Stochastic Coalitional Games with Constant Matrix of Transition Probabilities

Size: px
Start display at page:

Download "Stochastic Coalitional Games with Constant Matrix of Transition Probabilities"

Transcription

1 Applied Mathematical Sciences, Vol. 8, 2014, no. 170, HIKARI Ltd, Stochastic Coalitional Games with Constant Matrix of Transition Probabilities Xeniya Grigorieva St.Petersburg State University Faculty of Applied Mathematics and Control Processes University pr. 35, St.Petersburg, , Russia Copyright c 2014 Xeniya Grigorieva. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The stochastic game Γ under consideration is repetition of the same stage game G which is played on each stage with different coalitional partitions. The transition probabilities over the coalitional structures of stage game depends on the initial stage game G in game Γ. The payoffs in stage games (which is a simultaneous game with a given coalitional structure) are computed as components of the generalized PMS-vector [2], [3]. The total payoff of each player in game Γ is equal to the mathematical expectation of payoffs in different stage games G (mathematical expectation of the components of PMS-vector). The concept of solution for such class of stochastic game is proposed and the existence of this solution is proved. Mathematics Subject Classification: 90Axx Keywords: stochastic games, coalitional partition, Nash equilibrium, Shapley value, PMS-vector 1 Introduction In the papers [1] a class of multistage stochastic games with different coalitional partitions where the transition probability from some coalitional game to another depends from coalitional partition in the initial game and from the

2 8460 Xeniya Grigorieva n-tuple of strategies which realizes in initial game is examined. A new mathematical method for solving stochastic coalitional games, based on constructing Nash equilibrium (NE) in a stochastic game similarly scheme of constructing of absolute NE in a multistage game with perfect information [4], [5], and based on calculation of the generalized PMS-value introduced in [2], [3], for the first time, is proposed along with the proof of the solution existence. In this paper transition probability from some coalitional game to another depends only from coalitional partition in the initial game. So the matrix transition probabilities which is constant during of whole multistage game is form. Remind that coalitional game is a game where players are united in fixed coalitions in order to obtain the maximum possible payoff, and stochastic game is a multistage game with random transitions from state to state, which is played by one or more players. 2 State of problem Suppose finite graph tree Γ = (Z, L), where Z is the set of vertices in the graph and L is point-to-set mapping, defined on the set Z: L (z) Z, z Z. Finite graph tree with the initial vertex z 0 will be denoted by Γ (z 0 ). In each vertex z Z of the graph Γ (z 0 ) simultaneous N-person game is defined in a normal form G (z) = N, X 1,..., X n, K 1,..., K n, where N = {1,..., n} is the set of players identical for all vertices z Z; X j is the set of pure strategies x z j of player j N, identical for all vertices z Z; x z = (x z 1,..., x z n), x z j X j, j = 1, n, is the n-tuple of pure strategies in the game G (z) at vertex z Z; µ z = (µ z 1,..., µ z n), j = 1, n, is n-tuple of mixed strategies in the game G (z) in mixed strategies at vertex z Z; K j (x z ), is the payoff function of the player j identical for all vertices z Z; it is supposed that K j (x z ) 0 x z X and j N. Furthermore, let in each vertex z Z of the graph Γ (z 0 ) the coalitional partition of the set N be defined Σ z = {S 1,..., S l }, l n, S i S j = i j, l S i = N, i=1 i. e. the set of players N is divided into l coalitions each acting as one player. Coalitional partitions can be different for different vertices z. Then in each vertex z Z we have the simultaneous l-person coalitional game in a normal form associating with the game G (z) G (z, Σ z ) = N, X z S 1,..., X z S l, H z S 1,..., H z S l,

3 Stochastic coalitional games with constant matrix of transition probabilities 8461 where X S z i = X j is the set of strategies x z S i of coalition S i, i = 1, l, the strategy x z S i X S z i of coalition S i is n-tuple of strategies of players from coalition S i, i. e. x z S i = { x j X j j S i }; x z = ( x ) z S 1,..., x z S l, x z Si X S z i, i = 1, l, is n-tuple of strategies in the game G (z, Σ z ); µ z = ( µ z 1,..., µ z l ), i = 1, l, is n-tuple of mixed strategies in the game G (z) in mixed strategies at the vertex z Z; however notice that µ z µ z ; the payoff of coalition S i is defined as a sum of payoffs of players from coalition S i, i. e. H z S i ( x z ) = K j (x), i = 1, l. (1) For each vertex z Z of the graph Γ (z 0 ) by matrix of transition probabilities the probabilities p (z, y) of transition to the next vertices y L (z) of the graph Γ (z 0 ) are defined: p (z, y) 0, p (z, y) = 1. Definition 2.1 The game defined on the finite graph tree Γ (z 0 ) with initial vertex z 0 is called the finite step coalitional stochastic game Γ (z 0 ) with constant matrix of transition probabilities: Γ (z 0 ) = N, Γ (z 0 ), {G (z, Σ z )} z Z, {p (z, y)} z Z,, k Γ, where N = {1,..., n} is the set of players identical for all vertices z Z; Γ (z 0 ) is the graph tree with initial vertex z 0 ; {G (z, Σ z )} z Z is the simultaneous coalitional l-person game defined in a normal form in each vertex z Z of the graph Γ (z 0 ); {p (z, y)} z Z,, is the realization probability of the coalitional game G (y, Σ y ) at the vertex y L (z) under condition that the simultaneous game G (z, Σ z ) was realized at the previous step at vertex z; k Γ is the finite and fixed number of steps in the stochastic game Γ (z 0 ); the step k, k = 0, k Γ at the vertex z k Z is defined according to the condition of z k (L (z 0 )) k, i. e. the vertex z k is reached from the vertex z 0 in k stages. States in the multistage stochastic game Γ are vertices of graph tree z Z with the defined coalitional partitions in each vertex Σ z, i. e. pair (z, Σ z ). Game Γ is stochastic, because transition from state (z, Σ z ) to state (y, Σ y ), y L (z), is defined by the given probability p (z, y). Multistage stochastic coalitional game Γ (z 0 ) is realized as follows. At moment t 0 the game Γ (z 0 ) starts at the vertex z 0, where the game G (z 0, Σ z0 ) with a certain coalitional partition Σ z0 is realized. Players choose their strategies, thus n-tuple of strategies x z 0 is formed. Then on the next stage with given

