5 km. 1. Open the sketch home.gsp provided by your teacher that shows the map above. * Construct a point P anywhere to represent James s home.

Size: px
Start display at page:

Download "5 km. 1. Open the sketch home.gsp provided by your teacher that shows the map above. * Construct a point P anywhere to represent James s home."

Transcription

1 uilding a Home Name James owns a small trout farm near the Drakensberg mountains, South frica, in the shape of a quadrilateral as shown. He wants to build his house so that it takes him the same time to travel to each of the four sides of his farm. Where should he choose to build his house P so that it is the same distance from all four sides of the farm? 11.1 km 6 km 10.1 km 60 deg 5 km Investigate efore you work in Sketchpad, draw a point in the drawing on the right that shows your best guess for the location of the reservoir. Label the point P. 1. Open the sketch home.gsp provided by your teacher that shows the map above. To measure the distance between a point and a line, select both point and line, and choose Distance in the Measure menu. * onstruct a point P anywhere to represent James s home. * Measure the distances from the point P to each of the four sides. * Drag point P and observe the four distance measurements. 2. Were you able to locate point P so that it is the same distance from all four sides? If so, how does the location you found in the Sketchpad sketch compare with your initial guess?

2 Simpler Problem How can you locate point P precisely without using trial and error and dragging? In problem solving it is often useful to look at a "simpler case" of a problem. In the original problem we wanted to find a point, which is equidistant (equal distances) from four sides. simpler case would be to look for a point (or points) equidistant from just two sides. D 11.1 cm P 6.0 cm 10.1 cm cm Scale 1cm:1km Distance P to D = 2.58 cm Distance P to D = 1.78 cm It might help to drag the two extra measurements off to the side or hide them, leaving behind only the measurements related to the two sides you have chosen to focus on. ontinue in the same sketch but focus only on two adjacent sides for now. * If necessary, drag point P so that it is equidistant from two adjacent sides. * Select point P and turn on Trace Point in the Display menu. * Drag point P slowly for a few centimeters, keeping it as equidistant as possible from the two adjacent vertices. 3. Describe as many properties as you can which relate the traced path to the angle formed by the two sides. hallenge: Use your observations from Question 3 to revisit the original problem with all four sides of the farm. ome up with an alternative way to search for a point equidistant from all four sides. Describe your construction method here. If you get stuck, continue onto the next page.

3 To construct an angle bisector in Sketchpad, first select three consecutive points defining the angle, ensuring that point at the vertex is in the middle. Then choose ngle isector in the onstruct menu. On the previous page, you should have found that there are infinitely many points that lie equidistant from two intersecting line segments (lines), and that they all lie on a straight line. Furthermore, from symmetry it should be clear that folding around Distance P to = 0.9 cm Distance P to = 0.9 cm Distance Q to = 1.8 cm Distance Q to = 1.8 cm Distance R to = 2.8 cm Distance R to = 2.8 cm Distance S to = 3.7 cm Distance S to = 3.7 cm Distance T to = 4.7 cm Distance T to = 4.7 cm this line of equidistant points, maps one side onto the other; therefore this line bisects the angle between the two sides. This line of equidistant points between two sides is called the angle bisector of the angle between two sides. * onstruct all four angle bisectors of the angles of the quadrilateral. 4. What do you notice about the four angle bisectors of this quadrilateral? * Drag point P to the point equidistant from all four sides. * onstruct a perpendicular from P to any one of the sides and construct its intersection with the side. P Q R S T * onstruct a circle with P as its center and the above intersection on the circumference. 5. Record what you observe about the other sides of the quadrilateral and explain why this must be true. More General Problem 6. Do you think you can always find a point equidistant from all four sides, no matter the shape or size of the quadrilateral? Explain. 7. onstruct a general dynamic quadrilateral with all four its angle bisectors. Drag any one of the vertices of the quadrilateral around the screen. What do you notice about the angle bisectors? 8. Do you still agree with your answer to Question 6? Explain.

4 Further Exploration 1. In a new sketch, construct a quadrilateral and a central point, so that the point is always equidistant from all four sides. Make the quadrilateral as general as possible. Make sure the central point is always equidistant from the sides no matter which points you drag. Explain your construction method. 2. The dynamic Sketchpad scale drawing of the farm is an example of a mathematical model that can be used to represent and analyze real-world situations. However, real-world contexts are complex and usually have to be simplified before mathematics can be meaningfully applied to them. What are some of the assumptions that have probably made in the problem at the start? 3. Suppose there is no equidistant point from the four sides of a quadrilateral (that is, the angle bisectors are not concurrent). Investigate what might be the best position to now build the home? an you mathematically explain why you think that would be the best position?

5 uilding nother House Name(s) Suppose James s farm was in the shape of a triangle as shown below. Where should he now choose his house P so that it is equal distances from all three sides? Investigate 1. efore you open up Sketchpad, draw a point on the map at the right that shows your best guess for the location of his house. Label the point P. To construct an angle bisector in Sketchpad, first select three consecutive points defining the angle, ensuring that point at the vertex is in the middle. Then choose ngle isector in the onstruct menu. * Open the sketch home2.gsp provided by your teacher that shows the map to the right. * onstruct the three angle bisectors of the sides of the triangle to locate the home correctly in your sketch. 2. How does the precise location compare to the location in your initial guess? More General Problem 3. Do you think you can always find a point equidistant from all three sides, irrespective of the shape or size of the triangle? Explain. 4. Drag any vertex of the triangle. What do you notice about the angle bisectors? Do you still agree with your answer in Question 3? Explain.

