex Optimization Instructor: Angelia Nedich August 26, 2008 Outline Lecture 1 What is the Course About Who Cares and Why Course Objective Convex Optimization History New Interest in the Topic Formal

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

1 GIAPETTO S WOODCARVING PROBLEM

1 GIAPETTO S WOODCARVING PROBLEM 1 GIAPETTO S WOODCARVING PROBLEM EZGİ ÇALLI OBJECTIVES CCSS.MATH.CONTENT.HSA.REI.D.12: Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of

More information

Identical text Minor difference Moved in S&W Wrong in S&W Not copied from Wiki 1

Identical text Minor difference Moved in S&W Wrong in S&W Not copied from Wiki 1 Introduction The article Roadmap for Optimization (WIREs: Computational Statistics, Said and Wegman, 2009) purports to provide in broad brush strokes a perspective on the area in order to orient the reader

More information

CMPSCI611: The Simplex Algorithm Lecture 24

CMPSCI611: The Simplex Algorithm Lecture 24 CMPSCI611: The Simplex Algorithm Lecture 24 Let s first review the general situation for linear programming problems. Our problem in standard form is to choose a vector x R n, such that x 0 and Ax = b,

More information

INEN 420 Final Review

INEN 420 Final Review INEN 420 Final Review Office Hours: Mon, May 2 -- 2:00-3:00 p.m. Tues, May 3 -- 12:45-2:00 p.m. (Project Report/Critiques due on Thurs, May 5 by 5:00 p.m.) Tuesday, April 28, 2005 1 Final Exam: Wednesday,

More information

Solving Linear and Integer Programs

Solving Linear and Integer Programs Solving Linear and Integer Programs Robert E. Bixby Gurobi Optimization, Inc. and Rice University Overview Linear Programming: Example and introduction to basic LP, including duality Primal and dual simplex

More information

Chapter 4 Linear Programming

Chapter 4 Linear Programming Chapter Objectives Check off these skills when you feel that you have mastered them. From its associated chart, write the constraints of a linear programming problem as linear inequalities. List two implied

More information

Algorithmic Game Theory and Applications. Lecture 6: The Simplex Algorithm

Algorithmic Game Theory and Applications. Lecture 6: The Simplex Algorithm Algorithmic Game Theory and Applications Lecture 6: The Simplex Algorithm Kousha Etessami Recall our example 1 x + y

More information

DETERMINISTIC OPERATIONS RESEARCH

DETERMINISTIC OPERATIONS RESEARCH DETERMINISTIC OPERATIONS RESEARCH Models and Methods in Optimization Linear DAVID J. RADER, JR. Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN WILEY A JOHN WILEY & SONS,

More information

OPERATIONS RESEARCH. Linear Programming Problem

OPERATIONS RESEARCH. Linear Programming Problem OPERATIONS RESEARCH Chapter 1 Linear Programming Problem Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction Linear programming

More information

CSC 8301 Design & Analysis of Algorithms: Linear Programming

CSC 8301 Design & Analysis of Algorithms: Linear Programming CSC 8301 Design & Analysis of Algorithms: Linear Programming Professor Henry Carter Fall 2016 Iterative Improvement Start with a feasible solution Improve some part of the solution Repeat until the solution

More information

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017

Section Notes 5. Review of Linear Programming. Applied Math / Engineering Sciences 121. Week of October 15, 2017 Section Notes 5 Review of Linear Programming Applied Math / Engineering Sciences 121 Week of October 15, 2017 The following list of topics is an overview of the material that was covered in the lectures

More information

OPTIMIZATION METHODS

OPTIMIZATION METHODS D. Nagesh Kumar Associate Professor Department of Civil Engineering, Indian Institute of Science, Bangalore - 50 0 Email : nagesh@civil.iisc.ernet.in URL: http://www.civil.iisc.ernet.in/~nagesh Brief Contents

More information

Linear Programming CISC4080, Computer Algorithms CIS, Fordham Univ. Linear Programming

Linear Programming CISC4080, Computer Algorithms CIS, Fordham Univ. Linear Programming Linear Programming CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang! Linear Programming In a linear programming problem, there is a set of variables, and we want to assign real values

More information

ME 555: Distributed Optimization

ME 555: Distributed Optimization ME 555: Distributed Optimization Duke University Spring 2015 1 Administrative Course: ME 555: Distributed Optimization (Spring 2015) Instructor: Time: Location: Office hours: Website: Soomin Lee (email:

More information

Linear Optimization and Extensions: Theory and Algorithms

Linear Optimization and Extensions: Theory and Algorithms AT&T Linear Optimization and Extensions: Theory and Algorithms Shu-Cherng Fang North Carolina State University Sarai Puthenpura AT&T Bell Labs Prentice Hall, Englewood Cliffs, New Jersey 07632 Contents

More information

Several Modes for Assessment Efficiency Decision Making Unit in Data Envelopment Analysis with Integer Data

Several Modes for Assessment Efficiency Decision Making Unit in Data Envelopment Analysis with Integer Data International Journal of Basic Sciences & Applied Research. Vol., 2 (12), 996-1001, 2013 Available online at http://www.isicenter.org ISSN 2147-3749 2013 Several Modes for Assessment Efficiency Decision

More information

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way.