4 8462 Xeniya Grigorieva probabilities p (z 0, z 1 ) the transition from vertex z 0 on the graph tree Γ (z 0 ) to the game G (z 1, Σ z1 ), z 1 L (z 0 ) is realized. In the game G (z 1, Σ z1 ) players choose their strategies again, n-tuple of strategies x z 1 is formed. Then from vertex z 1 L (z 0 ) the transition to the vertex z 2 (L (z 0 )) 2 is made, again n-tuple of strategies x z 2 is formed. This process continues until at the end of the game the vertex z k Γ (L (z 0 )) k Γ, L ( z k Γ) = is reached. Denote by Γ (z) the subgame of game Γ (z 0 ), starting at the vertex z Z of the graph Γ (z 0 ), i. e. at coalitional game G (z, Σ z ). Obviously the subgame Γ (z) is a stochastic game as well. Denote by: u z j ( ) the strategy of player j, j = 1, n, in the subgame Γ (z), which to each vertex y Z assigns the strategy x y j of player j in each simultaneous game G (y, Σ y ) at all vertices y Γ (z), i. e. u z j (y) = { x y j y Γ (z) } ; u z S i ( ) the strategy of coalition S i in the subgame Γ (z), which is a set of strategies u z j ( ), j S i ; u z ( ) = (u z 1 ( ),..., u z n ( )) = ( u z S 1 ( ),..., u z S n ( ) ) the n-tuple in the game Γ (z). It s easy to show that the payoff E z j (u z ( )) of player j, j = 1, n, in any game Γ (z) is defined as the mathematical expectation of payoffs of player j in all its subgames, i. e. by the following formula ([4], p. 158): E z j (u z ( )) = K j (x z ) + [ p (z, y) E y j (u y ( )) ]. (2) Thus, a coalitional stochastic game Γ (z 0 ) with constant matrix of transition probabilities can be written as a game in normal form Γ (z 0 ) = = N, Γ (z 0 ), {G (z, Σ z )} z Z, {p (z, y)} z Z,, { Uj z } j=1,n, { E z j } j=1,n, k Γ where Uj z is the set of the strategies u z j ( ) of the player j, j = 1, n. The payoff HS z i (x z ) of coalition S i Σ z, i = 1, l, in each coalitional game G (z, Σ z ) at the vertex z Z is defined as the sum of payoffs of players from the coalition S i, see formula (1). The payoff HS z i (u z ( )), S i Σ z, i = 1, l, in the subgame Γ (z) of the game Γ (z 0 ) at the vertex z Z is defined as the sum of payoffs of players from,

5 Stochastic coalitional games with constant matrix of transition probabilities 8463 the coalition S i in the subgame Γ (z) at the vertex z Z: HS z i (u z ( )) = Ej z (u z ( )) = K j (x z ) + [ p (z, y) E y j (u y ( )) ] = = K j (x z ) + = H z S i (x z ) + p (z, y) E y j (u y ( )) = [ p (z, y) H y S i (u y ( )) ]. (3) It s clear, that in any vertex z Z under the coalitional partition Σ z the game Γ (z) with payoffs Ej z of players j = 1, n defined by (2), is a noncoalitional game between coalitions with payoffs HS z i (u z ( )) defined by (3). For finite non-coalitional games the existence of the NE ([5], p. 137) in mixed strategies is proved. However, as the payoffs of players j, j = 1, n, are not partitioned from the payoff of coalition in the subgame Γ (z), it may occur at the next step in the subgame Γ (y), y L (z), with another coalitional partition at the vertex y, the choice of player j will be not trivial and will be different from the corresponding choice of equilibrium strategy ū z j ( ) in the subgame Γ (z). 3 Nash Equilibrium in a multistage stochastic game with constant matrix of transition probabilities Remind the algorithm of constructing the generalized PMS-value in a coalitional game. Calculate the values of payoff H z S i (x z ) for all coalitions S i Σ z, i = 1, l, for each coalitional game G (z, Σ z ) by formula (1). In the game G (z, Σ z ) find n-tuple NE x z = ( x z S 1,..., x z S l ) or µ z = ( µ z S 1,..., µ z S l ). In case of l = 1 the problem is the problem of finding the maximal total payoff of players from the coalition S 1, in case of l = 2 it is the problem of finding of NE in bimatrix game, in other cases it is the problem of finding NE n-tuple in a non-coalitional game. In the case of multiple NE [6] the solution of the corresponding coalitional game will be not unique. The payoff of each coalition in NE n-tuple H z S i ( µ z ) is divided according to Shapley s value [7] Sh (S i ) = (Sh (S i : 1),..., Sh (S i : s)): Sh (S i : j) = S S i S j (s 1)! (s s )! s! [v (S ) v (S \ {j})] j = 1, s, (4)

