Dynamically Configured λ-opt Heuristics for Bus Scheduling

Size: px
Start display at page:

Download "Dynamically Configured λ-opt Heuristics for Bus Scheduling"

Transcription

1 Dynamically Configured λ-opt Heuristics for Bus Scheduling Prapa Rattadilok and Raymond S K Kwan School of Computing, University of Leeds, UK {prapa, rsk}@comp.leeds.ac.uk Bus scheduling is a complex combinatorial optimization problem [3], [10]. The operations planning and scheduling process starts off with the designing of a timetable of trips that have to be served by buses. Each trip has a starting time/location and a destination time/location. Bus scheduling involves assigning a set of trips to a set of buses such that: 1. The sequence of the trips for each bus is time feasible: no trip precedes an earlier trip in the sequence 2. Each trip is served by exactly one bus There are two types of operational cost involved, these are layover (idle time) and dead running (relocating the bus between locations without passenger, this includes leaving and returning to the depot). The objective is to minimise the operational cost and the number of buses. Given the nature of the problem it is almost always impossible to reduce the layover and dead running cost to zero. The complexity of the problem quickly increases as the number of the depots and the types of vehicle increases. A solution is said to be λ-optimal (or simply λ-opt) if it is impossible to obtain a better solution by replacing any λ relation instances by any other set of λ relation instances. The λ-opt heuristic [5] is based on this concept of λ-optimality where in each trial, λ instances of the chosen relation (mapping between problem components, e.g. bus trips to bus s timeslots) in the working solution are exchanged. The trial process continues until a move that satisfies the specified acceptance criteria is found. The accepted move is then used to update the working solution. Computational time rapidly increases for increasing values of λ, as a result, the values λ = 2 and λ = 3 are the most commonly used. When λ = number of relation instances we have an exhaustive search where every possibility is tried. In many applications λ = 2 is powerful enough to yield near optimal solutions in a fraction of the time needed for an exhaustive search. E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp ISBN

2 474 P. Rattadilok and R. S. K. Kwan Fig. 1. λ-opt Heuristic Figure 1 illustrates the general scheme of a λ-opt heuristic. Apart from specifying value of λ, there are four other decisions that need to be taken to fully configure a λ- opt heuristic. The relative merits of the options are not obvious for example, which relation should be selected, which trial solution should be accepted, etc. Different combinations of design options constitute different search strategies. If dynamically configured, these design options could adapt the heuristics to suit the current state of the search process, but choosing the right combination of design options is not a trivial task. Figure 2 illustrates the hyper-heuristic framework for the λ-opt heuristic dynamic configuration. BOOST [4] applies an object-oriented paradigm to solving the bus scheduling problem. Object classes like Vehicle activities (represent bus links, the connection between two bus trips) and Link swap rules are used. The link swap rules or the scheduling heuristics provide the search moves for the optimization. For example, swapping valid bus links (bus links that correctly follow the sequence) with invalid bus links or valid bus links with start activities links (in order to find earlier starting time). These link swap rules are the extended functions that made up the algorithm in VAMPIRES [8]. These heuristics are the 2-opt scheduling heuristics. Although the major benefit of applying object-oriented models was to increase the extendibility of the application, the heuristics used inside the link swap rules class still require much of the problem specific knowledge. Configuring the 2-opt heuristic use within the system is still a tedious task. The heuristics were hard-wired and the design options were specified by the system designer. A more desirable approach would be to have the design options to be configured by the system itself based on the current search situation. Hyper-heuristics are a powerful emerging search technology [1]. Search algorithms can be constructed from a collection of simple neighbourhood moves referred to as

3 Dynamically Configured λ-optimal Heuristics for Bus Scheduling 475 low-level heuristics. Rather than hard-wiring such simple moves, hyper-heuristics employ a domain independent driver that iteratively makes dynamic decisions on which simple move or moves should be executed next. The selected heuristics can be knowledge-poor heuristics like simple add, drop and swap moves or complete algorithms more akin to Meta-heuristics. Soubeiga [9] proposed a choice function based hyper-heuristic driver, which has components designed for search intensification and diversification and incorporates some simple learning capability. The choice function provides the ranking of the lowlevel heuristics, based on information about the individual performance of each lowlevel heuristic, joint performance of pairs of heuristics, and the amount of time elapsed since the low-level heuristic was last called. The low-level heuristic performance is calculated in terms of the amount of solution improvement the low-level heuristic has achieved and the time it used to obtain this improvement. This choice function has been applied to select problem specific low-level heuristics on several timetabling and scheduling problems [2], [6]. Fig. 2. The Hyper-heuristic framework for the static heuristics (left) and λ-opt heuristic dynamic configuration (right) There are many possible useful relations for bus scheduling, for example, a relation of multiple bus trips to multiple bus timeslots of the same bus, a relation of a single bus trip to a single bus s timeslot. In the initial experiment, only the simple type of relation is experimented with, a trip to a bus s timeslot. Instead of trying to swap exhaustively between the 2 candidate sets (λ = 2), the trial swap performs the exchange between a selected candidate instance (the first candidate) and all other candidate instances (the second candidate). The first candidate is obtained by selecting randomly from the top ten instance of the selected ordered candidate set. Three kinds of instance order are used, based on four different kinds of cost (dead run, idle time, start activity and end activity), max-min, min-max and random. After all candidates are tried, the best pair will be selected and the update will be made to the schedule. Figure 3 illustrates the move structures used. Each square represents each bus trip and the dash line represent the bus link where the crossover is made.