6 Explaining In the activity uilding a Home you found that the angle bisectors of a quadrilateral do not always meet in one point; in other words, the angle bisectors of the sides of a quadrilateral are not always concurrent. However, on the preceding page of this activity you should have discovered the rather surprising result that the angle bisectors of any triangle are always concurrent (at a point equidistant from all three sides). This point of concurrency is called the incenter of the triangle, since it is the center of the circle, which touches all three sides (the incircle). Why is the result always true for any triangle, but not for any quadrilateral? What is so special about the triangle? Let s explain why. If you came up with your own explanation for why the angle bisectors of any triangle are concurrent, compare it to that below. If not, work through the following. Let P be the point of intersection of two of your angle bisectors. We will show logically that this point P must also lie on the angle bisector of the third angle; that is, all three angle bisectors of a triangle always meet in the same point. P 5. Pick one of the two angle bisectors. What can you say about all the points on this bisector? 6. What can you say about all the points on the other angle bisector? 7. What can you therefore say about P, the point of intersection of both angle bisectors? 8. What can you therefore conclude about P and the angle bisector of the third angle?

7 Present your Explanation reate a summary of your explanation from Question 5-8. Your summary may be in paper form or electronic form, and may include a presentation sketch in Sketchpad. You may want to discuss the summary with your partner or group. Further Exploration 1. an the incenter of a triangle ever be outside or on the perimeter of a triangle? 2. onstruct a general quadrilateral D and any three of its angle bisectors. onstruct the intersection of two of these angle bisectors, and use it as a center to construct a circle, which always touches three of the sides. a. Drag the vertices of the quadrilateral until all three angle bisectors are concurrent. What do you notice? b. Drag the quadrilateral to a different shape until all three angle bisectors are again concurrent. lso construct the fourth angle bisector. What do you notice? c. In the space below, write a conjecture regarding your observations above. an you explain why it is true? an you generalize further to pentagons, hexagons, etc.? Discuss with your partner or group.

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 1 Maintaining Mathematical Proficiency Simplify the expression. 1. 3 + ( 1) = 2. 10 11 = 3. 6 + 8 = 4. 9 ( 1) = 5. 12 ( 8) = 6. 15 7 = + = 8. 5 ( 15) 7. 12 3 + = 9. 1 12 = Find the area

More information

Mathematics 10 Page 1 of 6 Geometric Activities

Mathematics 10 Page 1 of 6 Geometric Activities Mathematics 10 Page 1 of 6 Geometric ctivities ompass can be used to construct lengths, angles and many geometric figures. (eg. Line, cirvle, angle, triangle et s you are going through the activities,

More information

Day 5: Inscribing and Circumscribing Getting Closer to π: Inscribing and Circumscribing Polygons - Archimedes Method. Goals:

Day 5: Inscribing and Circumscribing Getting Closer to π: Inscribing and Circumscribing Polygons - Archimedes Method. Goals: Day 5: Inscribing and Circumscribing Getting Closer to π: Inscribing and Circumscribing Polygons - Archimedes Method Goals: Construct an inscribed hexagon and dodecagon. Construct a circumscribed hexagon

More information

Compass and Straight Edge. Compass/Straight Edge. Constructions with some proofs.

Compass and Straight Edge. Compass/Straight Edge. Constructions with some proofs. Compass and Straight Edge Compass/Straight Edge Constructions with some proofs. To Construct the Perpendicular isector of a line. 1. Place compass at, set over halfway and draw 2 arcs. 2. Place compass

More information

GEOMETER SKETCHPAD INTRODUCTION

GEOMETER SKETCHPAD INTRODUCTION GEOMETER SKETHPD INTRODUTION ctivity 1: onstruct, Don t Draw onstruct a right triangle Use the line segment tool, and draw a right angled triangle. When finished, use the select tool to drag point to the

More information

Dual Generalizations of Van Aubel's theorem

Dual Generalizations of Van Aubel's theorem Published in The Mathematical Gazette, Nov, 405-412, 1998. opyright Mathematical ssociation. ual Generalizations of Van ubel's theorem Michael de Villiers University of urban-westville, South frica profmd@mweb.co.za

More information

Segments and Angles. Name Period. All constructions done today will be with Compass and Straight-Edge ONLY.

Segments and Angles. Name Period. All constructions done today will be with Compass and Straight-Edge ONLY. Segments and ngles Geometry 3.1 ll constructions done today will be with ompass and Straight-Edge ONLY. Duplicating a segment is easy. To duplicate the segment below: Draw a light, straight line. Set your

More information

Fun with Diagonals. 1. Now draw a diagonal between your chosen vertex and its non-adjacent vertex. So there would be a diagonal between A and C.

