SUMMARY INTRODUCTION THEORY

Size: px
Start display at page:

Download "SUMMARY INTRODUCTION THEORY"

Transcription

1 Illumination compensation for subsalt image-domain wavefield tomography Tongning Yang, Center for Wave Phenomena, Colorado School of Mines, Jeffrey Shragge, School of Earth and Environment, University of Western Australia, and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Wavefield tomography represents a family of velocity model building techniques based on seismic waveforms as the input and seismic wavefields as the information carrier. For wavefield tomography implemented in the image domain, the objective function is designed to optimize the coherency of reflections in extended common-image gathers. This function applies a penalty operator to the gathers, thus highlighting image inaccuracies due to the velocity model error. Uneven illumination is a common problem for complex geological regions, such as subsalt. Imbalanced illumination results in defocusing in common-image gathers regardless of the velocity model accuracy. This additional defocusing violates the wavefield tomography assumption stating that the migrated images are perfectly focused in the case of the correct model and degrades the model reconstruction. We address this problem by incorporating the illumination effects into the penalty operator such that only the defocusing due to model errors is used for model construction. This method improves the robustness and effectiveness of wavefield tomography applied in areas characterized by poor illumination. The Sigsbee synthetic example demonstrates that velocity models are more accurately reconstructed by our method using the illumination compensation, leading to more coherent and better focused subsurface images than those obtained by the conventional approach without illumination compensation. INTRODUCTION Building an accurate and reliable velocity model remains one of the biggest challenges in current seismic imaging practice. In regions characterized by complex subsurface structure, prestack wave-equation depth migration, (e.g., one-way wave-equation migration or reverse-time migration), is a powerful tool for accurately imaging the earth s interior (Gray et al., 2001; Etgen et al., 2009). The widespread use of these advanced imaging techniques drives the need for high-quality velocity models because these methods are very sensitive to model errors (Symes, 2008; Woodward et al., 2008; Virieux and Operto, 2009). Wavefield tomography represents a family of techniques for velocity model building using seismic wavefields (Tarantola, 1984; Woodward, 1992; Pratt, 1999; Sirgue and Pratt, 2004; Plessix, 2006; Vigh and Starr, 2008; Plessix, 2009). The core of wavefield tomography is using a wave equation (typically constant density acoustic) to simulate wavefields as the information carrier. Wavefield tomography is usually implemented in the data domain by adjusting the velocity model such that simulated and recorded data match (Tarantola, 1984; Pratt, 1999). This match is based on the strong assumption that the wave equation used for simulation is consistent with the physics of the earth. However, this is unlikely to be the case when the earth is characterized by strong (poro)elasticity. Significant effort is often directed toward removing the components of the recorded data that are inconsistent with the assumptions used. Wavefield tomography can also be implemented in the image domain rather than in the data domain. Instead of minimizing the data misfit, the techniques in this category update the velocity model by optimizing the image quality (Yilmaz, 2001). Differential semblance optimization (DSO) is one realization of image-domain wavefield tomography (Symes and Carazzone, 1991). The essence of the method is to minimize the difference between same reflection observed at neighboring offsets or angles (Shen and Calandra, 2005; Shen and Symes, 2008). DSO implemented using space-lag gathers constructs a penalty operator which annihilates the energy at zero lag and enhances the energy at nonzero lags (Shen et al., 2003). This construction assumes that migrated images are perfectly focused at zero lag when the model is correct. This assumption, however, is violated in practice when the subsurface illumination is uneven. In complex subsurface regions, such as subsalt, uneven illumination is a general problem and it deteriorates the quality of imaging and velocity model building (Leveille et al., 2011). Several approaches have been proposed for illumination compensation of imaging (Gherasim et al., 2010; Shen et al., 2011), but not for velocity model building. In this paper, we address the problem of uneven illumination associated with image-domain wavefield tomography. The main idea is to include the illumination information in the penalty operator used by the objective function such that the defocusing due the illumination is excluded from the model updating process. We illustrate our technique with a subsalt velocity model. THEORY The core element for image-domain wavefield tomography using space-lag extended images (subsurface-offset CIGs) is an objective function and its gradient computed using the adjointstate method (Plessix, 2006; Symes, 2009). The state variables relate the objective function to the model parameter and are defined as source and receiver wavefields u s and u r obtained by solving the following acoustic wave equation:»»» L (x, ω, m) 0 us (j, x, ω) fs (j, x, ω) 0 L =, (x, ω, m) u r (j, x, ω) f r (j, x, ω) (1) where L and L are forward and adjoint frequency-domain wave operators, f s and f r are the source and record data, j = 1, 2,..., N s where N s is the number of shots, ω is the angular frequency, and x are the space coordinates {x, y, z}. The wave operator L and its adjoint L propagate the wavefields