4 476 P. Rattadilok and R. S. K. Kwan Fig. 3. Move structures (a) Simple crossover (b) Multiple crossover Similar rules were previously used on a university timetabling problem [7]. A few minor modifications were needed to make it suitable to bus scheduling, for example, the constraint violation in timetabling is considered as the operational cost in bus scheduling. The starting solution is generated using a simple greedy assignment algorithm. The trips are assigned to the bus based on their starting time (which was given in the problem data set). A new bus is started once no more trips can be assigned to the existing bus. The process continues until all buses are tried. If there are any more trips left un-assigned then the rest of the trips are assigned to any empty bus timeslot. In the initial experiment, all rules are expanded into every possible configuration (every possible low-level heuristic that could be obtained within the provided set of rules). The aim of this initial experiment was to investigate the feasibility of this general framework. At each iteration, the hyper-heuristic selects an expanded combination based on their score (as if it was to select a low-level heuristic). The initial results obtained on a test data set is comparable to a highly specialised approach [4]. The fact that similar or identical low-level heuristics can be reused demonstrates the main strength of hyper-heuristics, flexibility. Further tuning and optimisation can improve performance but the fact that that isn t needed can be seen as a major success of the system. One possible fine-tuning is to supply hyperheuristic with a more problem specific rules. More details results will be presented at the conference. The initial investigation has revealed possible obstacles that need to be overcome before this approach can be considered completely successful. For example, the hyper-heuristic is performing less well as the number of rules increases. Rather than selecting an expanded configuration the hyper-heuristic has to be configured more dynamically. It is believed that this dynamic configuration is too big a task for a single choice function alone. Our current investigation is looking into a hierarchical hyper-heuristic where each layer makes different decisions but all leading to one goal of dynamically selecting the suitable configuration.

5 Dynamically Configured λ-optimal Heuristics for Bus Scheduling 477 References 1. Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., and Schulenburg, S.: Hyper- Heuristics (2003): An Emerging Direction in Modern Search Technology. In: Glover, Fred, and Kochenberger, Gary A. (eds.): Handbook of Meta-Heuristics. Kluwer Academic Publishers, Boston, USA, Cowling, P., Kendall, G., Soubeiga, E. (2002): Hyperheuristics: A Tool for Rapid Prototyping in Scheduling and Optimisation. In: Cagnoni, C. et all (eds.): EvoWorkShops. Lecture Notes in Computer Science, Vol Springer-Verlag, Berlin Heidelberg (2002) 3. Daduna, J. R. and Paixao, J. M. P. (1995): Vehicle scheduling for public mass transit An Overview. In: Daduna, J. R., Branco, I., Paixao, J. M. P. (eds.): Computer-aided transit scheduling, Springer-Verlag Kwan, R. S. K. and Rahim, M. A. (1999): Object Oriented Bus Vehicle Scheduling the BOOST System. In Wilson N. H. M. (ed.), Computer-aided transit scheduling, Springer, Berlin, pp , Lin, S. and Kernighan, B. W. (1973): An Effective Heuristic Algorithm for the Travelling Salesman Problem. Operations Research Vol. 21, Rattadilok, Prapa, Gaw, Andy, Kwan, R. S. K. (2005): Distributed Choice Function Hyperheuristics for Timetabling and Scheduling. In Burke, E. and Trick, M. (eds.): Practice and Theory of Automated Timetabling V. Springer LNCS. Vol. 3616/2005 pp Rattadilok, P. and Kwan, R. S. K. (2005): Hyper-heuristic Driven Dynamically Configured λ-opt heuristics. In: Proceeding of Metaheuristic International Conference Smith, B. M. and Wren, A. (1981): VAMPIRES and TASC: two successfully applied bus scheduling programs. In: Wren, A. (ed.): Computer scheduling of public transport. North Holland Soubeiga, Eric (2003): Development and Application of Hyperheuristics to Personnel Scheduling. Ph.D. Thesis, University of Nottingham. 10. Wren, A. (1981): General review of the use of computers in scheduling buses and their crews. In: Wren, A. (ed.): Computer scheduling of public transport. North Holland, 3-16

Evolutionary Non-Linear Great Deluge for University Course Timetabling

Evolutionary Non-Linear Great Deluge for University Course Timetabling Evolutionary Non-Linear Great Deluge for University Course Timetabling Dario Landa-Silva and Joe Henry Obit Automated Scheduling, Optimisation and Planning Research Group School of Computer Science, The

More information

Evolutionary Non-linear Great Deluge for University Course Timetabling

Evolutionary Non-linear Great Deluge for University Course Timetabling Evolutionary Non-linear Great Deluge for University Course Timetabling Dario Landa-Silva and Joe Henry Obit Automated Scheduling, Optimisation and Planning Research Group School of Computer Science, The

More information

A Hyper-heuristic based on Random Gradient, Greedy and Dominance

A Hyper-heuristic based on Random Gradient, Greedy and Dominance A Hyper-heuristic based on Random Gradient, Greedy and Dominance Ender Özcan and Ahmed Kheiri University of Nottingham, School of Computer Science Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

More information

A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem

A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem C. E. Nugraheni, L. Abednego Abstract This paper is concerned with minimization of mean tardiness

More information

The Influence of Run-Time Limits on Choosing Ant System Parameters

The Influence of Run-Time Limits on Choosing Ant System Parameters The Influence of Run-Time Limits on Choosing Ant System Parameters Krzysztof Socha IRIDIA, Université Libre de Bruxelles, CP 194/6, Av. Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium ksocha@ulb.ac.be

More information

Vehicle Routing and Adaptive Iterated Local Search within the HyFlex Hyper-heuristic Framework

Vehicle Routing and Adaptive Iterated Local Search within the HyFlex Hyper-heuristic Framework Vehicle Routing and Adaptive Iterated Local Search within the HyFlex Hyper-heuristic Framework James D. Walker 1, Gabriela Ochoa 1, Michel Gendreau 2, and Edmund K. Burke 3 1 School of Computer Science,