Fun with Diagonals. 1. Now draw a diagonal between your chosen vertex and its non-adjacent vertex. So there would be a diagonal between A and C. Name Date Fun with Diagonals In this activity, we will be exploring the different properties of polygons. We will be constructing polygons in Geometer s Sketchpad in order to discover these properties.

More information

The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things The Geometry of Piles of Salt Thinking eeply bout Simple Things University of Utah Teacher s Math ircle Monday, February 4 th, 2008 y Troy Jones Waterford School Important Terms (the word line may be

More information

A M B O H W E V C T D U K Y I X. Answers. Investigation 1. ACE Assignment Choices. Applications. Note: The O has infinite lines of symmetry.

A M B O H W E V C T D U K Y I X. Answers. Investigation 1. ACE Assignment Choices. Applications. Note: The O has infinite lines of symmetry. Answers Investigation ACE Assignment Choices Problem. Core 9 Other Connections ; unassigned choices from previous problems Problem.2 Core 0 7, 4 40 Other Applications 8, 9; Connections 4 45; Extensions

More information

Constructions Quiz Review November 29, 2017

Constructions Quiz Review November 29, 2017 Using constructions to copy a segment 1. Mark an endpoint of the new segment 2. Set the point of the compass onto one of the endpoints of the initial line segment 3. djust the compass's width to the other

More information

Math 460: Homework # 6. Due Monday October 2

Math 460: Homework # 6. Due Monday October 2 Math 460: Homework # 6. ue Monday October 2 1. (Use Geometer s Sketchpad.) onsider the following algorithm for constructing a triangle with three given sides, using ircle by center and radius and Segment

More information

Unit 8 Plane Geometry

Unit 8 Plane Geometry Unit 8 Plane Geometry Grade 9 pplied Lesson Outline *Note: This unit could stand alone and be placed anywhere in the course. IG PITURE Students will: investigate properties of geometric objects using dynamic

More information

Set the Sails! Purpose: Overview. TExES Mathematics 4-8 Competencies. TEKS Mathematics Objectives.

Set the Sails! Purpose: Overview. TExES Mathematics 4-8 Competencies. TEKS Mathematics Objectives. Set the Sails! Purpose: Participants will use graphing technology to investigate reflections, translations, rotations, and sequences of reflections and translations in the coordinate plane. They will give

More information

Investigating Properties of Kites

Investigating Properties of Kites Investigating Properties of Kites Definition: Kite a quadrilateral with two distinct pairs of consecutive equal sides (Figure 1). Construct and Investigate: 1. Determine three ways to construct a kite

More information

Applications. 44 Stretching and Shrinking

Applications. 44 Stretching and Shrinking Applications 1. Look for rep-tile patterns in the designs below. For each design, tell whether the small quadrilaterals are similar to the large quadrilateral. Explain. If the quadrilaterals are similar,

More information

Angle Bisectors in a Triangle- Teacher

Angle Bisectors in a Triangle- Teacher Angle Bisectors in a Triangle- Teacher Concepts Relationship between an angle bisector and the arms of the angle Applying the Angle Bisector Theorem and its converse Materials TI-Nspire Math and Science

More information

Concurrent Segments in Triangles

Concurrent Segments in Triangles oncurrent Segments in Triangles What s the Point? Lesson 14-1 ltitudes of a Triangle Learning Targets: Determine the point of concurrency of the altitudes of a triangle. Use the point of concurrency of

More information

Unit 1, Lesson 1: Moving in the Plane

Unit 1, Lesson 1: Moving in the Plane Unit 1, Lesson 1: Moving in the Plane Let s describe ways figures can move in the plane. 1.1: Which One Doesn t Belong: Diagrams Which one doesn t belong? 1.2: Triangle Square Dance m.openup.org/1/8-1-1-2

More information

Cabriolet for RISC OS

Cabriolet for RISC OS abriolet for RIS OS a dynamic geometry program Version 2.5 i opyright opyright Murklesoft 1997-2002. Murklesoft can be contacted care of: Icon Technology hurch House hurch Street arlby Stamford Lincs PE9

More information

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1 Math Fundamentals Reference Sheet Page 1 Acute Angle An angle whose measure is between 0 and 90 Acute Triangle A that has all acute Adjacent Alternate Interior Angle Two coplanar with a common vertex and

More information

A "Quick and Dirty" Introduction to THE GEOMETER'S SKETCHPAD

A Quick and Dirty Introduction to THE GEOMETER'S SKETCHPAD A "Quick and Dirty" Introduction to the GEOMETER'S SKETCHPAD v. 4.0 Dynamic Geometry in the Mathematics Classroom _/_/_/ _/_/_/ _/_/ _/_/ Dr. _/ _/ _/ _/ Distinguished Teaching Professor _/_/_/ _/_/ _/

More information

2-1 Transformations and Rigid Motions. ENGAGE 1 ~ Introducing Transformations REFLECT

2-1 Transformations and Rigid Motions. ENGAGE 1 ~ Introducing Transformations REFLECT 2-1 Transformations and Rigid Motions Essential question: How do you identify transformations that are rigid motions? ENGAGE 1 ~ Introducing Transformations A transformation is a function that changes