2 forward and backward in time respectively using a two-way wave equation, e.g., L = ω 2 m, where m represent slowness squared. The objective function for image-domain wavefield tomography measures the image incoherency caused by the model errors H λ = 1 2 KI (x) P (λ) r (x, λ) 2 x,λ, (2) where r (x, λ) are extended images: r (x, λ) = X X u s (j, x λ, ω)u r (j, x + λ, ω), j ω The overline represents complex conjugate, and the lag vector has, in this case, only horizontal components: λ = {λ x, λ y, 0}. The mask operator K I (x) limits the construction of the gathers to select locations in the subsurface. P (λ) is a penalty operator acting on the extended image to highlight defocusing, i.e. image inaccuracy. It is typically assumed that defocusing is only due to velocity error, an assumption which leads to the differential semblance optimization (DSO) operator of Symes (2008). However, this penalty operator is not effective when poor illumination affects the image accuracy and leads to additional defocusing. To alleviate the negative influence of poor illumination, we need to include the illumination distribution in the tomographic procedure. Illumination can be assessed by applying illumination analysis, which is formulated based on the migration deconvolution, given by the expression (3) r (x) = (M M) 1 r (x), (4) where r is a reflectivity distribution, r is a migrated image, M is a demigration operator which is linear with respect to the reflectivity. This operator is different from the modeling operator L. The adjoint M represents the migration operator. (M M) is a blurring operator, and represents the Hessian (second-order derivative of the operator with respect to the model) for the operator M. This term includes the subsurface illumination information associated with the velocity structure and the acquisition geometry. In practice, the full (M M) 1 matrix is too costly to construct, but we can evaluate its impact by applying a cascade of demigration and migration (M M) to a reference image. For example, using extended images, we can write: r e (x, λ) = M Mr (x, λ). (5) The resulting image r e approximates the diagonal elements of the Hessian and captures defocusing associated with illumination effects. Such defocusing is the consequence of uneven illumination and should not be used in the velocity update. Therefore, an illumination-based penalty operator can be constructed as P (x, λ) = 1 E[r e (x, λ)] + ɛ, (6) where E represents envelope and ɛ is a damping factor used to stabilize the division. Replacing the conventional penalty P = λ with the one in equation 6 is the basis for our illumination compensated image-domain wavefield tomography. Note that the DSO penalty operator is a special case of our new penalty operator and corresponds to the case of perfect subsurface illumination and wide-band data. The adjoint sources are computed as the derivatives of the objective function H λ shown in equation 2 with respect to the state variables u s and u r:» gs (j, x, ω) = g r (j, x, ω) 2P 3 P (λ) K I (x) K I (x)p (λ)r (x, λ)u r (j, x + λ, ω) 4Pλ 5. P (λ) K I (x) K I (x)p (λ)r (x, λ) u s (j, x λ, ω) λ The adjoint state variables a s and a r are the wavefields obtained by backward and forward modeling, respectively, using the corresponding adjoint sources defined in equation 7:»»» L (x, ω, m) 0 as (j, x, ω) gs (j, x, ω) =, 0 L (x, ω, m) a r (j, x, ω) g r (j, x, ω) (8) and the gradient is the correlation between state variables and adjoint state variables: H λ m = X X j ω L m (7) u s (j, x, ω) a s (j, x, ω) + u r (j, x, ω) a r (j, x, ω), The model is then updated using gradient line search aimed at minimizing the objective function given by equation 2. EXAMPLES In this section, we use the Sigsbee 2A model (Paffenholz et al., 2002) and concentrate on the subsalt area to test our method in regions of complex geology with poor illumination. The target area ranges from x = km, and from z = km. The model, migrated image, and angle-domain gathers for correct and initial models are shown in Figures 1-1 and Figures 2-2, respectively. The angle gathers are displayed at selected locations corresponding to the vertical bars overlain in Figure 1. The actual spacing of the gathers and penalty operators are 0.45 km. Note that the reflections in the angle gathers appear only at positive angles, as the data are simulated for towed streamers and the subsurface is illuminated from one side only. We run the inversion using both the conventional DSO penalty and the illumination-based penalty operators. The DSO penalty operator is shown in Figure 3. For the illumination-based operator, we first generate gathers containing defocusing due to illumination effects (Figure 3), and then we construct the penalty operator using equation 6, as shown in Figure 3. For the gathers characterizing the illumination effects, we can observe significant defocusing in the subsalt area, as the salt distorts the wavefields used for imaging and causes the poor illumination. We run both inversions for 10 iterations, and obtain the reconstructed model, migrated image, and angle-domain gath- (9)