Linear Programming. Linear programming provides methods for allocating limited resources among competing activities in an optimal way. University of Southern California Viterbi School of Engineering Daniel J. Epstein Department of Industrial and Systems Engineering ISE 330: Introduction to Operations Research - Deterministic Models Fall

More information

Heuristic Optimization Today: Linear Programming. Tobias Friedrich Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam

Heuristic Optimization Today: Linear Programming. Tobias Friedrich Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam Heuristic Optimization Today: Linear Programming Chair for Algorithm Engineering Hasso Plattner Institute, Potsdam Linear programming Let s first define it formally: A linear program is an optimization

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

Linear Programming and Clustering

Linear Programming and Clustering and Advisor: Dr. Leonard Schulman, Caltech Aditya Huddedar IIT Kanpur Advisor: Dr. Leonard Schulman, Caltech Aditya Huddedar IIT Kanpur and Outline of Talk 1 Introduction 2 Motivation 3 Our Approach 4

More information

Solving linear programming

Solving linear programming Solving linear programming (From Last week s Introduction) Consider a manufacturer of tables and chairs. They want to maximize profits. They sell tables for a profit of $30 per table and a profit of $10

More information

Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class)

Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class) CPS 590.1 - Linear and integer programming Homework 2: Multi-unit combinatorial auctions (due Nov. 7 before class) Please read the rules for assignments on the course web page. Contact Vince (conitzer@cs.duke.edu)

More information

Linear programming II João Carlos Lourenço

Linear programming II João Carlos Lourenço Decision Support Models Linear programming II João Carlos Lourenço joao.lourenco@ist.utl.pt Academic year 2012/2013 Readings: Hillier, F.S., Lieberman, G.J., 2010. Introduction to Operations Research,

More information

J Linear Programming Algorithms

J Linear Programming Algorithms Simplicibus itaque verbis gaudet Mathematica Veritas, cum etiam per se simplex sit Veritatis oratio. [And thus Mathematical Truth prefers simple words, because the language of Truth is itself simple.]

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

Linear Programming. Formulation and Graphical Solution

Linear Programming. Formulation and Graphical Solution Linear Programming Formulation and Graphical Solution A Two Variable Model Simple LP with two decision variables Two dimensional model is hardly useful in the real world systems which normally encompass

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

Chapter 29 Linear Programming 771. policy urban suburban rural build roads gun control farm subsidies 0 10 gasoline tax

Chapter 29 Linear Programming 771. policy urban suburban rural build roads gun control farm subsidies 0 10 gasoline tax 29 LinearProgramming Many problems can be formulated as maximizing or minimizing an objective, given limited resources and competing constraints. If we can specify the objective as a linear function of

More information

Saudi Journal of Business and Management Studies. DOI: /sjbms ISSN (Print)

Saudi Journal of Business and Management Studies. DOI: /sjbms ISSN (Print) DOI: 10.21276/sjbms.2017.2.2.5 Saudi Journal of Business and Management Studies Scholars Middle East Publishers Dubai, United Arab Emirates Website: http://scholarsmepub.com/ ISSN 2415-6663 (Print ISSN

More information

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension

CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension CS 372: Computational Geometry Lecture 10 Linear Programming in Fixed Dimension Antoine Vigneron King Abdullah University of Science and Technology November 7, 2012 Antoine Vigneron (KAUST) CS 372 Lecture

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Consequences of the Ellipsoid Algorithm Instructor: Shaddin Dughmi Outline 1 Recapping the Ellipsoid Method 2 Complexity of Convex Optimization

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 2. Linear Programs Barnabás Póczos & Ryan Tibshirani Please ask questions! Administrivia Lecture = 40 minutes part 1-5 minutes break 35 minutes part 2 Slides: http://www.stat.cmu.edu/~ryantibs/convexopt/

More information

Pearls of Algorithms

Pearls of Algorithms Part 3: Randomized Algorithms and Probabilistic Analysis Prof. Dr. Institut für Informatik Winter 2013/14 Efficient Algorithms When is an algorithm considered efficient? Efficient Algorithms When is an

More information

Linear Mathematical Programming (LP)

Linear Mathematical Programming (LP) Linear Mathematical Programming (LP) A MP is LP if : The objective function is linear where The set is defined by linear equality or inequality constraints c f T ) = ( ],..., [ n T c c c = = n b A where

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 29 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 29 CS 473: Algorithms, Spring 2018 Simplex and LP Duality Lecture 19 March 29, 2018

More information

Carnegie Learning Math Series Course 2, A Florida Standards Program

Carnegie Learning Math Series Course 2, A Florida Standards Program to the students previous understanding of equivalent ratios Introduction to. Ratios and Rates Ratios, Rates,. and Mixture Problems.3.4.5.6 Rates and Tables to Solve Problems to Solve Problems Unit Rates

More information

Linear Programming. Meaning of Linear Programming. Basic Terminology

Linear Programming. Meaning of Linear Programming. Basic Terminology Linear Programming Linear Programming (LP) is a versatile technique for assigning a fixed amount of resources among competing factors, in such a way that some objective is optimized and other defined conditions

More information

Linear Programming: Model Formulation and Graphical Solution

Linear Programming: Model Formulation and Graphical Solution Linear Programming: Model Formulation and Graphical Solution Chapter 2 2-1 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization

More information

Graphical Methods in Linear Programming

Graphical Methods in Linear Programming Appendix 2 Graphical Methods in Linear Programming We can use graphical methods to solve linear optimization problems involving two variables. When there are two variables in the problem, we can refer

More information

MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

Linear Programming in Small Dimensions

Linear Programming in Small Dimensions Linear Programming in Small Dimensions Lekcija 7 sergio.cabello@fmf.uni-lj.si FMF Univerza v Ljubljani Edited from slides by Antoine Vigneron Outline linear programming, motivation and definition one dimensional

More information

Linear Programming: Model Formulation and Graphical Solution

Linear Programming: Model Formulation and Graphical Solution Linear Programming: Model Formulation and Graphical Solution Chapter 2 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization Model

More information