More information

Math 366 Chapter 12 Review Problems

Math 366 Chapter 12 Review Problems hapter 12 Math 366 hapter 12 Review Problems 1. ach of the following figures contains at least one pair of congruent triangles. Identify them and tell why they are congruent. a. b. G F c. d. e. f. 1 hapter

More information

2. A straightedge can create straight line, but can't measure. A ruler can create straight lines and measure distances.

2. A straightedge can create straight line, but can't measure. A ruler can create straight lines and measure distances. 5.1 Copies of Line Segments and Angles Answers 1. A drawing is a rough sketch and a construction is a process to create an exact and accurate geometric figure. 2. A straightedge can create straight line,

More information

Mid-point & Perpendicular Bisector of a line segment AB

Mid-point & Perpendicular Bisector of a line segment AB Mid-point & Perpendicular isector of a line segment Starting point: Line Segment Midpoint of 1. Open compasses so the points are approximately ¾ of the length of apart point 3. y eye - estimate the midpoint

More information

G12 Centers of Triangles

G12 Centers of Triangles Summer 2006 I2T2 Geometry Page 45 6. Turn this page over and complete the activity with a different original shape. Scale actor 1 6 0.5 3 3.1 Perimeter of Original shape Measuring Perimeter Perimeter of

More information

Measuring Triangles. 1 cm 2. 1 cm. 1 cm

Measuring Triangles. 1 cm 2. 1 cm. 1 cm 3 Measuring Triangles You can find the area of a figure by drawing it on a grid (or covering it with a transparent grid) and counting squares, but this can be very time consuming. In Investigation 1, you

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 10 Topic Practice Papers: Polygons Polygons 1 Grade 4 Look at the shapes below A B C Shape A, B and C are polygons Write down the mathematical name for each of the polygons

More information

Use Geometry Expressions to create an envelope curve Use Geometry Expressions as an aide to creating geometric proof.

Use Geometry Expressions to create an envelope curve Use Geometry Expressions as an aide to creating geometric proof. Learning Objectives Loci and onics Lesson 4: onics and Envelope urves Level: Precalculus Time required: 90 minutes Students begin by looking at an envelope curve that generates an ellipse. The curve is

More information

7. 2 More Things Under. Construction. A Develop Understanding Task

7. 2 More Things Under. Construction. A Develop Understanding Task 7 Construction A Develop Understanding Task Like a rhombus, an equilateral triangle has three congruent sides. Show and describe how you might locate the third vertex point on an equilateral triangle,

More information

AngLegs Activity Cards Written by Laura O Connor & Debra Stoll

AngLegs Activity Cards Written by Laura O Connor & Debra Stoll LER 4340/4341/4342 AngLegs Activity Cards Written by Laura O Connor & Debra Stoll Early Elementary (K-2) Polygons Activity 1 Copy Cat Students will identify and create shapes. AngLegs Pencil Paper 1. Use

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name ate hapter 6 Maintaining Mathematical Proficiency Write an equation of the line passing through point P that is perpendicular to the given line. 1. P(5, ), y = x + 6. P(4, ), y = 6x 3 3. P( 1, ),

More information

Section 1: Introduction to Geometry Points, Lines, and Planes

Section 1: Introduction to Geometry Points, Lines, and Planes Section 1: Introduction to Geometry Points, Lines, and Planes Topic 1: Basics of Geometry - Part 1... 3 Topic 2: Basics of Geometry Part 2... 5 Topic 3: Midpoint and Distance in the Coordinate Plane Part

More information

Geometry Foundations Planning Document

Geometry Foundations Planning Document Geometry Foundations Planning Document Unit 1: Chromatic Numbers Unit Overview A variety of topics allows students to begin the year successfully, review basic fundamentals, develop cooperative learning

More information

Exterior Region Interior Region

Exterior Region Interior Region Lesson 3: Copy and Bisect and Angle Lesson 4: Construct a Perpendicular Bisector Lesson 5: Points of Concurrencies Student Outcomes: ~Students learn how to bisect an angle as well as how to copy an angle

More information

KeY TeRM. perpendicular bisector

KeY TeRM. perpendicular bisector .6 Making opies Just as Perfect as the Original! onstructing Perpendicular Lines, Parallel Lines, and Polygons LeARnInG GOALS In this lesson, you will: KeY TeRM perpendicular bisector OnSTRUTIOnS a perpendicular

More information

Shapes and Designs - Unit Test Review Sheet

Shapes and Designs - Unit Test Review Sheet Name: Class: Date: ID: A Shapes and Designs - Unit Test Review Sheet 1. a. Suppose the measure of an angle is 25. What is the measure of its complementary angle? b. Draw the angles to show that you are

More information

H.Geometry Chapter 3 Definition Sheet

H.Geometry Chapter 3 Definition Sheet Section 3.1 Measurement Tools Construction Tools Sketch Draw Construct Constructing the Duplicate of a Segment 1.) Start with a given segment. 2.) 3.) Constructing the Duplicate of an angle 1.) Start with

More information

2) Draw a labeled example of : a) a ray b) a line c) a segment. 5) Which triangle congruency conjecture would be used for each of the following?