More information

Ant Algorithms for the University Course Timetabling Problem with Regard to the State-of-the-Art

Ant Algorithms for the University Course Timetabling Problem with Regard to the State-of-the-Art Ant Algorithms for the University Course Timetabling Problem with Regard to the State-of-the-Art Krzysztof Socha, Michael Sampels, and Max Manfrin IRIDIA, Université Libre de Bruxelles, CP 194/6, Av. Franklin

More information

SCHOOL OF COMPUTER STUDIES RESEARCH REPORT SERIES

SCHOOL OF COMPUTER STUDIES RESEARCH REPORT SERIES University of Leeds SCHOOL OF COMPUTER STUDIES RESEARCH REPORT SERIES Report 96.22 A Column Generation Approach to Bus Driver Scheduling by Sarah Fores, Les Proll & Anthony Wren Division of Operational

More information

A Hyper-heuristic with a Round Robin Neighbourhood Selection

A Hyper-heuristic with a Round Robin Neighbourhood Selection A Hyper-heuristic with a Round Robin Neighbourhood Selection Ahmed Kheiri and Ender Özcan University of Nottingham, School of Computer Science Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK axk,

More information

A Hyper-heuristic with a Round Robin Neighbourhood Selection

A Hyper-heuristic with a Round Robin Neighbourhood Selection A Hyper-heuristic with a Round Robin Neighbourhood Selection Ahmed Kheiri and Ender Özcan University of Nottingham, School of Computer Science Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK axk,

More information

AN INVESTIGATION OF VARIABLE NEIGHBOURHOOD SEARCH FOR UNIVERSITY COURSE TIMETABLING

AN INVESTIGATION OF VARIABLE NEIGHBOURHOOD SEARCH FOR UNIVERSITY COURSE TIMETABLING AN INVESTIGATION OF VARIABLE NEIGHBOURHOOD SEARCH FOR UNIVERSITY COURSE TIMETABLING SALWANI ABDULLAH 1, EDMUND K. BURKE 1 AND BARRY MCCOLLUM 2 1 Automated Scheduling, Optimization and Planning Research

More information

Constructing Constrained-Version of Magic Squares Using Selection Hyper-heuristics

Constructing Constrained-Version of Magic Squares Using Selection Hyper-heuristics Constructing Constrained-Version of Magic Squares Using Selection Hyper-heuristics Ahmed Kheiri and Ender Özcan University of Nottingham, School of Computer Science Jubilee Campus, Wollaton Road, Nottingham,

More information

Improved Squeaky Wheel Optimisation for Driver Scheduling

Improved Squeaky Wheel Optimisation for Driver Scheduling Improved Squeaky Wheel Optimisation for Driver Scheduling Uwe Aickelin, Edmund K. Burke and Jingpeng Li* School of Computer Science and Information Technology The University of Nottingham Nottingham, NG8

More information

A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem

A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem Benoît Laurent 1,2 and Jin-Kao Hao 2 1 Perinfo SA, Strasbourg, France 2 LERIA, Université d Angers, Angers, France blaurent@perinfo.com,

More information

Outline of the module

Outline of the module Evolutionary and Heuristic Optimisation (ITNPD8) Lecture 2: Heuristics and Metaheuristics Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ Computing Science and Mathematics, School of Natural Sciences University

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

An Extensible Modelling Framework for the Examination Timetabling Problem

An Extensible Modelling Framework for the Examination Timetabling Problem An Extensible Modelling Framework for the Examination Timetabling Problem David Ranson 1 and Samad Ahmadi 2 1 Representational Systems Lab, Department of Informatics, University of Sussex, Falmer, UK d.j.ranson@sussex.ac.uk

More information

! #! % & ( ) + ) ),, ). // / 0! #! 1! 2 3 1,!! # ).3 4 & ., 3 ) ) +, +,, / 2 ) +,! 5%65 % &! 7 8,,,!.3! %96 %& # ).3 4 & .

! #! % & ( ) + ) ),, ). // / 0! #! 1! 2 3 1,!! # ).3 4 & ., 3 ) ) +, +,, / 2 ) +,! 5%65 % &! 7 8,,,!.3! %96 %& # ).3 4 & . ! #! % & ( ) + ) ),, ). // / 0! #! 1! 2 3 1,!! # ).3 4 &., 3 ) ) +, +,, / 2 ) +,! 5%65 % &! 7 8,,,!.3! %96 %& # ).3 4 &., 3 ) ) +, : Driver Scheduling by Integer Linear Programming - The TRACS II Approach

More information

Regensburger DISKUSSIONSBEITRÄGE zur Wirtschaftswissenschaft

Regensburger DISKUSSIONSBEITRÄGE zur Wirtschaftswissenschaft Regensburger DISKUSSIONSBEITRÄGE zur Wirtschaftswissenschaft A Cluster Based Scatter Search Heuristic for the Vehicle Routing Problem University of Regensburg Discussion Papers in Economics No. 415, November

More information

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2

Hybridization EVOLUTIONARY COMPUTING. Reasons for Hybridization - 1. Naming. Reasons for Hybridization - 3. Reasons for Hybridization - 2 Hybridization EVOLUTIONARY COMPUTING Hybrid Evolutionary Algorithms hybridization of an EA with local search techniques (commonly called memetic algorithms) EA+LS=MA constructive heuristics exact methods

More information

Adaptive Iterated Local Search for Cross-domain Optimisation

Adaptive Iterated Local Search for Cross-domain Optimisation Adaptive Iterated Local Search for Cross-domain Optimisation ABSTRACT Edmund K. Burke ASAP Group School of Computer Science University of Nottingham, UK ekb@cs.nott.ac.uk Gabriela Ochoa ASAP Group School