3 Figure 1: The true model in the target area of the Sigsbee model. The corresponding migrated image, and the angle-domain gathers. Figure 2: The initial model obtained by scaling the subsalt sediments of the true model. The corresponding migrated image, and the angle-domain gathers. ers shown in Figures 4-4 and Figures 5-5, respectively. The figures show that we update the models in the correct direction in both cases and that the reconstructed models are closer to the true model than the starting model. We find, however, that the model obtained using the illumination-based penalty is closer to the true model than the model obtained using DSO penalty. The model obtained using DSO penalty is not sufficiently updated and is still too slow. This is because the severe defocusing due to the salt biases the inversion when we do not take into account the uneven illumination. The comparison of the images also suggests that the inversion using the illumination-based penalty is superior to the inversion using DSO penalty. Both images are improved due to the updated model, as illustrated by the better focused diffractors distributed at z = 7.6 km, and by the faults located between x = 14.0 km, z = 6.0 km and x = 16.0 km, z = 9.0 km which are more visible in the images. If we concentrate on the bottom reflector (around 9 km), we can distinguish the extent of the improvements on the image quality for both inversions. The bottom reflector is corrected to the right depth for inversion using the illumination-based penalty, while for inversion using the DSO penalty, this reflector is still misplaced from the correct depth and it is not as flat as the reflector in Figure 5. Figures 6-6(d) compare the angle gathers at x = 10.2 km for the correct, initial, and reconstructed models using DSO and illumination-based penalties. The gathers for both reconstructed models show flatter reflections, indicating that the reconstructed models are more accurate than the Figure 3: The DSO penalty operator. The gathers characterizing the illumination effects. The illumination-based penalty operator constructed from the gathers in Figure 9.

4 Figure 4: The reconstructed model from inversion using the DSO penalty. The corresponding migrated image, and the angle-domain gathers. Figure 5: The reconstructed model from inversion using the illumination-based penalty. The corresponding migrated image, and the angle-domain gathers. initial model. We can, nonetheless, observe that the reflections in Figure 6(d) are flatter than those in Figure 6, and conclude that the reconstructed model using the illuminationbased penalty is more accurate, since it accounts for the poor subsurface illumination. CONCLUSIONS We demonstrate an illumination compensation strategy for wavefield tomography in the image domain. The idea is to measure the illumination effects on space-lag extended images, and replace the conventional DSO penalty operator with another one that compensates for illumination. This workflow isolates the defocusing caused by the illumination such that image-domain wavefield tomography minimizes only the defocusing related to velocity error. The synthetic examples show the improvements of the inversion result and of the migrated image after the illumination information is included in the penalty operator. Our approach enhances the robustness and effectiveness of wavefield tomography in the model building process when the subsurface illumination is uneven due to complex geologic structures such as salt. The cost of this technique is higher than that of the conventional approach since we periodically need to re-evaluate the subsurface illumination. (d) Figure 6: Angle-domain gathers at x = 10.2 km for the correct model, the initial model, the reconstructed models using the DSO penalty, and (d) the illumination-based penalty. ACKNOWLEDGMENTS We acknowledge the support of the sponsors of the Center for Wave Phenomena at Colorado School of Mines. The reproducible numeric examples in this paper use the Madagascar open-source software package freely available from