6 8464 Xeniya Grigorieva where s = S i (s = S ) is the number of elements of set S i (S ) and v (S ) is the total maximal guaranteed payoff of subcoalition S S i. We have s v (S i ) = Sh (S i : j). j=1 Then PMS-vector in the NE in mixed strategies in the game G (z, Σ z ) is defined as PMS ( µ z ) = (PMS 1 ( µ z ),..., PMS n ( µ z )), where PMS j ( µ z ) = Sh (S i : j), j S i, i = 1, l. Remark. If the calculation of PMS-vector is difficult, then any other optimal solution can be proposed to be used as a PMS-solution, for example, Pareto-optimality or Nash arbitration scheme [6]. We apply the known algorithm of constructing NE n-tuple in a stochastic coalitional game to the stochastic coalitional game Γ(z 0 ) with constant matrix of transition probabilities [1]. 4 Conclusion In this paper the new algorithm of solving of finite step coalitional stochastic game with constant matrix of transition probabilities is proposed. A mathematical method for solving stochastic coalitional games with constant matrix of transition probabilities is based on calculation of the generalized PMS-value. References [1] X. Grigorieva, Solutions of stochastic coalitional games, Applied Mathematical Sciences, vol. 8, 2014, no. 169, [2] X. Grigorieva, Solutions of Bimatrix Coalitional Games, Applied Mathematical Sciences, vol. 8, 2014, no. 169, [3] L. Petrosjan, S. Mamkina, Dynamic Games with Coalitional Structures, International Game Theory Review, 8(2) (2006), [4] N. Zenkevich, L. Petrosjan, D. Young, Dynamic Games and their applications in management. - SPb.: Graduate School of Management, [5] L. Petrosjan, N. Zenkevich, E. Semina, The Game Theory. - M.: High School, 1998.

7 Stochastic coalitional games with constant matrix of transition probabilities 8465 [6] J. Nash, Non-cooperative Games, Ann. Mathematics 54 (1951), [7] L. S. Shapley, A Value for n-person Games. In: Contributions to the Theory of Games (Kuhn, H. W. and A. W. Tucker, eds.) (1953), Princeton University Press. Received: November 15, 2014; Published: November 27, 2014

Solutions of Stochastic Coalitional Games

Solutions of Stochastic Coalitional Games Applied Mathematical Sciences, Vol. 8, 2014, no. 169, 8443-8450 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410881 Solutions of Stochastic Coalitional Games Xeniya Grigorieva St.Petersburg

More information

A New Approach to Meusnier s Theorem in Game Theory

A New Approach to Meusnier s Theorem in Game Theory Applied Mathematical Sciences, Vol. 11, 2017, no. 64, 3163-3170 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.712352 A New Approach to Meusnier s Theorem in Game Theory Senay Baydas Yuzuncu

More information

Rainbow Vertex-Connection Number of 3-Connected Graph

Rainbow Vertex-Connection Number of 3-Connected Graph Applied Mathematical Sciences, Vol. 11, 2017, no. 16, 71-77 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.612294 Rainbow Vertex-Connection Number of 3-Connected Graph Zhiping Wang, Xiaojing

More information

The Number of Fuzzy Subgroups of Cuboid Group

The Number of Fuzzy Subgroups of Cuboid Group International Journal of Algebra, Vol. 9, 2015, no. 12, 521-526 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2015.5958 The Number of Fuzzy Subgroups of Cuboid Group Raden Sulaiman Department

More information

Some Algebraic (n, n)-secret Image Sharing Schemes

Some Algebraic (n, n)-secret Image Sharing Schemes Applied Mathematical Sciences, Vol. 11, 2017, no. 56, 2807-2815 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.710309 Some Algebraic (n, n)-secret Image Sharing Schemes Selda Çalkavur Mathematics

More information

A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS

A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS Iranian Journal of Fuzzy Systems Vol. 5, No. 7, 208 pp. 2-3 2 A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS A. C. CEVIKEL AND M. AHLATCIOGLU Abstract. In this paper,

More information

Domination Number of Jump Graph

Domination Number of Jump Graph International Mathematical Forum, Vol. 8, 013, no. 16, 753-758 HIKARI Ltd, www.m-hikari.com Domination Number of Jump Graph Y. B. Maralabhavi Department of Mathematics Bangalore University Bangalore-560001,

More information

A Note on Vertex Arboricity of Toroidal Graphs without 7-Cycles 1

A Note on Vertex Arboricity of Toroidal Graphs without 7-Cycles 1 International Mathematical Forum, Vol. 11, 016, no. 14, 679-686 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/imf.016.667 A Note on Vertex Arboricity of Toroidal Graphs without 7-Cycles 1 Haihui

More information

Rectilinear Crossing Number of a Zero Divisor Graph

Rectilinear Crossing Number of a Zero Divisor Graph International Mathematical Forum, Vol. 8, 013, no. 1, 583-589 HIKARI Ltd, www.m-hikari.com Rectilinear Crossing Number of a Zero Divisor Graph M. Malathi, S. Sankeetha and J. Ravi Sankar Department of

More information

On the Computational Complexity of Nash Equilibria for (0, 1) Bimatrix Games

On the Computational Complexity of Nash Equilibria for (0, 1) Bimatrix Games On the Computational Complexity of Nash Equilibria for (0, 1) Bimatrix Games Bruno Codenotti Daniel Štefankovič Abstract The computational complexity of finding a Nash equilibrium in a nonzero sum bimatrix

More information

Graceful Labeling for Some Star Related Graphs

Graceful Labeling for Some Star Related Graphs International Mathematical Forum, Vol. 9, 2014, no. 26, 1289-1293 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.4477 Graceful Labeling for Some Star Related Graphs V. J. Kaneria, M.