2) Draw a labeled example of : a) a ray b) a line c) a segment. 5) Which triangle congruency conjecture would be used for each of the following? eometry Semester Final Review Name Period ) raw an example of four collinear points. 2) raw a labeled example of : a) a ray b) a line c) a segment 3) Name this angle four ways: 4) raw a concave polygon

More information

Triangles. You have learned to be careful with. EXAMPLE L E S S O N 1.

Triangles. You have learned to be careful with.  EXAMPLE L E S S O N 1. Page 1 of 5 L E S S O N 1.5 The difference between the right word and the almost right word is the difference between lightning and the lightning bug. MARK TWAIN EXAMPLE Triangles You have learned to be

More information

Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK

Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK Math 3315: Geometry Vocabulary Review Human Dictionary: WORD BANK [acute angle] [acute triangle] [adjacent interior angle] [alternate exterior angles] [alternate interior angles] [altitude] [angle] [angle_addition_postulate]

More information

Geometer's Sketchpad Workshop

Geometer's Sketchpad Workshop Geometer's Sketchpad Workshop Don Spickler Department of Mathematics and Computer Science Salisbury University Geometer's Sketchpad Workshop Outline 1. asic Construction, Measurement and Transformation

More information

ACTIVITY 9. Learning Targets: 112 SpringBoard Mathematics Geometry, Unit 2 Transformations, Triangles, and Quadrilaterals. Reflection.

ACTIVITY 9. Learning Targets: 112 SpringBoard Mathematics Geometry, Unit 2 Transformations, Triangles, and Quadrilaterals. Reflection. Learning Targets: Perform reflections on and off the coordinate plane. Identif reflectional smmetr in plane figures. SUGGESTED LERNING STRTEGIES: Visualization, Create Representations, Predict and Confirm,

More information

Common Core State Standards High School Geometry Constructions

Common Core State Standards High School Geometry Constructions ommon ore State Standards High School Geometry onstructions HSG.O..12 onstruction: opying a line segment HSG.O..12 onstruction: opying an angle HSG.O..12 onstruction: isecting a line segment HSG.O..12

More information

First Nations people use a drying rack to dry fish and animal hides. The drying rack in this picture is used in a Grade 2 classroom to dry artwork.

First Nations people use a drying rack to dry fish and animal hides. The drying rack in this picture is used in a Grade 2 classroom to dry artwork. 7.1 ngle roperties of Intersecting Lines Focus Identify and calculate complementary, supplementary, and opposite angles. First Nations people use a drying rack to dry fish and animal hides. The drying

More information

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles

a triangle with all acute angles acute triangle angles that share a common side and vertex adjacent angles alternate exterior angles acute triangle a triangle with all acute angles adjacent angles angles that share a common side and vertex alternate exterior angles two non-adjacent exterior angles on opposite sides of the transversal;

More information

Activity 1. Simple Constructions. Introduction. Construction. Objective. Cabri Jr. Tools. Part I: Construct a parallelogram.

Activity 1. Simple Constructions. Introduction. Construction. Objective. Cabri Jr. Tools. Part I: Construct a parallelogram. Objective To use Cabri Jr. tools to perform simple constructions Activity 1 Cabri Jr. Tools Introduction Construction Simple Constructions The Constructions Tools Menu in Cabri Jr. contains tools for operating

More information

ME 111: Engineering Drawing. Geometric Constructions

ME 111: Engineering Drawing. Geometric Constructions ME 111: Engineering Drawing Lecture 2 01-08-2011 Geometric Constructions Indian Institute of Technology Guwahati Guwahati 781039 Geometric Construction Construction of primitive geometric forms (points,

More information

The National Strategies Secondary Mathematics exemplification: Y8, 9

The National Strategies Secondary Mathematics exemplification: Y8, 9 Mathematics exemplification: Y8, 9 183 As outcomes, Year 8 pupils should, for example: Understand a proof that the sum of the angles of a triangle is 180 and of a quadrilateral is 360, and that the exterior

More information

Math 7, Unit 08: Geometric Figures Notes

Math 7, Unit 08: Geometric Figures Notes Math 7, Unit 08: Geometric Figures Notes Points, Lines and Planes; Line Segments and Rays s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My

More information

What You ll Learn. Why It s Important

What You ll Learn. Why It s Important Many artists use geometric concepts in their work. Think about what you have learned in geometry. How do these examples of First Nations art and architecture show geometry ideas? What You ll Learn Identify

More information

U4 Polygon Notes January 11, 2017 Unit 4: Polygons

U4 Polygon Notes January 11, 2017 Unit 4: Polygons Unit 4: Polygons 180 Complimentary Opposite exterior Practice Makes Perfect! Example: Example: Practice Makes Perfect! Def: Midsegment of a triangle - a segment that connects the midpoints of two sides

More information

Finding Perimeters and Areas of Regular Polygons

Finding Perimeters and Areas of Regular Polygons Finding Perimeters and Areas of Regular Polygons Center of a Regular Polygon - A point within the polygon that is equidistant from all vertices. Central Angle of a Regular Polygon - The angle whose vertex

More information

The angle measure at for example the vertex A is denoted by m A, or m BAC.