5 REFERENCES Etgen, J., S. H. Gray, and Y. Zhang, 2009, An overview of depth imaging in exploration geophysics: Geophysics, 74, WCA5 WCA17. Gherasim, M., U. Albertin, B. Nolte, and O. Askim, 2010, Wave-equation angle-based illumination weighting for optimized subsalt imaging: Presented at the 80th Annual International Meeting, SEG, Expanded Abstracts. Gray, S. H., J. Etgen, J. Dellinger, and D. Whitmore, 2001, Seismic migration problems and solutions: Geophysics, 66, Leveille, J. P., I. F. Jones, Z. Z. Zhou, B. Wang, and F. Liu, 2011, Subsalt imaging for exploration, production, and development: A review: Geophysics, 76, WB3 WB20. Paffenholz, J., B. McLain, J. Zaske, and P. Keliher, 2002, Subsalt multiple attenuation and imaging: Observations from the sigsbee 2b synthetic dataset: 72nd Annual International Meeting, SEG, Expanded Abstracts, Plessix, R.-E., 2006, A review of the adjoint state method for computing the gradient of a functional with geophysical applications: Geophysical Journal International, 167, , 2009, Three-dimensional frequency-domain fullwaveform inversion with an iterative solver: Geophysics, 74, WCC53 WCC61. Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model: Geophysics, 64, Shen, H., S. Mothi, and U. Albertin, 2011, Improving subsalt imaging with illumination-based weighting of rtm 3d angle gathers: Presented at the 81th Annual International Meeting, SEG, Expanded Abstracts. Shen, P., and H. Calandra, 2005, One-way waveform inversion within the framework of adjoint state differential migration: 75th Annual International Meeting, SEG, Expanded Abstracts, Shen, P., C. Stolk, and W. Symes, 2003, Automatic velocity analysis by differential semblance optimization: 73th Annual International Meeting, SEG, Expanded Abstracts, Shen, P., and W. W. Symes, 2008, Automatic velocity analysis via shot profile migration: Geophysics, 73, VE49 VE59. Sirgue, L., and R. Pratt, 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: Geophysics, 69, Symes, W., 2009, Migration velocity analysis and waveform inversion: Geophysical Prospecting, 56, Symes, W. W., 2008, Migration velocity analysis and waveform inversion: Geophysical Prospecting, 56, Symes, W. W., and J. J. Carazzone, 1991, Velocity inversion by differential semblance optimization: Geophysics, 56, Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49, Vigh, D., and E. W. Starr, 2008, 3D prestack plane-wave, fullwaveform inversion: Geophysics, 73, VE135 VE144. Virieux, J., and S. Operto, 2009, An overview of fullwaveform inversion in exploration geophysics: Geophysics, 74, WCC1 WCC26. Woodward, M., D. Nichols, O. Zdraveva, P. Whitfield, and T. Johns, 2008, A decade of tomography: Geophysics, 73, VE5 VE11. Woodward, M. J., 1992, Wave-equation tomography: Geophysics, 57, Yilmaz, O., 2001, Seismic Data Analysis (2nd edition): Society of Exploration Geophysicists.

SUMMARY. earth is characterized by strong (poro)elasticity.

SUMMARY. earth is characterized by strong (poro)elasticity. with illumination compensation Tongning Yang, Center for Wave Phenomena, Colorado School of Mines, Jeffrey Shragge, School of Earth and Environment, University of Western Australia, and Paul Sava, Center

More information

3D image-domain wavefield tomography using time-lag extended images

3D image-domain wavefield tomography using time-lag extended images CWP-748 3D image-domain wavefield tomography using time-lag extended images Tongning Yang and Paul Sava Center for Wave Phenomena, Colorado School of Mines ABSTRACT Image-domain wavefield tomography is

More information

Wave-equation migration velocity analysis with time-lag imaging

Wave-equation migration velocity analysis with time-lag imaging 1 Wave-equation migration velocity analysis with time-lag imaging 2 3 Tongning Yang and Paul Sava Center for Wave Phenomena, Colorado School of Mines 4 5 6 (September 30, 2010) Running head: WEMVA with

More information

Target-oriented wavefield tomography: A field data example

Target-oriented wavefield tomography: A field data example Target-oriented wavefield tomography: A field data example Yaxun Tang and Biondo Biondi ABSTRACT We present a strategy for efficient migration velocity analysis in complex geological settings. The proposed

More information

Target-oriented wavefield tomography using demigrated Born data

Target-oriented wavefield tomography using demigrated Born data Target-oriented wavefield tomography using demigrated Born data Yaxun Tang and Biondo Biondi ABSTRACT We present a method to reduce the computational cost of image-domain wavefield tomography. Instead

More information

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY We present a method to construct 3D angle gathers from extended images obtained

More information

Target-oriented wave-equation inversion with regularization in the subsurface-offset domain

Target-oriented wave-equation inversion with regularization in the subsurface-offset domain Stanford Exploration Project, Report 124, April 4, 2006, pages 1?? Target-oriented wave-equation inversion with regularization in the subsurface-offset domain Alejandro A. Valenciano ABSTRACT A complex

More information

SUMMARY INTRODUCTION THEORY. Objective function of ERWI

SUMMARY INTRODUCTION THEORY. Objective function of ERWI Extended Reflection Waveform Inversion via Differential Semblance Optimization Yujin Liu, William W. Symes and Zhenchun Li, China University of Petroleum (Huadong), Rice University SUMMARY Reflection-based

More information

Robustness of the scalar elastic imaging condition for converted waves

Robustness of the scalar elastic imaging condition for converted waves CWP-830 Robustness of the scalar elastic imaging condition for converted waves Yuting Duan & Paul Sava Center for Wave Phenomena, Colorado School of Mines ABSTRACT For elastic reverse-time migration, one