More information

Dominator Coloring of Prism Graph

Dominator Coloring of Prism Graph Applied Mathematical Sciences, Vol. 9, 0, no. 38, 889-89 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ams.0.7 Dominator Coloring of Prism Graph T. Manjula Department of Mathematics, Sathyabama

More information

Vertex Graceful Labeling of C j C k C l

Vertex Graceful Labeling of C j C k C l Applied Mathematical Sciences, Vol. 8, 01, no. 8, 07-05 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.01.5331 Vertex Graceful Labeling of C j C k C l P. Selvaraju 1, P. Balaganesan,5, J. Renuka

More information

Enumeration of Minimal Control Sets of Vertices in Oriented Graph

Enumeration of Minimal Control Sets of Vertices in Oriented Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 39, 1941-1945 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4269 Enumeration of Minimal Control Sets of Vertices in Oriented Graph G.Sh.

More information

Bargaining and Coalition Formation

Bargaining and Coalition Formation 1 These slides are based largely on Chapter 18, Appendix A of Microeconomic Theory by Mas-Colell, Whinston, and Green. Bargaining and Coalition Formation Dr James Tremewan (james.tremewan@univie.ac.at)

More information

A Structure of the Subgraph Induced at a Labeling of a Graph by the Subset of Vertices with an Interval Spectrum

A Structure of the Subgraph Induced at a Labeling of a Graph by the Subset of Vertices with an Interval Spectrum Applied Mathematical Sciences, Vol. 8, 2014, no. 173, 8635-8641 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.410850 A Structure of the Subgraph Induced at a Labeling of a Graph by the

More information

Conditional Volatility Estimation by. Conditional Quantile Autoregression

Conditional Volatility Estimation by. Conditional Quantile Autoregression International Journal of Mathematical Analysis Vol. 8, 2014, no. 41, 2033-2046 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.47210 Conditional Volatility Estimation by Conditional Quantile

More information

The Cover Pebbling Number of the Join of Some Graphs

The Cover Pebbling Number of the Join of Some Graphs Applied Mathematical Sciences, Vol 8, 2014, no 86, 4275-4283 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams201445377 The Cover Pebbling Number of the Join of Some Graphs Michael E Subido and Imelda

More information

On Self-complementary Chordal Graphs Defined. by Single Forbidden Induced Subgraph

On Self-complementary Chordal Graphs Defined. by Single Forbidden Induced Subgraph Applied Mathematical Sciences, Vol. 8, 2014, no. 54, 2655-2663 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.24281 On Self-complementary Chordal Graphs Defined by Single Forbidden Induced

More information

Heronian Mean Labeling of Graphs

Heronian Mean Labeling of Graphs International Mathematical Forum, Vol. 12, 2017, no. 15, 705-713 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.68108 Heronian Mean Labeling of Graphs S.S. Sandhya Department of Mathematics

More information

Using Ones Assignment Method and. Robust s Ranking Technique

Using Ones Assignment Method and. Robust s Ranking Technique Applied Mathematical Sciences, Vol. 7, 2013, no. 113, 5607-5619 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.37381 Method for Solving Fuzzy Assignment Problem Using Ones Assignment

More information

Solution of Maximum Clique Problem. by Using Branch and Bound Method

Solution of Maximum Clique Problem. by Using Branch and Bound Method Applied Mathematical Sciences, Vol. 8, 2014, no. 2, 81-90 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.310601 Solution of Maximum Clique Problem by Using Branch and Bound Method Mochamad

More information

Disconnection Probability of Graph on Two Dimensional Manifold: Continuation

Disconnection Probability of Graph on Two Dimensional Manifold: Continuation Applied Mathematical Sciences, Vol. 10, 2016, no. 40, 2003-2011 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.63123 Disconnection Probability of Graph on Two Dimensional Manifold: Continuation

More information

CAP 5993/CAP 4993 Game Theory. Instructor: Sam Ganzfried

CAP 5993/CAP 4993 Game Theory. Instructor: Sam Ganzfried CAP 5993/CAP 4993 Game Theory Instructor: Sam Ganzfried sganzfri@cis.fiu.edu 1 Announcements HW 1 due today HW 2 out this week (2/2), due 2/14 2 Definition: A two-player game is a zero-sum game if for

More information

Ennumeration of the Number of Spanning Trees in the Lantern Maximal Planar Graph

Ennumeration of the Number of Spanning Trees in the Lantern Maximal Planar Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 74, 3661-3666 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.44312 Ennumeration of the Number of Spanning Trees in the Lantern Maximal

More information

Connected Liar s Domination in Graphs: Complexity and Algorithm 1

Connected Liar s Domination in Graphs: Complexity and Algorithm 1 Applied Mathematical Sciences, Vol. 12, 2018, no. 10, 489-494 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.8344 Connected Liar s Domination in Graphs: Complexity and Algorithm 1 Chengye

More information

Hyperbola for Curvilinear Interpolation

Hyperbola for Curvilinear Interpolation Applied Mathematical Sciences, Vol. 7, 2013, no. 30, 1477-1481 HIKARI Ltd, www.m-hikari.com Hyperbola for Curvilinear Interpolation G. L. Silver 868 Kristi Lane Los Alamos, NM 87544, USA gsilver@aol.com

More information

The Generalized Stability Indicator of. Fragment of the Network. II Critical Performance Event

The Generalized Stability Indicator of. Fragment of the Network. II Critical Performance Event Applied Mathematical Sciences, Vol. 7, 2013, no. 113, 5627-5632 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.38472 The Generalized Stability Indicator of Fragment of the Network. II

More information

Soft Regular Generalized Closed Sets in Soft Topological Spaces

Soft Regular Generalized Closed Sets in Soft Topological Spaces Int. Journal of Math. Analysis, Vol. 8, 2014, no. 8, 355-367 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.4125 Soft Regular Generalized Closed Sets in Soft Topological Spaces Şaziye

More information

On Locating Domination Number of. Boolean Graph BG 2 (G)

On Locating Domination Number of. Boolean Graph BG 2 (G) International Mathematical Forum, Vol. 12, 2017, no. 20, 973-982 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7977 On Locating Domination Number of Boolean Graph BG 2 (G) M. Bhanumathi

More information

A Comparative Study on Optimization Techniques for Solving Multi-objective Geometric Programming Problems

A Comparative Study on Optimization Techniques for Solving Multi-objective Geometric Programming Problems Applied Mathematical Sciences, Vol. 9, 205, no. 22, 077-085 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.205.42029 A Comparative Study on Optimization Techniques for Solving Multi-objective

More information

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy.