The angle measure at for example the vertex A is denoted by m A, or m BAC. MT 200 ourse notes on Geometry 5 2. Triangles and congruence of triangles 2.1. asic measurements. Three distinct lines, a, b and c, no two of which are parallel, form a triangle. That is, they divide the

More information

Objectives. Cabri Jr. Tools

Objectives. Cabri Jr. Tools ^Åíáîáíó=T oéñäéåíáçåë áå=íüé=mä~åé Objectives To use the Reflection tool on the Cabri Jr. application To investigate the properties of a reflection To extend the concepts of reflection to the coordinate

More information

CCGPS UNIT 1A Semester 1 ANALYTIC GEOMETRY Page 1 of 35. Similarity Congruence and Proofs Name:

CCGPS UNIT 1A Semester 1 ANALYTIC GEOMETRY Page 1 of 35. Similarity Congruence and Proofs Name: GPS UNIT 1 Semester 1 NLYTI GEOMETRY Page 1 of 35 Similarity ongruence and Proofs Name: Date: Understand similarity in terms of similarity transformations M9-12.G.SRT.1 Verify experimentally the properties

More information

Plane Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2011

Plane Geometry. Paul Yiu. Department of Mathematics Florida Atlantic University. Summer 2011 lane Geometry aul Yiu epartment of Mathematics Florida tlantic University Summer 2011 NTENTS 101 Theorem 1 If a straight line stands on another straight line, the sum of the adjacent angles so formed is

More information

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators

Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators 1 of 7 Supporting planning for shape, space and measures in Key Stage 4: objectives and key indicators This document provides objectives to support planning for shape, space and measures in Key Stage 4.

More information

Section Congruence Through Constructions

Section Congruence Through Constructions Section 10.1 - Congruence Through Constructions Definitions: Similar ( ) objects have the same shape but not necessarily the same size. Congruent ( =) objects have the same size as well as the same shape.

More information

Lesson Polygons

Lesson Polygons Lesson 4.1 - Polygons Obj.: classify polygons by their sides. classify quadrilaterals by their attributes. find the sum of the angle measures in a polygon. Decagon - A polygon with ten sides. Dodecagon

More information

Day 1: Geometry Terms & Diagrams CC Geometry Module 1

Day 1: Geometry Terms & Diagrams CC Geometry Module 1 Name ate ay 1: Geometry Terms & iagrams Geometry Module 1 For #1-3: Identify each of the following diagrams with the correct geometry term. #1-3 Vocab. ank Line Segment Line Ray 1. 2. 3. 4. Explain why

More information

A square centimeter is 1 centimeter by 1 centimeter. It has an area of 1 square centimeter. Sketch a square centimeter such as the one here.

A square centimeter is 1 centimeter by 1 centimeter. It has an area of 1 square centimeter. Sketch a square centimeter such as the one here. 3 Measuring Triangles You can find the area of a figure by drawing it on a grid (or covering it with a transparent grid) and counting squares, but this can be very time consuming. In Investigation, you

More information

Properties of Triangles

Properties of Triangles Properties of Triangles Perpendiculars and isectors segment, ray, line, or plane that is perpendicular to a segment at its midpoint is called a perpendicular bisector. point is equidistant from two points

More information

Preliminary: First you must understand the relationship between inscribed and circumscribed, for example:

Preliminary: First you must understand the relationship between inscribed and circumscribed, for example: 10.7 Inscribed and Circumscribed Polygons Lesson Objective: After studying this section, you will be able to: Recognize inscribed and circumscribed polygons Apply the relationship between opposite angles

More information

Geometry Assessments. Chapter 2: Patterns, Conjecture, and Proof

Geometry Assessments. Chapter 2: Patterns, Conjecture, and Proof Geometry Assessments Chapter 2: Patterns, Conjecture, and Proof 60 Chapter 2: Patterns, Conjecture, and Proof Introduction The assessments in Chapter 2 emphasize geometric thinking and spatial reasoning.

More information

8.1 Technology: Constructing Loci Using The Geometer s Sketchpad

8.1 Technology: Constructing Loci Using The Geometer s Sketchpad 8.1 Technology: Constructing Loci Using The Geometer s Sketchpad A locus is a set of points defined by a given rule or condition. Locus comes from Latin and means place or location. An example of a locus

More information

7.2 Isosceles and Equilateral Triangles

7.2 Isosceles and Equilateral Triangles Name lass Date 7.2 Isosceles and Equilateral Triangles Essential Question: What are the special relationships among angles and sides in isosceles and equilateral triangles? Resource Locker Explore G.6.D

More information

MATH 30 GEOMETRY UNIT OUTLINE AND DEFINITIONS Prepared by: Mr. F.