More information

6. Tabu Search 6.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini

6. Tabu Search 6.1 Basic Concepts. Fall 2010 Instructor: Dr. Masoud Yaghini 6. Tabu Search 6.1 Basic Concepts Fall 2010 Instructor: Dr. Masoud Yaghini Outline Tabu Search: Part 1 Introduction Illustrative Problems Search Space Neighborhood Structure Tabus Aspiration Criteria Termination

More information

A Hyper heuristic Appr oach to Scheduling a Sales Summit

A Hyper heuristic Appr oach to Scheduling a Sales Summit A Hyper heuristic Appr oach to Scheduling a Sales Summit Peter Cowling, Graham Kendall, Eric Soubeiga Automated Scheduling, optimisation and Planning (ASAP) Research Group School of Computer Science and

More information

Incorporating Great Deluge with Kempe Chain Neighbourhood Structure for the Enrolment-Based Course Timetabling Problem

Incorporating Great Deluge with Kempe Chain Neighbourhood Structure for the Enrolment-Based Course Timetabling Problem Incorporating Great Deluge with Kempe Chain Neighbourhood Structure for the Enrolment-Based Course Timetabling Problem Salwani Abdullah 1, Khalid Shaker 1, Barry McCollum 2, and Paul McMullan 2 1 Data

More information

TABU search and Iterated Local Search classical OR methods

TABU search and Iterated Local Search classical OR methods TABU search and Iterated Local Search classical OR methods tks@imm.dtu.dk Informatics and Mathematical Modeling Technical University of Denmark 1 Outline TSP optimization problem Tabu Search (TS) (most

More information

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt

Outline. TABU search and Iterated Local Search classical OR methods. Traveling Salesman Problem (TSP) 2-opt TABU search and Iterated Local Search classical OR methods Outline TSP optimization problem Tabu Search (TS) (most important) Iterated Local Search (ILS) tks@imm.dtu.dk Informatics and Mathematical Modeling

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Great Deluge with Non-linear Decay Rate for Solving Course Timetabling Problems

Great Deluge with Non-linear Decay Rate for Solving Course Timetabling Problems 2008 4th International IEEE Conference "Intelligent Systems" Great Deluge with Non-linear Decay Rate for Solving Course Timetabling Problems Dario Landa-Silva and Joe Henry Obit Abstract Course timetabling

More information

Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm

Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm Nasreddine Hallam, Graham Kendall, and Peter Blanchfield School of Computer Science and IT, The Univeristy

More information

Tabu Search for a Multi-Objective Routing Problem

Tabu Search for a Multi-Objective Routing Problem Tabu Search for a Multi-Objective Routing Problem JOAQUÍN PACHECO Fac. C Económicas y Empresariales. Universidad de Burgos. Plaza Infanta Elena s/n. Burgos 09001, Spain. RAFAEL MARTÍ * Departament d Estadística

More information

Neighborhood Combination for Unconstrained Binary Quadratic Programming

Neighborhood Combination for Unconstrained Binary Quadratic Programming id-1 Neighborhood Combination for Unconstrained Binary Quadratic Programming Zhipeng Lü Fred Glover Jin-Kao Hao LERIA, Université d Angers 2 boulevard Lavoisier, 49045 Angers, France lu@info.univ-angers.fr

More information

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search A JOB-SHOP SCHEDULING PROBLEM (JSSP) USING GENETIC ALGORITHM (GA) Mahanim Omar, Adam Baharum, Yahya Abu Hasan School of Mathematical Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia Tel: (+)

More information

ALGORITHM SYSTEMS FOR COMBINATORIAL OPTIMIZATION: HIERARCHICAL MULTISTAGE FRAMEWORK

ALGORITHM SYSTEMS FOR COMBINATORIAL OPTIMIZATION: HIERARCHICAL MULTISTAGE FRAMEWORK ALGORITHM SYSTEMS FOR COMBINATORIAL OPTIMIZATION: HIERARCHICAL MULTISTAGE FRAMEWORK Dr. Mark Sh. Levin, The Research Inst., The College Judea & Samaria, Ariel, Israel Introduction In recent decades, signicance

More information

Hybrid Constraint Programming and Metaheuristic methods for Large Scale Optimization Problems

Hybrid Constraint Programming and Metaheuristic methods for Large Scale Optimization Problems Hybrid Constraint Programming and Metaheuristic methods for Large Scale Optimization Problems Fabio Parisini Tutor: Paola Mello Co-tutor: Michela Milano Final seminars of the XXIII cycle of the doctorate

More information

Key words. space allocation, optimisation, heuristics, hill climbing.

Key words. space allocation, optimisation, heuristics, hill climbing. A COMPUTER BASED SYSTEM FOR SPACE ALLOCATIO OPTIMISATIO E.K. Burke, P. Cowling, J.D. Landa Silva, B. McCollum, D. Varley Automated Scheduling, Optimisation and Planning Group Department of Computer Science,

More information

Method and Algorithm for solving the Bicriterion Network Problem

Method and Algorithm for solving the Bicriterion Network Problem Proceedings of the 00 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, anuary 9 0, 00 Method and Algorithm for solving the Bicriterion Network Problem Hossain

More information

INTERACTIVE MULTI-OBJECTIVE GENETIC ALGORITHMS FOR THE BUS DRIVER SCHEDULING PROBLEM

INTERACTIVE MULTI-OBJECTIVE GENETIC ALGORITHMS FOR THE BUS DRIVER SCHEDULING PROBLEM Advanced OR and AI Methods in Transportation INTERACTIVE MULTI-OBJECTIVE GENETIC ALGORITHMS FOR THE BUS DRIVER SCHEDULING PROBLEM Jorge PINHO DE SOUSA 1, Teresa GALVÃO DIAS 1, João FALCÃO E CUNHA 1 Abstract.