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy. Algorithmic Game Theory and Applications Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Kousha Etessami games and the internet Basic idea: The internet is a huge experiment

More information

Monophonic Chromatic Parameter in a Connected Graph

Monophonic Chromatic Parameter in a Connected Graph International Journal of Mathematical Analysis Vol. 11, 2017, no. 19, 911-920 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2017.78114 Monophonic Chromatic Parameter in a Connected Graph M.

More information

Robust EC-PAKA Protocol for Wireless Mobile Networks

Robust EC-PAKA Protocol for Wireless Mobile Networks International Journal of Mathematical Analysis Vol. 8, 2014, no. 51, 2531-2537 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.410298 Robust EC-PAKA Protocol for Wireless Mobile Networks

More information

Heronian Mean Labeling of. Disconnected Graphs

Heronian Mean Labeling of. Disconnected Graphs International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 5, 201-208 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.6841 Heronian Mean Labeling of Disconnected Graphs

More information

Groups with Isomorphic Tables of Marks Orders: 32, 48, 72 and 80 1

Groups with Isomorphic Tables of Marks Orders: 32, 48, 72 and 80 1 Pure Mathematical Sciences, Vol. 5, 2016, no. 1, 83-93 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pms.2016.61019 Groups with Isomorphic Tables of Marks Orders: 32, 48, 72 and 80 1 Lua Maldonado-Hernández

More information

Finding Gale Strings

Finding Gale Strings Electronic Notes in Discrete Mathematics 36 (2010) 1065 1072 Finding Gale Strings Marta M. Casetti, Julian Merschen, Bernhard von Stengel Dept. of Mathematics, London School of Economics, London WC2A 2AE,

More information

Decomposition of Complete Graphs. into Union of Stars

Decomposition of Complete Graphs. into Union of Stars Int. J. Contemp. Math. Sciences, Vol. 9, 2014, no. 1, 11-17 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2014.310114 Decomposition of Complete Graphs into Union of Stars Ancykutty Joseph*

More information

Deployment with Property Monodrome Group Topology

Deployment with Property Monodrome Group Topology International Journal of Contemporary Mathematical Sciences Vol. 12, 2017, no. 1, 23-29 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2017.61169 Deployment with Property Monodrome Group Topology

More information

Rough Connected Topologized. Approximation Spaces

Rough Connected Topologized. Approximation Spaces International Journal o Mathematical Analysis Vol. 8 04 no. 53 69-68 HIARI Ltd www.m-hikari.com http://dx.doi.org/0.988/ijma.04.4038 Rough Connected Topologized Approximation Spaces M. J. Iqelan Department

More information

Pathways to Equilibria, Pretty Pictures and Diagrams (PPAD)

Pathways to Equilibria, Pretty Pictures and Diagrams (PPAD) 1 Pathways to Equilibria, Pretty Pictures and Diagrams (PPAD) Bernhard von Stengel partly joint work with: Marta Casetti, Julian Merschen, Lászlo Végh Department of Mathematics London School of Economics

More information

A Game-Theoretic Framework for Congestion Control in General Topology Networks

A Game-Theoretic Framework for Congestion Control in General Topology Networks A Game-Theoretic Framework for Congestion Control in General Topology SYS793 Presentation! By:! Computer Science Department! University of Virginia 1 Outline 2 1 Problem and Motivation! Congestion Control

More information

The b-chromatic Number of Bistar Graph

The b-chromatic Number of Bistar Graph Applied Mathematical Sciences, Vol. 8, 2014, no. 116, 5795-5800 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.47529 The b-chromatic Number of Bistar Graph Immanuel T. San Diego and Frederick

More information

Algorithmic Game Theory - Introduction, Complexity, Nash

Algorithmic Game Theory - Introduction, Complexity, Nash Algorithmic Game Theory - Introduction, Complexity, Nash Branislav Bošanský Czech Technical University in Prague branislav.bosansky@agents.fel.cvut.cz February 25, 2018 About This Course main topics of

More information

Lecture 2. Sequential Equilibrium

Lecture 2. Sequential Equilibrium ECON601 Spring, 2015 UBC Li, Hao Lecture 2. Sequential Equilibrium Strategies and beliefs Applying idea of subgame perfection of extensive games with perfect information to extensive games with imperfect

More information

Complete Bipartite Graphs with No Rainbow Paths

Complete Bipartite Graphs with No Rainbow Paths International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 10, 455-462 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2016.6951 Complete Bipartite Graphs with No Rainbow

More information

Complexity. Congestion Games. Algorithmic Game Theory. Alexander Skopalik Algorithmic Game Theory 2013 Congestion Games

Complexity. Congestion Games. Algorithmic Game Theory. Alexander Skopalik Algorithmic Game Theory 2013 Congestion Games Algorithmic Game Theory Complexity of pure Nash equilibria We investigate the complexity of finding Nash equilibria in different kinds of congestion games. Our study is restricted to congestion games with

More information

What is the Optimal Bin Size of a Histogram: An Informal Description

What is the Optimal Bin Size of a Histogram: An Informal Description International Mathematical Forum, Vol 12, 2017, no 15, 731-736 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/imf20177757 What is the Optimal Bin Size of a Histogram: An Informal Description Afshin