More information

SUMMARY ELASTIC SCALAR IMAGING CONDITION

SUMMARY ELASTIC SCALAR IMAGING CONDITION Robust 3D scalar imaging condition for elastic RTM Yuting Duan, presently at Shell International Exploration and Production Inc., formerly at Center for Wave Phenomena, Colorado School of Mines Paul Sava,

More information

SUMMARY. u s(e, x,t)u r(e, x +,t), (1)

SUMMARY. u s(e, x,t)u r(e, x +,t), (1) Image-domain and data-domain waveform tomography: a case study Esteban Díaz 1, Yuting Duan 1, Gerhard Pratt 2, and Paul Sava 1 1 Center for Wave Phenomena, Colorado School of Mines, 2 University of Western

More information

SUMMARY THEORY INTRODUCTION

SUMMARY THEORY INTRODUCTION Acoustic 3D least-squares reverse time migration using the energy norm Daniel Rocha, Paul Sava & Antoine Guitton Center for Wave Phenomena, Colorado School of Mines SUMMARY We propose a least-squares reverse

More information

3D angle decomposition for elastic reverse time migration Yuting Duan & Paul Sava, Center for Wave Phenomena, Colorado School of Mines

3D angle decomposition for elastic reverse time migration Yuting Duan & Paul Sava, Center for Wave Phenomena, Colorado School of Mines 3D angle decomposition for elastic reverse time migration Yuting Duan & Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY We propose 3D angle decomposition methods from elastic reverse

More information

Reconciling processing and inversion: Multiple attenuation prior to wave-equation inversion

Reconciling processing and inversion: Multiple attenuation prior to wave-equation inversion Reconciling processing and inversion: Multiple attenuation prior to wave-equation inversion Claudio Guerra and Alejandro Valenciano ABSTRACT Seismic inversion is very sensitive to the presence of noise.

More information

Wave-equation migration velocity analysis II: Subsalt imaging examples. Geophysical Prospecting, accepted for publication

Wave-equation migration velocity analysis II: Subsalt imaging examples. Geophysical Prospecting, accepted for publication Wave-equation migration velocity analysis II: Subsalt imaging examples Geophysical Prospecting, accepted for publication Paul Sava and Biondo Biondi Stanford Exploration Project, Mitchell Bldg., Department

More information

Inversion after depth imaging

Inversion after depth imaging Robin P. Fletcher *, Stewart Archer, Dave Nichols, and Weijian Mao, WesternGeco Summary In many areas, depth imaging of seismic data is required to construct an accurate view of the reservoir structure.

More information

U043 3D Prestack Time Domain Full Waveform Inversion

U043 3D Prestack Time Domain Full Waveform Inversion U043 3D Prestack Time Domain Full Waveform Inversion D.V. Vigh* (WesternGeco), W.E.S. Starr (WesternGeco) & K.D. Kenneth Dingwall (WesternGeco) SUMMARY Despite the relatively high computational demand,

More information

=, (1) SEG/New Orleans 2006 Annual Meeting

=, (1) SEG/New Orleans 2006 Annual Meeting U. Albertin* +, P. Sava ++, J. Etgen +, and M. Maharramov + + BP EPTG, Houston, Texas, ++ Colorado School of Mines, Goldin, Colorado Summary A methodology for velocity updating using one-way wavefield

More information

SUMMARY LEAST-SQUARES MIGRATION THEORY

SUMMARY LEAST-SQUARES MIGRATION THEORY Making the most out of the least (squares migration) Gaurav Dutta, Yunsong Huang, Wei Dai, Xin Wang, and G.T. Schuster King Abdullah University of Science and Technology SUMMARY Standard migration images

More information

Wave-equation migration velocity analysis. II. Subsalt imaging examples

Wave-equation migration velocity analysis. II. Subsalt imaging examples Geophysical Prospecting, 2004, 52, 607 623 Wave-equation migration velocity analysis. II. Subsalt imaging examples P. Sava and B. Biondi Department of Geophysics, Stanford University, Mitchell Building,

More information

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines Effects of multi-scale velocity heterogeneities on wave-equation migration Yong Ma and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY Velocity models used for wavefield-based seismic

More information

Downloaded 09/16/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/16/13 to Redistribution subject to SEG license or copyright; see Terms of Use at Time-domain incomplete Gauss-Newton full-waveform inversion of Gulf of Mexico data Abdullah AlTheyab*, Xin Wang, Gerard T. Schuster, King Abdullah University of Science and Technology Downloaded 9// to

More information

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling B. Wang* (CGG Americas Inc.), F. Qin (CGG Americas Inc.), F. Audebert (CGG Americas Inc.) & V. Dirks (CGG Americas Inc.)