More information

Overview of Tabu Search

Overview of Tabu Search Overview of Tabu Search The word tabu (or taboo) comes from Tongan, a language of Polynesia, where it was used by the aborigines of Tonga island to indicate things that cannot be touched because they are

More information

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007)

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007) In the name of God Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm Spring 2009 Instructor: Dr. Masoud Yaghini Outlines Problem Definition Modeling As A Set Partitioning

More information

The Probabilistic Heuristic In Local (PHIL) Search Meta-strategy

The Probabilistic Heuristic In Local (PHIL) Search Meta-strategy Bond University epublications@bond Information Technology papers Bond Business School January 2005 The Probabilistic Heuristic In Local (PHIL) Search Meta-strategy Marcus Randall Bond University, marcus_randall@bond.edu.au

More information

An estimation of distribution algorithm with intelligent local search for rule-based nurse rostering

An estimation of distribution algorithm with intelligent local search for rule-based nurse rostering Journal of the Operational Research Society (2007) 8, 174 --18 2007 Operational Research Society Ltd. All rights reserved. 0160-682/07 $30.00 www.palgrave-journals.com/jors An estimation of distribution

More information

Granulation of Keywords into Sessions for Timetabling Conferences

Granulation of Keywords into Sessions for Timetabling Conferences 1 Granulation of Keywords into Sessions for Timetabling Conferences Masahiro Tanaka, Yasuyuki Mori and Andrzej Bargiela Department of Information Science and Systems Engineering, Konan University Kobe

More information

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Drake, John H. and Özcan, Ender and Burke, Edmund K. (2015) A modified choice function hyper-heuristic controlling unary and binary operators. In: 2015 IEEE Congress on Evolutionary Computation (CEC2015),

More information

A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems

A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems AutOrI LAB, DIA, Roma Tre Email: mandal@dia.uniroma3.it January 16, 2014 Outline 1 An example Assignment-I Tips Variants

More information

Non-deterministic Search techniques. Emma Hart

Non-deterministic Search techniques. Emma Hart Non-deterministic Search techniques Emma Hart Why do local search? Many real problems are too hard to solve with exact (deterministic) techniques Modern, non-deterministic techniques offer ways of getting

More information

Branching approaches for integrated vehicle and crew scheduling

Branching approaches for integrated vehicle and crew scheduling Branching approaches for integrated vehicle and crew scheduling Marta Mesquita 1,4, Ana Paias 2,4 and Ana Respício 3,4 1 Technical University of Lisbon, ISA, Dep. Matemática, Tapada da Ajuda, 1349-017

More information

Effective Optimizer Development for Solving Combinatorial Optimization Problems *

Effective Optimizer Development for Solving Combinatorial Optimization Problems * Proceedings of the 11th WSEAS International Conference on SYSTEMS, Agios Nikolaos, Crete Island, Greece, July 23-25, 2007 311 Effective Optimizer Development for Solving Combinatorial Optimization s *

More information

SPATIAL OPTIMIZATION METHODS

SPATIAL OPTIMIZATION METHODS DELMELLE E. (2010). SPATIAL OPTIMIZATION METHODS. IN: B. WHARF (ED). ENCYCLOPEDIA OF HUMAN GEOGRAPHY: 2657-2659. SPATIAL OPTIMIZATION METHODS Spatial optimization is concerned with maximizing or minimizing

More information

GRASP. Greedy Randomized Adaptive. Search Procedure

GRASP. Greedy Randomized Adaptive. Search Procedure GRASP Greedy Randomized Adaptive Search Procedure Type of problems Combinatorial optimization problem: Finite ensemble E = {1,2,... n } Subset of feasible solutions F 2 Objective function f : 2 Minimisation

More information

An Estimation of Distribution Algorithm with Intelligent Local Search for Rulebased Nurse Rostering

An Estimation of Distribution Algorithm with Intelligent Local Search for Rulebased Nurse Rostering An Estimation of Distribution Algorithm with Intelligent Local Search for Rulebased Nurse Rostering Uwe Aickelin, Edmund K. Burke and Jingpeng Li* {uxa, ekb, jpl}@cs.nott.ac.uk School of Computer Science

More information

PROPOSED METHODOLOGY FOR COMPARING SCHEDULE GENERATION SCHEMES IN CONSTRUCTION RESOURCE SCHEDULING. Jin-Lee Kim

PROPOSED METHODOLOGY FOR COMPARING SCHEDULE GENERATION SCHEMES IN CONSTRUCTION RESOURCE SCHEDULING. Jin-Lee Kim Proceedings of the 009 Winter Simulation Conference M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, eds. PROPOSED METHODOLOGY FOR COMPARING SCHEDULE GENERATION SCHEMES IN CONSTRUCTION

More information

Improving Lin-Kernighan-Helsgaun with Crossover on Clustered Instances of the TSP

Improving Lin-Kernighan-Helsgaun with Crossover on Clustered Instances of the TSP Improving Lin-Kernighan-Helsgaun with Crossover on Clustered Instances of the TSP Doug Hains, Darrell Whitley, and Adele Howe Colorado State University, Fort Collins CO, USA Abstract. Multi-trial Lin-Kernighan-Helsgaun

More information

Hyper-Heuristic Based on Iterated Local Search Driven by Evolutionary Algorithm

Hyper-Heuristic Based on Iterated Local Search Driven by Evolutionary Algorithm Hyper-Heuristic Based on Iterated Local Search Driven by Evolutionary Algorithm Jiří Kubalík Department of Cybernetics Czech Technical University in Prague Technická 2, 166 27 Prague 6, Czech Republic