MATH 30 GEOMETRY UNIT OUTLINE AND DEFINITIONS Prepared by: Mr. F. 1 MTH 30 GEMETRY UNIT UTLINE ND DEFINITINS Prepared by: Mr. F. Some f The Typical Geometric Properties We Will Investigate: The converse holds in many cases too! The Measure f The entral ngle Tangent To

More information

Boardworks Ltd KS3 Mathematics. S1 Lines and Angles

Boardworks Ltd KS3 Mathematics. S1 Lines and Angles 1 KS3 Mathematics S1 Lines and Angles 2 Contents S1 Lines and angles S1.1 Labelling lines and angles S1.2 Parallel and perpendicular lines S1.3 Calculating angles S1.4 Angles in polygons 3 Lines In Mathematics,

More information

PERSPECTIVES ON GEOMETRY PRE-ASSESSMENT ANSWER SHEET (GEO )

PERSPECTIVES ON GEOMETRY PRE-ASSESSMENT ANSWER SHEET (GEO ) PERSPECTIVES ON GEOMETRY PRE-ASSESSMENT ANSWER SHEET (GEO.11.02.2) Name Date Site TURN IN BOTH TEST AND ANSWER SHEET TO YOUR INSTRUCTOR WHEN DONE. 1. 18. I. 2. 19. 3. 20. 4. 21. 5. 22. 6. 23. 7. 24. 8.

More information

Thomas Jefferson High School for Science and Technology Program of Studies TJ Math 1

Thomas Jefferson High School for Science and Technology Program of Studies TJ Math 1 Course Description: This course is designed for students who have successfully completed the standards for Honors Algebra I. Students will study geometric topics in depth, with a focus on building critical

More information

Unit 6: Quadrilaterals

Unit 6: Quadrilaterals Name: Geometry Period Unit 6: Quadrilaterals Part 1 of 2: Coordinate Geometry Proof and Properties! In this unit you must bring the following materials with you to class every day: Please note: Calculator

More information

Department: Course: Chapter 1

Department: Course: Chapter 1 Department: Course: 2016-2017 Term, Phrase, or Expression Simple Definition Chapter 1 Comprehension Support Point Line plane collinear coplanar A location in space. It does not have a size or shape The

More information

Understanding Quadrilaterals

Understanding Quadrilaterals Understanding Quadrilaterals Parallelogram: A quadrilateral with each pair of opposite sides parallel. Properties: (1) Opposite sides are equal. (2) Opposite angles are equal. (3) Diagonals bisect one

More information

Chapter 2 Similarity and Congruence

Chapter 2 Similarity and Congruence Chapter 2 Similarity and Congruence Definitions Definition AB = CD if and only if AB = CD Remember, mab = AB. Definitions Definition AB = CD if and only if AB = CD Remember, mab = AB. Definition ABC =

More information

Topic: Geometry Gallery Course: Mathematics 1

Topic: Geometry Gallery Course: Mathematics 1 Student Learning Map Unit 3 Topic: Geometry Gallery Course: Mathematics 1 Key Learning(s): Unit Essential Question(s): 1. The interior and exterior angles of a polygon can be determined by the number of

More information

Elementary Planar Geometry

Elementary Planar Geometry Elementary Planar Geometry What is a geometric solid? It is the part of space occupied by a physical object. A geometric solid is separated from the surrounding space by a surface. A part of the surface

More information

South Carolina College- and Career-Ready (SCCCR) Geometry Overview

South Carolina College- and Career-Ready (SCCCR) Geometry Overview South Carolina College- and Career-Ready (SCCCR) Geometry Overview In South Carolina College- and Career-Ready (SCCCR) Geometry, students build on the conceptual knowledge and skills they mastered in previous

More information

Geometry Basics of Geometry Precise Definitions Unit CO.1 OBJECTIVE #: G.CO.1

Geometry Basics of Geometry Precise Definitions Unit CO.1 OBJECTIVE #: G.CO.1 OBJECTIVE #: G.CO.1 OBJECTIVE Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance

More information

Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles

Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles 1 Example G1: Triangles with circumcenter on a median. Prove that if the circumcenter of a triangle lies on a median, the triangle either is isosceles or contains a right angle. D D 2 Solution to Example

More information

Constructions with Compass and Straightedge - Part 2

Constructions with Compass and Straightedge - Part 2 Name: Constructions with Compass and Straightedge - Part 2 Original Text By Dr. Bradley Material Supplemented by Mrs.de Nobrega 4.8 Points of Concurrency in a Triangle Our last four constructions are our

More information

Lesson 5: Definition of Rotation and Basic Properties

Lesson 5: Definition of Rotation and Basic Properties Student Outcomes Students know how to rotate a figure a given degree around a given center. Students know that rotations move lines to lines, rays to rays, segments to segments, and angles to angles. Students

More information

Chapter 5 Practice Test

Chapter 5 Practice Test hapter 5 Practice Test Multiple hoice Identify the choice that best completes the statement or answers the question. 1. Find the value of x. The diagram is not to scale. 40 x 32 40 25 25 a. 32 b. 50 c.

More information

AJ has been constructed as the angle bisector of BAD. B. AJ is the of BD.

AJ has been constructed as the angle bisector of BAD. B. AJ is the of BD. im #9: How do we construct a perpendicular bisector? Do Now: Using the angle below: 1. isect the angle. Label the bisector D. 2. Construct a copy of DC using vertex '. CC Geometry H C ' Relevant Vocabulary

More information

Lines Plane A flat surface that has no thickness and extends forever.