More information

Model parametrization strategies for Newton-based acoustic full waveform

Model parametrization strategies for Newton-based acoustic full waveform Model parametrization strategies for Newton-based acoustic full waveform inversion Amsalu Y. Anagaw, University of Alberta, Edmonton, Canada, aanagaw@ualberta.ca Summary This paper studies the effects

More information

Subsalt illumination analysis using RTM 3D dip gathers Zhengxue Li *, Bing Tang and Shuo Ji, CGGVeritas

Subsalt illumination analysis using RTM 3D dip gathers Zhengxue Li *, Bing Tang and Shuo Ji, CGGVeritas Zhengxue Li *, Bing Tang and Shuo Ji, CGGVeritas Summary Reverse Time Migration (RTM) is now the preferred option for subsalt imaging in deep water Gulf of Mexico, and its 3D angle gather output plays

More information

F031 Application of Time Domain and Single Frequency Waveform Inversion to Real Data

F031 Application of Time Domain and Single Frequency Waveform Inversion to Real Data F031 Application of Time Domain and Single Frequency Waveform Inversion to Real Data D Yingst (ION Geophysical), C. Wang* (ION Geophysical), J. Park (ION Geophysical), R. Bloor (ION Geophysical), J. Leveille

More information

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Summary Anisotropic depth model building using surface seismic data alone is non-unique and

More information

Image-warping waveform tomography

Image-warping waveform tomography Geophysical Prospecting, 015, 63, 1050 1069 doi: 10.1111/1365-478.15 Image-warping waveform tomography Francesco Perrone, and Paul Sava Center for Wave Phenomena, Colorado School of Mines, Golden, CO 80401,

More information

Accelerating the Hessian-free Gauss-Newton Full-waveform Inversion via Preconditioned Conjugate Gradient Method

Accelerating the Hessian-free Gauss-Newton Full-waveform Inversion via Preconditioned Conjugate Gradient Method Accelerating the Hessian-free Gauss-Newton Full-waveform Inversion via Preconditioned Conjugate Gradient Method Wenyong Pan 1, Kris Innanen 1 and Wenyuan Liao 2 1. CREWES Project, Department of Geoscience,

More information

Multichannel deconvolution imaging condition for shot-profile migration

Multichannel deconvolution imaging condition for shot-profile migration Stanford Exploration Project, Report 113, July 8, 2003, pages 127 139 Multichannel deconvolution imaging condition for shot-profile migration Alejandro A. Valenciano and Biondo Biondi 1 ABSTRACT A significant

More information

Wave-equation inversion prestack Hessian

Wave-equation inversion prestack Hessian Stanford Exploration Project, Report 125, January 16, 2007, pages 201 209 Wave-equation inversion prestack Hessian Alejandro A. Valenciano and Biondo Biondi ABSTRACT The angle-domain Hessian can be computed

More information

Stochastic conjugate gradient method for least-square seismic inversion problems Wei Huang*, Hua-Wei Zhou, University of Houston

Stochastic conjugate gradient method for least-square seismic inversion problems Wei Huang*, Hua-Wei Zhou, University of Houston Stochastic conjugate gradient method for least-square seismic inversion problems Wei Huang*, Hua-Wei Zhou, University of Houston Summary With the development of computational power, there has been an increased

More information

Building starting model for full waveform inversion from wide-aperture data by stereotomography

Building starting model for full waveform inversion from wide-aperture data by stereotomography Building starting model for full waveform inversion from wide-aperture data by stereotomography Vincent Prieux 1, G. Lambaré 2, S. Operto 1 and Jean Virieux 3 1 Géosciences Azur - CNRS - UNSA, France;

More information

Target-oriented computation of the wave-equation imaging Hessian

Target-oriented computation of the wave-equation imaging Hessian Stanford Exploration Project, Report 117, October 23, 2004, pages 63 77 Target-oriented computation of the wave-equation imaging Hessian Alejandro A. Valenciano and Biondo Biondi 1 ABSTRACT A target-oriented

More information

SUMMARY INTRODUCTION NEW METHOD

SUMMARY INTRODUCTION NEW METHOD Reverse Time Migration in the presence of known sharp interfaces Alan Richardson and Alison E. Malcolm, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology SUMMARY

More information

Improvements in time domain FWI and its applications Kwangjin Yoon*, Sang Suh, James Cai and Bin Wang, TGS