More information

6. Tabu Search. 6.3 Minimum k-tree Problem. Fall 2010 Instructor: Dr. Masoud Yaghini

6. Tabu Search. 6.3 Minimum k-tree Problem. Fall 2010 Instructor: Dr. Masoud Yaghini 6. Tabu Search 6.3 Minimum k-tree Problem Fall 2010 Instructor: Dr. Masoud Yaghini Outline Definition Initial Solution Neighborhood Structure and Move Mechanism Tabu Structure Illustrative Tabu Structure

More information

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Bindu Student, JMIT Radaur binduaahuja@gmail.com Mrs. Pinki Tanwar Asstt. Prof, CSE, JMIT Radaur pinki.tanwar@gmail.com Abstract

More information

USING A RANDOMISED ITERATIVE IMPROVEMENT ALGORITHM WITH COMPOSITE NEIGHBOURHOOD STRUCTURES FOR THE UNIVERSITY COURSE TIMETABLING PROBLEM

USING A RANDOMISED ITERATIVE IMPROVEMENT ALGORITHM WITH COMPOSITE NEIGHBOURHOOD STRUCTURES FOR THE UNIVERSITY COURSE TIMETABLING PROBLEM USING A RANDOMISED ITERATIVE IMPROVEMENT ALGORITHM WITH COMPOSITE NEIGHBOURHOOD STRUCTURES FOR THE UNIVERSITY COURSE TIMETABLING PROBLEM Salwani Abdullah * Edmund K. Burke * Barry McCollum * Automated

More information

Combining Two Local Searches with Crossover: An Efficient Hybrid Algorithm for the Traveling Salesman Problem

Combining Two Local Searches with Crossover: An Efficient Hybrid Algorithm for the Traveling Salesman Problem Combining Two Local Searches with Crossover: An Efficient Hybrid Algorithm for the Traveling Salesman Problem Weichen Liu, Thomas Weise, Yuezhong Wu and Qi Qi University of Science and Technology of Chine

More information

A Firework Algorithm for Solving Capacitated Vehicle Routing Problem

A Firework Algorithm for Solving Capacitated Vehicle Routing Problem A Firework Algorithm for Solving Capacitated Vehicle Routing Problem 1 Noora Hani Abdulmajeed and 2* Masri Ayob 1,2 Data Mining and Optimization Research Group, Center for Artificial Intelligence, Faculty

More information

A New Exam Timetabling Algorithm

A New Exam Timetabling Algorithm A New Exam Timetabling Algorithm K.J. Batenburg W.J. Palenstijn Leiden Institute of Advanced Computer Science (LIACS), Universiteit Leiden P.O. Box 9512, 2300 RA Leiden, The Netherlands {kbatenbu, wpalenst}@math.leidenuniv.nl

More information

A Chosen-Plaintext Linear Attack on DES

A Chosen-Plaintext Linear Attack on DES A Chosen-Plaintext Linear Attack on DES Lars R. Knudsen and John Erik Mathiassen Department of Informatics, University of Bergen, N-5020 Bergen, Norway {lars.knudsen,johnm}@ii.uib.no Abstract. In this

More information

Ant Based Hyper Heuristics with Space Reduction: A Case Study of the p-median Problem

Ant Based Hyper Heuristics with Space Reduction: A Case Study of the p-median Problem Ant Based Hyper Heuristics with Space Reduction: A Case Study of the p-median Problem Zhilei Ren 1,HeJiang 2,3,JifengXuan 1, and Zhongxuan Luo 1 1 School of Mathematical Sciences, Dalian University of

More information

A Sequence-based Selection Hyper-heuristic Utilising a Hidden Markov Model

A Sequence-based Selection Hyper-heuristic Utilising a Hidden Markov Model A Sequence-based Selection Utilising a Hidden Markov Model ABSTRACT Ahmed Kheiri University of Exeter College of Engineering, Mathematics and Physical Sciences Streatham Campus, Harrison Building Exeter

More information

Parallel Computing in Combinatorial Optimization

Parallel Computing in Combinatorial Optimization Parallel Computing in Combinatorial Optimization Bernard Gendron Université de Montréal gendron@iro.umontreal.ca Course Outline Objective: provide an overview of the current research on the design of parallel

More information

Grammar-Based Genetic Programming for Evolving Variable Ordering Heuristics

Grammar-Based Genetic Programming for Evolving Variable Ordering Heuristics 2013 IEEE Congress on Evolutionary Computation June 20-23, Cancún, México Grammar-Based Genetic Programming for Evolving Variable Ordering Heuristics Alejandro Sosa-Ascencio Dept. of Computer Science Tecnológico

More information

Relationship between Genetic Algorithms and Ant Colony Optimization Algorithms

Relationship between Genetic Algorithms and Ant Colony Optimization Algorithms Relationship between Genetic Algorithms and Ant Colony Optimization Algorithms Osvaldo Gómez Universidad Nacional de Asunción Centro Nacional de Computación Asunción, Paraguay ogomez@cnc.una.py and Benjamín

More information

Introduction to Stochastic Optimization Methods (meta-heuristics) Modern optimization methods 1

Introduction to Stochastic Optimization Methods (meta-heuristics) Modern optimization methods 1 Introduction to Stochastic Optimization Methods (meta-heuristics) Modern optimization methods 1 Efficiency of optimization methods Robust method Efficiency Specialized method Enumeration or MC kombinatorial

More information

Introduction to Optimization Using Metaheuristics. The Lecturer: Thomas Stidsen. Outline. Name: Thomas Stidsen: Nationality: Danish.

Introduction to Optimization Using Metaheuristics. The Lecturer: Thomas Stidsen. Outline. Name: Thomas Stidsen: Nationality: Danish. The Lecturer: Thomas Stidsen Name: Thomas Stidsen: tks@imm.dtu.dk Outline Nationality: Danish. General course information Languages: Danish and English. Motivation, modelling and solving Education: Ph.D.