Lines Plane A flat surface that has no thickness and extends forever. Lines Plane A flat surface that has no thickness and extends forever. Point an exact location Line a straight path that has no thickness and extends forever in opposite directions Ray Part of a line that

More information

Geometry !!!!! Tri-Folds 3.G.1 - # 1. 4 Mystery Shape 5 Compare & Contrast. 3rd Grade Math. Compare. Name: Date: Contrast

Geometry !!!!! Tri-Folds 3.G.1 - # 1. 4 Mystery Shape 5 Compare & Contrast. 3rd Grade Math. Compare. Name: Date: Contrast 4 Mystery Shape 5 Compare & Contrast 1. Draw and label a shape that has one more side than a triangle. Draw it. 2. Draw and label a shape that has three more sides than a triangle. 3. Draw and label a

More information

Name: Pythagorean theorem February 4, 2013

Name: Pythagorean theorem February 4, 2013 Name: Pythagorean theorem February 4, 203 ) If you walk 50 yards south, then 40 yards east, and finally 20 yards north, how far are you from your starting point? Express your answer in yards. 6) At twelve

More information

GCSE Maths Scheme of Work (GCSE Fast-track higher tier) Teacher B SHAPE, SPACE & MEASURE

GCSE Maths Scheme of Work (GCSE Fast-track higher tier) Teacher B SHAPE, SPACE & MEASURE GSE Maths Scheme of Work (GSE Fast-track higher tier) Teacher SHAPE, SPAE & MEASURE Week Grade Unit A M S Perimeter, Area and Volume Find the area of a triangle, parallelogram, kite and trapezium Find

More information

GeoGebra Workbook 2 More Constructions, Measurements and Sliders

GeoGebra Workbook 2 More Constructions, Measurements and Sliders GeoGebra Workbook 2 More Constructions, Measurements and Sliders Paddy Johnson and Tim Brophy www.ul.ie/cemtl/ Table of Contents 1. Square Construction and Measurement 2 2. Circumscribed Circle of a Triangle

More information

7.1 Interior and Exterior Angles

7.1 Interior and Exterior Angles Name Class Date 7.1 Interior and Exterior ngles Essential Question: What can you say about the interior and exterior angles of a triangle and other polygons? Resource Locker Explore 1 Exploring Interior

More information

SOLIDS AND THEIR MEASUREMENTS

SOLIDS AND THEIR MEASUREMENTS SOLIDS ND THEIR MESUREMENTS 9.. 9.. In this chapter, students examine three-dimensional shapes, known as solids. Students will work on visualizing these solids by building and then drawing them. Visualization

More information

Point A location in geometry. A point has no dimensions without any length, width, or depth. This is represented by a dot and is usually labelled.

Point A location in geometry. A point has no dimensions without any length, width, or depth. This is represented by a dot and is usually labelled. Test Date: November 3, 2016 Format: Scored out of 100 points. 8 Multiple Choice (40) / 8 Short Response (60) Topics: Points, Angles, Linear Objects, and Planes Recognizing the steps and procedures for

More information

Quarter 1 Study Guide Honors Geometry

Quarter 1 Study Guide Honors Geometry Name: Date: Period: Topic 1: Vocabulary Quarter 1 Study Guide Honors Geometry Date of Quarterly Assessment: Define geometric terms in my own words. 1. For each of the following terms, choose one of the

More information

MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined

MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined MTH 362 Study Guide Exam 1 System of Euclidean Geometry 1. Describe the building blocks of Euclidean geometry. a. Point, line, and plane - undefined terms used to create definitions. Definitions are used

More information

UNIT 3 CIRCLES AND VOLUME Lesson 2: Inscribed Polygons and Circumscribed Triangles Instruction

UNIT 3 CIRCLES AND VOLUME Lesson 2: Inscribed Polygons and Circumscribed Triangles Instruction UNIT 3 IRLES N VOLUME Lesson 2: Inscribed Polygons and ircumscribed Triangles Prerequisite Skills This lesson requires the use of the following skills: constructing a perpendicular bisector Introduction

More information

Lesson 1. Rigid Transformations and Congruence. Problem 1. Problem 2. Problem 3. Solution. Solution

Lesson 1. Rigid Transformations and Congruence. Problem 1. Problem 2. Problem 3. Solution. Solution Rigid Transformations and Congruence Lesson 1 The six frames show a shape's di erent positions. Describe how the shape moves to get from its position in each frame to the next. To get from Position 1 to

More information

PARCC Review 1. Select the drop-down menus to correctly complete each sentence.

PARCC Review 1. Select the drop-down menus to correctly complete each sentence. Name PARCC Review 1. Select the drop-down menus to correctly complete each sentence. The set of all points in a plane that are equidistant from a given point is called a The given point is called the Radius

More information

(3) Proportionality. The student applies mathematical process standards to use proportional relationships

(3) Proportionality. The student applies mathematical process standards to use proportional relationships Title: Dilation Investigation Subject: Coordinate Transformations in Geometry Objective: Given grid paper, a centimeter ruler, a protractor, and a sheet of patty paper the students will generate and apply

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information