Improvements in time domain FWI and its applications Kwangjin Yoon*, Sang Suh, James Cai and Bin Wang, TGS Downloaded 0/7/13 to 05.196.179.38. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ Improvements in time domain FWI and its applications Kwangjin Yoon*,

More information

A projected Hessian matrix for full waveform inversion Yong Ma and Dave Hale, Center for Wave Phenomena, Colorado School of Mines

A projected Hessian matrix for full waveform inversion Yong Ma and Dave Hale, Center for Wave Phenomena, Colorado School of Mines A projected Hessian matrix for full waveform inversion Yong Ma and Dave Hale, Center for Wave Phenomena, Colorado School of Mines SUMMARY A Hessian matrix in full waveform inversion (FWI) is difficult

More information

Angle-domain parameters computed via weighted slant-stack

Angle-domain parameters computed via weighted slant-stack Angle-domain parameters computed via weighted slant-stack Claudio Guerra 1 INTRODUCTION Angle-domain common image gathers (ADCIGs), created from downward-continuation or reverse time migration, can provide

More information

We G High-resolution Tomography Using Offsetdependent Picking and Inversion Conditioned by Image-guided Interpolation

We G High-resolution Tomography Using Offsetdependent Picking and Inversion Conditioned by Image-guided Interpolation We G103 05 High-resolution Tomography Using Offsetdependent Picking and Inversion Conditioned by Image-guided Interpolation G. Hilburn* (TGS), Y. He (TGS), Z. Yan (TGS) & F. Sherrill (TGS) SUMMARY An approach

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at High fidelity imaging using reflections, refractions and multiples: North Sea example, Johan Sverdrup Field Grunde Rønholt*, Øystein Korsmo, Barbara Danielsen, Samuel Brown, Sverre Brandsberg-Dahl, Alejandro

More information

Refraction Full-waveform Inversion in a Shallow Water Environment

Refraction Full-waveform Inversion in a Shallow Water Environment Refraction Full-waveform Inversion in a Shallow Water Environment Z. Zou* (PGS), J. Ramos-Martínez (PGS), S. Kelly (PGS), G. Ronholt (PGS), L.T. Langlo (PGS), A. Valenciano Mavilio (PGS), N. Chemingui

More information

Wide-azimuth angle gathers for wave-equation migration

Wide-azimuth angle gathers for wave-equation migration 1 Wide-azimuth angle gathers for wave-equation migration 2 3 Paul Sava (Center for Wave Phenomena, Colorado School of Mines) Ioan Vlad (Statoil) 4 5 6 7 (September 14, 2010) GEO-2010-???? Running head:

More information

Stacking angle-domain common-image gathers for normalization of illumination a

Stacking angle-domain common-image gathers for normalization of illumination a Stacking angle-domain common-image gathers for normalization of illumination a a Published in Geophysical Prospecting, 59, 244-255 (2011) Guochang Liu, China University of Petroleum-Beijing and The University

More information

A comparison of shot-encoding schemes for wave-equation migration Jeff Godwin and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

A comparison of shot-encoding schemes for wave-equation migration Jeff Godwin and Paul Sava, Center for Wave Phenomena, Colorado School of Mines A comparison of shot-encoding schemes for wave-equation migration Jeff Godwin and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY The seismic imaging industry is increasingly collecting

More information

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media M. Cavalca* (WesternGeco), I. Moore (WesternGeco), L. Zhang (WesternGeco), S.L. Ng (WesternGeco), R.P. Fletcher (WesternGeco)

More information

Downloaded 09/03/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/03/13 to Redistribution subject to SEG license or copyright; see Terms of Use at Full-waveform inversion in a shallow water environment: A North Sea 3D towed-streamer data example Kathy Zou*, Lars Tore Langlo, Grunde Rønholt, Jaime Ramos-Martinez and Steve Kelly, PGS Summary We apply

More information

Downloaded 10/26/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/26/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Reflection Full-waveform Inversion for Inaccurate Starting Models Abdullah AlTheyab* and G. T. Schuster, King Abdullah University of Science and Technology (KAUST) SUMMARY We propose a seismic-reflection

More information

Source Estimation for Wavefield Reconstruction Inversion

Source Estimation for Wavefield Reconstruction Inversion Source Estimation for Wavefield Reconstruction Inversion Zhilong Fang * and Felix J. Herrmann * * Seismic Laboratory for Imaging and Modeling SLIM), University of British Columbia Abstract Wavefield reconstruction

More information

Plane-wave migration in tilted coordinates

Plane-wave migration in tilted coordinates Plane-wave migration in tilted coordinates Guojian Shan and Biondo Biondi ABSTRACT Most existing one-way wave-equation migration algorithms have difficulty in imaging steep dips in a medium with strong