More information

Welfare Navigation Using Genetic Algorithm

Welfare Navigation Using Genetic Algorithm Welfare Navigation Using Genetic Algorithm David Erukhimovich and Yoel Zeldes Hebrew University of Jerusalem AI course final project Abstract Using standard navigation algorithms and applications (such

More information

Searching for Maximum Cliques with Ant Colony Optimization

Searching for Maximum Cliques with Ant Colony Optimization Searching for Maximum Cliques with Ant Colony Optimization Serge Fenet and Christine Solnon LIRIS, Nautibus, University Lyon I 43 Bd du 11 novembre, 69622 Villeurbanne cedex, France {sfenet,csolnon}@bat710.univ-lyon1.fr

More information

OptLets: A Generic Framework for Solving Arbitrary Optimization Problems *

OptLets: A Generic Framework for Solving Arbitrary Optimization Problems * OptLets: A Generic Framework for Solving Arbitrary Optimization Problems * CHRISTOPH BREITSCHOPF Department of Business Informatics Software Engineering Johannes Kepler University Linz Altenberger Straße

More information

Vehicle Routing Heuristic Methods

Vehicle Routing Heuristic Methods DM87 SCHEDULING, TIMETABLING AND ROUTING Outline 1. Construction Heuristics for VRPTW Lecture 19 Vehicle Routing Heuristic Methods 2. Local Search 3. Metaheuristics Marco Chiarandini 4. Other Variants

More information

Structural Advantages for Ant Colony Optimisation Inherent in Permutation Scheduling Problems

Structural Advantages for Ant Colony Optimisation Inherent in Permutation Scheduling Problems Structural Advantages for Ant Colony Optimisation Inherent in Permutation Scheduling Problems James Montgomery No Institute Given Abstract. When using a constructive search algorithm, solutions to scheduling

More information

A GRASP Approach to the Nesting Problem

A GRASP Approach to the Nesting Problem MIC 2001-4th Metaheuristics International Conference 47 A GRASP Approach to the Nesting Problem António Miguel Gomes José Fernando Oliveira Faculdade de Engenharia da Universidade do Porto Rua Roberto

More information

Test Cost Optimization Using Tabu Search

Test Cost Optimization Using Tabu Search J. Software Engineering & Applications, 2010, 3: 477-486 doi:10.4236/jsea.2010.35054 Published Online May 2010 (http://www.scirp.org/journal/jsea) Anu Sharma*, Arpita Jadhav, Praveen Ranjan Srivastava,

More information

Improved methods for the Travelling Salesperson with Hotel Selection

Improved methods for the Travelling Salesperson with Hotel Selection Improved methods for the Travelling Salesperson with Hotel Selection M. Castro 1 K. Sörensen 1 P. Vansteenwegen 2 P. Goos 1 1 ANT/OR, University of Antwerp, Belgium 2 Department of Industrial Management,

More information

A B. A: sigmoid B: EBA (x0=0.03) C: EBA (x0=0.05) U

A B. A: sigmoid B: EBA (x0=0.03) C: EBA (x0=0.05) U Extending the Power and Capacity of Constraint Satisfaction Networks nchuan Zeng and Tony R. Martinez Computer Science Department, Brigham Young University, Provo, Utah 8460 Email: zengx@axon.cs.byu.edu,

More information

Guidelines for the use of meta-heuristics in combinatorial optimization

Guidelines for the use of meta-heuristics in combinatorial optimization European Journal of Operational Research 151 (2003) 247 252 Preface Guidelines for the use of meta-heuristics in combinatorial optimization Alain Hertz a, *, Marino Widmer b www.elsevier.com/locate/dsw

More information

Conflict-based Statistics

Conflict-based Statistics Conflict-based Statistics Tomáš Müller 1, Roman Barták 1 and Hana Rudová 2 1 Faculty of Mathematics and Physics, Charles University Malostranské nám. 2/25, Prague, Czech Republic {muller bartak}@ktiml.mff.cuni.cz

More information

Efficient Local Search for Large Scale Combinatorial Problems

Efficient Local Search for Large Scale Combinatorial Problems Efficient Local Search for Large Scale Combinatorial Problems Mirsad Buljubašić, Michel Vasquez Ecole des Mines d Ales LGI2P Research Center June 27 2013 Overview Thesis Info Introduction Local Search

More information

A COMPARATIVE STUDY OF EVOLUTIONARY ALGORITHMS FOR SCHOOL SCHEDULING PROBLEM

A COMPARATIVE STUDY OF EVOLUTIONARY ALGORITHMS FOR SCHOOL SCHEDULING PROBLEM A COMPARATIVE STUDY OF EVOLUTIONARY ALGORITHMS FOR SCHOOL SCHEDULING PROBLEM 1 DANIEL NUGRAHA, 2 RAYMOND KOSALA 1 School of Computer Science, Bina Nusantara University, Jakarta, Indonesia 2 School of Computer

More information

Placement Algorithm for FPGA Circuits

Placement Algorithm for FPGA Circuits Placement Algorithm for FPGA Circuits ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI Computer Science Department, Technical University of Cluj-Napoca, 26, Bariţiu St., 3400 Cluj-Napoca, Romania {Zoltan.Baruch,

More information

Variable Neighborhood Particle Swarm Optimization for Multi-objective Flexible Job-Shop Scheduling Problems

Variable Neighborhood Particle Swarm Optimization for Multi-objective Flexible Job-Shop Scheduling Problems Variable Neighborhood Particle Swarm Optimization for Multi-objective Flexible Job-Shop Scheduling Problems Hongbo Liu 1,2,AjithAbraham 3,1, Okkyung Choi 3,4, and Seong Hwan Moon 4 1 School of Computer

More information

A local search algorithm based on chromatic classes for university course timetabling problem