More information

Representation of Finite Games as Network Congestion Games

Representation of Finite Games as Network Congestion Games Representation of Finite Games as Network Congestion Games Igal Milchtaich To cite this version: Igal Milchtaich. Representation of Finite Games as Network Congestion Games. Roberto Cominetti and Sylvain

More information

Generating Topology on Graphs by. Operations on Graphs

Generating Topology on Graphs by. Operations on Graphs Applied Mathematical Sciences, Vol. 9, 2015, no. 57, 2843-2857 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.5154 Generating Topology on Graphs by Operations on Graphs M. Shokry Physics

More information

doi: /j.ipl

doi: /j.ipl doi: 101016/jipl201110015 A comment on pure-strategy Nash equilibria in competitive diffusion games Reiko Takehara a, Masahiro Hachimori a, Maiko Shigeno a,1, a Graduate School of Systems and Information

More information

Equilibrium Tracing in Bimatrix Games

Equilibrium Tracing in Bimatrix Games Equilibrium Tracing in Bimatrix Games Anne Balthasar Department of Mathematics, London School of Economics, Houghton St, London WCA AE, United Kingdom A.V.Balthasar@lse.ac.uk Abstract. We analyze the relations

More information

A New Approach to Evaluate Operations on Multi Granular Nano Topology

A New Approach to Evaluate Operations on Multi Granular Nano Topology International Mathematical Forum, Vol. 12, 2017, no. 4, 173-184 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.611154 A New Approach to Evaluate Operations on Multi Granular Nano Topology

More information

Graph Sampling Approach for Reducing. Computational Complexity of. Large-Scale Social Network

Graph Sampling Approach for Reducing. Computational Complexity of. Large-Scale Social Network Journal of Innovative Technology and Education, Vol. 3, 216, no. 1, 131-137 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/jite.216.6828 Graph Sampling Approach for Reducing Computational Complexity

More information

Some New Generalized Nonlinear Integral Inequalities for Functions of Two Independent Variables

Some New Generalized Nonlinear Integral Inequalities for Functions of Two Independent Variables Int. Journal of Math. Analysis, Vol. 7, 213, no. 4, 1961-1976 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.213.3485 Some New Generalized Nonlinear Integral Inequalities for Functions of

More information

Strategic Characterization of the Index of an Equilibrium. Arndt von Schemde. Bernhard von Stengel

Strategic Characterization of the Index of an Equilibrium. Arndt von Schemde. Bernhard von Stengel Strategic Characterization of the Index of an Equilibrium Arndt von Schemde Bernhard von Stengel Department of Mathematics London School of Economics Battle of the sexes he she football football opera

More information

Optimal Routing Control: Repeated Game Approach

Optimal Routing Control: Repeated Game Approach IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 3, MARCH 2002 437 Optimal Routing Control: Repeated Game Approach Richard J. La and Venkat Anantharam, Fellow, IEEE Abstract Communication networks

More information

The Contraction Method for Counting the Complexity of Planar Graphs with Cut Vertices

The Contraction Method for Counting the Complexity of Planar Graphs with Cut Vertices Applied Mathematical Sciences, Vol. 7, 2013, no. 70, 3479-3488 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.34227 The Contraction Method for Counting the Complexity of Planar Graphs

More information

International Journal of Mathematical Archive-5(9), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(9), 2014, Available online through   ISSN International Journal of Mathematical Archive-5(9), 2014, 100-112 Available online through wwwijmainfo ISSN 2229 5046 ON D RULAR FUZZY RAPHS K Radha 1 and N Kumaravel 2 1 P Department of Mathematics, Periyar

More information

A Mathematical Theorematic Approach to. Computer Programming

A Mathematical Theorematic Approach to. Computer Programming International Journal of Computing and Optimization Vol. 4, 2017, no. 1, 187-192 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijco.2017.7913 A Mathematical Theorematic Approach to Computer Programming

More information

6 Extensive Form Games

6 Extensive Form Games 6 Extensive Form Games 6.1 Example: Representing a Simultaneous 22 Game Alice H HHHH O H HH o Q Bob H QQQ h o HHHH h 2 1 1 2 Figure 1: The Battle of the Sexes in Extensive Form So far we have described

More information

Sequences of Finite Vertices of Fuzzy Topographic Topological Mapping

Sequences of Finite Vertices of Fuzzy Topographic Topological Mapping Applied Mathematical Sciences, Vol. 10, 2016, no. 38, 1923-1934 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6126 Sequences of Finite Vertices of Fuzzy Topographic Topological Mapping

More information

Complexity of the Gale String Problem for Equilibrium Computation in Games

Complexity of the Gale String Problem for Equilibrium Computation in Games Complexity of the Gale String Problem for Equilibrium Computation in Games Marta Maria Casetti Thesis submitted to the Department of Mathematics London School of Economics and Political Science for the

More information

On the Parallel Implementation of Best Fit Decreasing Algorithm in Matlab

On the Parallel Implementation of Best Fit Decreasing Algorithm in Matlab Contemporary Engineering Sciences, Vol. 10, 2017, no. 19, 945-952 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2017.79120 On the Parallel Implementation of Best Fit Decreasing Algorithm in

More information

On a Network Generalization of the Minmax Theorem

On a Network Generalization of the Minmax Theorem On a Network Generalization of the Minmax Theorem Constantinos Daskalakis Christos H. Papadimitriou {costis, christos}@cs.berkeley.edu February 10, 2009 Abstract We consider graphical games in which edges

More information

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Algorithmic Game Theory and Applications Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Kousha Etessami warning, again 1 In the few remaining lectures, we will briefly

More information

New Classes of Closed Sets tgr-closed Sets and t gr-closed Sets

New Classes of Closed Sets tgr-closed Sets and t gr-closed Sets International Mathematical Forum, Vol. 10, 2015, no. 5, 211-220 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2015.5212 New Classes of Closed Sets tgr-closed Sets and t gr-closed Sets Ahmed

More information

Network Topology and Equilibrium Existence in Weighted Network Congestion Games

Network Topology and Equilibrium Existence in Weighted Network Congestion Games Network Topology and Equilibrium Existence in Weighted Network Congestion Games Igal Milchtaich, Bar-Ilan University August 2010 Abstract. Every finite noncooperative game can be presented as a weighted

More information

Some Coupled Fixed Point Theorems on Quasi-Partial b-metric Spaces

Some Coupled Fixed Point Theorems on Quasi-Partial b-metric Spaces International Journal of Mathematical Analysis Vol. 9, 2015, no. 6, 293-306 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.412388 Some Coupled Fixed Point Theorems on Quasi-Partial b-metric

More information

A Computational Study on the Number of. Iterations to Solve the Transportation Problem

A Computational Study on the Number of. Iterations to Solve the Transportation Problem Applied Mathematical Sciences, Vol. 8, 2014, no. 92, 4579-4583 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.46435 A Computational Study on the Number of Iterations to Solve the Transportation

More information

Using HMM in Strategic Games

Using HMM in Strategic Games Using HMM in Strategic Games Mario Benevides Isaque Lima Rafael Nader Pedro Rougemont Systems and Computer Engineering Program and Computer Science Department Federal University of Rio de Janeiro, Brazil

More information

Game Theory & Networks

Game Theory & Networks Game Theory & Networks (an incredibly brief overview) ndrew Smith ECS 253/ME 289 May 10th, 2016 Game theory can help us answer important questions for scenarios where: players/agents (nodes) are autonomous

More information

Lecture Notes on Congestion Games

Lecture Notes on Congestion Games Lecture Notes on Department of Computer Science RWTH Aachen SS 2005 Definition and Classification Description of n agents share a set of resources E strategy space of player i is S i 2 E latency for resource

More information

A Cumulative Averaging Method for Piecewise Polynomial Approximation to Discrete Data

A Cumulative Averaging Method for Piecewise Polynomial Approximation to Discrete Data Applied Mathematical Sciences, Vol. 1, 16, no. 7, 331-343 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/1.1988/ams.16.5177 A Cumulative Averaging Method for Piecewise Polynomial Approximation to Discrete

More information

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60 CPS 102: Discrete Mathematics Instructor: Bruce Maggs Quiz 3 Date: Wednesday November 30, 2011 NAME: Prob # Score Max Score 1 10 2 10 3 10 4 10 5 10 6 10 Total 60 1 Problem 1 [10 points] Find a minimum-cost

More information

A New Energy-Aware Routing Protocol for. Improving Path Stability in Ad-hoc Networks

A New Energy-Aware Routing Protocol for. Improving Path Stability in Ad-hoc Networks Contemporary Engineering Sciences, Vol. 8, 2015, no. 19, 859-864 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ces.2015.57207 A New Energy-Aware Routing Protocol for Improving Path Stability

More information

Optimal Channel Selection for Cooperative Spectrum Sensing Using Coordination Game

Optimal Channel Selection for Cooperative Spectrum Sensing Using Coordination Game 2012 7th International ICST Conference on Communications and Networking in China (CHINACOM) Optimal Channel Selection for Cooperative Spectrum Sensing Using Coordination Game Yuhua Xu, Zhan Gao and Wei

More information

The Price of Selfishness in Network Coding

The Price of Selfishness in Network Coding The Price of Selfishness in Network Coding Jason R. Marden and Michelle Effros Abstract We introduce a game theoretic framework for studying a restricted form of network coding in a general wireless network.

More information

Buffon Type Problems in Archimedean Tilings II

Buffon Type Problems in Archimedean Tilings II pplied Mathematical Sciences, Vol. 1, 16, no. 7, 199-16 HIKRI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/ams.16.61 Buffon Type Problems in rchimedean Tilings II Salvatore Vassallo Università attolica

More information

The simplex method and the diameter of a 0-1 polytope

The simplex method and the diameter of a 0-1 polytope The simplex method and the diameter of a 0-1 polytope Tomonari Kitahara and Shinji Mizuno May 2012 Abstract We will derive two main results related to the primal simplex method for an LP on a 0-1 polytope.

More information

Regular Pentagon Cover for Triangles. of Perimeter Two

Regular Pentagon Cover for Triangles. of Perimeter Two pplied Mathematical Sciences, Vol. 7, 20, no. 2, 55-555 HIKRI Ltd, www.m-hikari.com Regular Pentagon over for Triangles of Perimeter Two anyat Sroysang epartment of Mathematics and Statistics, Faculty

More information

CHAPTER 13: FORMING COALITIONS. Multiagent Systems. mjw/pubs/imas/

CHAPTER 13: FORMING COALITIONS. Multiagent Systems.   mjw/pubs/imas/ CHAPTER 13: FORMING COALITIONS Multiagent Systems http://www.csc.liv.ac.uk/ mjw/pubs/imas/ Coalitional Games Coalitional games model scenarios where agents can benefit by cooperating. Issues in coalitional

More information

Basic Graph Theory with Applications to Economics

Basic Graph Theory with Applications to Economics Basic Graph Theory with Applications to Economics Debasis Mishra February 6, What is a Graph? Let N = {,..., n} be a finite set. Let E be a collection of ordered or unordered pairs of distinct elements

More information

The Further Mathematics Support Programme

The Further Mathematics Support Programme Degree Topics in Mathematics Groups A group is a mathematical structure that satisfies certain rules, which are known as axioms. Before we look at the axioms, we will consider some terminology. Elements

More information

Numerical Rectification of Curves

Numerical Rectification of Curves Applied Mathematical Sciences, Vol. 8, 2014, no. 17, 823-828 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.39500 Numerical Rectification of Curves B. P. Acharya, M. Acharya and S. B.