A local search algorithm based on chromatic classes for university course timetabling problem Research Article International Journal of Advanced Computer Research, Vol 7(28) ISSN (Print): 2249-7277 ISSN (Online): 2277-7970 http://dx.doi.org/10.19101/ijacr.2016.627011 A local search algorithm based

More information

GT HEURISTIC FOR SOLVING MULTI OBJECTIVE JOB SHOP SCHEDULING PROBLEMS

GT HEURISTIC FOR SOLVING MULTI OBJECTIVE JOB SHOP SCHEDULING PROBLEMS GT HEURISTIC FOR SOLVING MULTI OBJECTIVE JOB SHOP SCHEDULING PROBLEMS M. Chandrasekaran 1, D. Lakshmipathy 1 and P. Sriramya 2 1 Department of Mechanical Engineering, Vels University, Chennai, India 2

More information

A Parallel Architecture for the Generalized Traveling Salesman Problem

A Parallel Architecture for the Generalized Traveling Salesman Problem A Parallel Architecture for the Generalized Traveling Salesman Problem Max Scharrenbroich AMSC 663 Project Proposal Advisor: Dr. Bruce L. Golden R. H. Smith School of Business 1 Background and Introduction

More information

RWA on Scheduled Lightpath Demands in WDM Optical Transport Networks with Time Disjoint Paths

RWA on Scheduled Lightpath Demands in WDM Optical Transport Networks with Time Disjoint Paths RWA on Scheduled Lightpath Demands in WDM Optical Transport Networks with Time Disjoint Paths Hyun Gi Ahn, Tae-Jin Lee, Min Young Chung, and Hyunseung Choo Lambda Networking Center School of Information

More information

Metaheuristic Optimization with Evolver, Genocop and OptQuest

Metaheuristic Optimization with Evolver, Genocop and OptQuest Metaheuristic Optimization with Evolver, Genocop and OptQuest MANUEL LAGUNA Graduate School of Business Administration University of Colorado, Boulder, CO 80309-0419 Manuel.Laguna@Colorado.EDU Last revision:

More information

Pre-requisite Material for Course Heuristics and Approximation Algorithms

Pre-requisite Material for Course Heuristics and Approximation Algorithms Pre-requisite Material for Course Heuristics and Approximation Algorithms This document contains an overview of the basic concepts that are needed in preparation to participate in the course. In addition,

More information

New Genetic Operators for Solving TSP: Application to Microarray Gene Ordering

New Genetic Operators for Solving TSP: Application to Microarray Gene Ordering New Genetic Operators for Solving TSP: Application to Microarray Gene Ordering Shubhra Sankar Ray, Sanghamitra Bandyopadhyay, and Sankar K. Pal Machine Intelligence Unit, Indian Statistical Institute,

More information

University Course Timetabling Using ACO: A Case Study on Laboratory Exercises

University Course Timetabling Using ACO: A Case Study on Laboratory Exercises University Course Timetabling Using ACO: A Case Study on Laboratory Exercises Vatroslav Dino Matijaš, Goran Molnar, Marko Čupić, Domagoj Jakobović, and Bojana Dalbelo Bašić Faculty of Electrical Engineering

More information

A Search Algorithm for Global Optimisation

A Search Algorithm for Global Optimisation A Search Algorithm for Global Optimisation S. Chen,X.X.Wang 2, and C.J. Harris School of Electronics and Computer Science, University of Southampton, Southampton SO7 BJ, U.K 2 Neural Computing Research

More information

A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling Repairman Problem

A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling Repairman Problem Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 28 Chinese Postman Problem In this lecture we study the Chinese postman

More information

HEURISTICS FOR THE NETWORK DESIGN PROBLEM

HEURISTICS FOR THE NETWORK DESIGN PROBLEM HEURISTICS FOR THE NETWORK DESIGN PROBLEM G. E. Cantarella Dept. of Civil Engineering University of Salerno E-mail: g.cantarella@unisa.it G. Pavone, A. Vitetta Dept. of Computer Science, Mathematics, Electronics

More information

Ahmed T. Sadiq. Ali Makki Sagheer* Mohammed Salah Ibrahim

Ahmed T. Sadiq. Ali Makki Sagheer* Mohammed Salah Ibrahim Int. J. Reasoning-based Intelligent Systems, Vol. 4, No. 4, 2012 221 Improved scatter search for 4-colour mapping problem Ahmed T. Sadiq Computer Science Department, University of Technology, Baghdad,

More information

A Hybrid Constraint Programming Approach to Nurse Rostering Problem

A Hybrid Constraint Programming Approach to Nurse Rostering Problem A Hybrid Constraint Programming Approach to Nurse Rostering Problem Fang He*, Dr. Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) research group School of Computer Science University

More information

Mobile Agent Routing for Query Retrieval Using Genetic Algorithm

Mobile Agent Routing for Query Retrieval Using Genetic Algorithm 1 Mobile Agent Routing for Query Retrieval Using Genetic Algorithm A. Selamat a, b, M. H. Selamat a and S. Omatu b a Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia,

More information

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science

Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science Volume 118 No. 20 2018, 419-424 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan

More information

Introduction to Optimization Using Metaheuristics. Thomas J. K. Stidsen

Introduction to Optimization Using Metaheuristics. Thomas J. K. Stidsen Introduction to Optimization Using Metaheuristics Thomas J. K. Stidsen Outline General course information Motivation, modelling and solving Hill climbers Simulated Annealing 1 Large-Scale Optimization

More information

Semantic Components for Timetabling

Semantic Components for Timetabling Semantic Components for Timetabling Nele Custers, Patrick De Causmaecker, Peter Demeester and Greet Vanden Berghe KaHo Sint-Lieven, Information Technology Gebroeders Desmetstraat 1, 9000 Gent, Belgium

More information