More information

Cryptanalysis and Improvement of a New. Ultra-lightweight RFID Authentication. Protocol with Permutation

Cryptanalysis and Improvement of a New. Ultra-lightweight RFID Authentication. Protocol with Permutation Applied Mathematical Sciences, Vol. 7, 2013, no. 69, 3433-3444 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.211587 Cryptanalysis and Improvement of a New Ultra-lightweight RFID Authentication

More information

Minimum Number of Palettes in Edge Colorings

Minimum Number of Palettes in Edge Colorings Graphs and Combinatorics (2014) 30:619 626 DOI 10.1007/s00373-013-1298-8 ORIGINAL PAPER Minimum Number of Palettes in Edge Colorings Mirko Horňák Rafał Kalinowski Mariusz Meszka Mariusz Woźniak Received:

More information

Deterministic Graphical Games Revisited

Deterministic Graphical Games Revisited Deterministic Graphical Games Revisited Daniel Andersson, Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and Troels Bjerre Sørensen University of Aarhus, Datalogisk Institut, DK-8200 Aarhus N, Denmark

More information

Computing Performance Measures of Fuzzy Non-Preemptive Priority Queues Using Robust Ranking Technique

Computing Performance Measures of Fuzzy Non-Preemptive Priority Queues Using Robust Ranking Technique Applied Mathematical Sciences, Vol. 7, 2013, no. 102, 5095-5102 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.37378 Computing Performance Measures of Fuzzy Non-Preemptive Priority Queues

More information

Game Theoretic Solutions to Cyber Attack and Network Defense Problems

Game Theoretic Solutions to Cyber Attack and Network Defense Problems Game Theoretic Solutions to Cyber Attack and Network Defense Problems 12 th ICCRTS "Adapting C2 to the 21st Century Newport, Rhode Island, June 19-21, 2007 Automation, Inc Dan Shen, Genshe Chen Cruz &

More information

Some properties of the line graphs associated to the total graph of a commutative ring

Some properties of the line graphs associated to the total graph of a commutative ring Pure and Applied Mathematics Journal 013; () : 51-55 Published online April, 013 (http://wwwsciencepublishinggroupcom/j/pamj) doi: 1011648/jpamj0130011 Some properties of the line graphs associated to

More information

On the Complexity of the Policy Improvement Algorithm. for Markov Decision Processes

On the Complexity of the Policy Improvement Algorithm. for Markov Decision Processes On the Complexity of the Policy Improvement Algorithm for Markov Decision Processes Mary Melekopoglou Anne Condon Computer Sciences Department University of Wisconsin - Madison 0 West Dayton Street Madison,

More information

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour.

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour. Some Upper Bounds for Signed Star Domination Number of Graphs S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour Abstract Let G be a graph with the vertex set V (G) and edge set E(G). A function

More information

A New Approach for Solving Unbalanced. Fuzzy Transportation Problems

A New Approach for Solving Unbalanced. Fuzzy Transportation Problems International Journal of Computing and Optimization Vol. 3, 2016, no. 1, 131-140 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijco.2016.6819 A New Approach for Solving Unbalanced Fuzzy Transportation

More information

On Geometric Mean Graphs

On Geometric Mean Graphs International Mathematical Forum, Vol. 10, 2015, no. 3, 115-125 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2015.412198 On Geometric Mean Graphs 1 S. Somasundaram, 2 S. S. Sandhya and 3

More information

Mean, Odd Sequential and Triangular Sum Graphs

Mean, Odd Sequential and Triangular Sum Graphs Circulation in Computer Science Vol.2, No.4, pp: (40-52), May 2017 https://doi.org/10.22632/ccs-2017-252-08 Mean, Odd Sequential and Triangular Sum Graphs M. A. Seoud Department of Mathematics, Faculty

More information

A note on isolate domination

A note on isolate domination Electronic Journal of Graph Theory and Applications 4 (1) (016), 94 100 A note on isolate domination I. Sahul Hamid a, S. Balamurugan b, A. Navaneethakrishnan c a Department of Mathematics, The Madura

More information

COLORING OF MAP BY FINITE NUMBER OF COLORED POINTS USING FUZZY RECTANGLES ABSTRACT

COLORING OF MAP BY FINITE NUMBER OF COLORED POINTS USING FUZZY RECTANGLES ABSTRACT COLORING OF MAP BY FINITE NUMBER OF COLORED POINTS USING FUZZY RECTANGLES * G. Tsitsiashvili, ** M. Osipova IAM FEB RAS, FEFU, Vladivostok, Russia, e-mails: * guram@iam.dvo.ru, mao1975@list.ru ABSTRACT

More information

MAY 2009 EXAMINATIONS. Multiagent Systems

MAY 2009 EXAMINATIONS. Multiagent Systems COMP310 DEPARTMENT : Computer Science Tel. No. 7790 MAY 2009 EXAMINATIONS Multiagent Systems TIME ALLOWED : Two and a Half hours INSTRUCTIONS TO CANDIDATES Answer four questions. If you attempt to answer

More information

Game Theory Application for Performance Optimisation in Wireless Networks

Game Theory Application for Performance Optimisation in Wireless Networks ELEKTROTEHNIŠKI VESTNIK 78(5): 287-292, 2011 ENGLISH EDITION Game Theory Application for Performance Optimisation in Wireless Networks Erik Pertovt, Tomaž Javornik, Mihael Mohorčič Institut "Jožef Stefan",

More information