More information

Reverse-time migration by fan filtering plus wavefield decomposition Sang Yong Suh, KIGAM and Jun Cai, TGS-NOPEC

Reverse-time migration by fan filtering plus wavefield decomposition Sang Yong Suh, KIGAM and Jun Cai, TGS-NOPEC Reverse-time migration by fan filtering plus wavefield decomposition Sang Yong Suh, KIGAM and Jun Cai, TGS-NOPEC SUMMARY The conventional zero-lag crosscorrealtion imaging condition of reverse-time migration

More information

Amplitude and kinematic corrections of migrated images for nonunitary imaging operators

Amplitude and kinematic corrections of migrated images for nonunitary imaging operators GEOPHYSICS, VOL. 69, NO. 4 (JULY-AUGUST 2004); P. 1017 1024, 19 FIGS. 10.1190/1.1778244 Amplitude and kinematic corrections of migrated images for nonunitary imaging operators Antoine Guitton ABSTRACT

More information

Imaging with multiples using LSRTM

Imaging with multiples using LSRTM Chapter 4 Imaging with multiples using LSRTM In this chapter, I present a technique for imaging both primaries and higher-order multiples using joint least-squares reverse-time migration (joint-lsrtm).

More information

Target-oriented wave-equation inversion

Target-oriented wave-equation inversion Stanford Exploration Project, Report 120, May 3, 2005, pages 23 40 Target-oriented wave-equation inversion Alejandro A. Valenciano, Biondo Biondi, and Antoine Guitton 1 ABSTRACT A target-oriented strategy

More information

Equivalence of source-receiver migration and shot-profile migration

Equivalence of source-receiver migration and shot-profile migration Stanford Exploration Project, Report 112, November 11, 2002, pages 109 117 Short Note Equivalence of source-receiver migration and shot-profile migration Biondo Biondi 1 INTRODUCTION At first glance, shot

More information

Least-squares Wave-Equation Migration for Broadband Imaging

Least-squares Wave-Equation Migration for Broadband Imaging Least-squares Wave-Equation Migration for Broadband Imaging S. Lu (Petroleum Geo-Services), X. Li (Petroleum Geo-Services), A. Valenciano (Petroleum Geo-Services), N. Chemingui* (Petroleum Geo-Services),

More information

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Summary Geophysical reservoir characterization in a complex geologic environment remains a challenge. Conventional amplitude inversion

More information

Least squares Kirchhoff depth migration: important details

Least squares Kirchhoff depth migration: important details Least squares Kirchhoff depth migration: important details Daniel Trad CREWES-University of Calgary Summary Least squares migration has been an important research topic in the academia for about two decades,

More information

Full-waveform inversion for reservoir characterization: A synthetic study

Full-waveform inversion for reservoir characterization: A synthetic study CWP-889 Full-waveform inversion for reservoir characterization: A synthetic study Nishant Kamath, Ilya Tsvankin & Ehsan Zabihi Naeini ABSTRACT Most current reservoir-characterization workflows are based

More information

Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT. August Lau and Chuan Yin.

Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT. August Lau and Chuan Yin. Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT August Lau and Chuan Yin January 6, 2017 Abstract The goal of seismic processing is to convert input data

More information

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries M. Cvetkovic* (ION Geophysical), Z. Zhou (ION Geophysical / GXT Imaging Solutions) &

More information

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Summary We present a new method for performing full-waveform inversion that appears

More information

Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM)

Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM) Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM) S. Lu* (Petroleum Geo-Services), N.D. Whitmore (Petroleum Geo- Services), A.A. Valenciano (Petroleum Geo-Services) & N. Chemingui (Petroleum

More information

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at ACQUISITION APERTURE CORRECTION IN ANGLE-DOMAIN TOWARDS THE TRUE- REFLECTION RTM Rui Yan 1*, Huimin Guan 2, Xiao-Bi Xie 1, Ru-Shan Wu 1, 1 IGPP, Earth and Planetary Sciences Department, University of California,

More information

SUMMARY. amounts to solving the projected differential equation in model space by a marching method.

SUMMARY. amounts to solving the projected differential equation in model space by a marching method. Subsurface Domain Image Warping by Horizontal Contraction and its Application to Wave-Equation Migration Velocity Analysis Peng Shen, Shell International E&P, William W. Symes, Rice University SUMMARY

More information

We The Effects of Marine Data Acquisition Practices on Imaging in Complex Geological Setting - Modeling Study

We The Effects of Marine Data Acquisition Practices on Imaging in Complex Geological Setting - Modeling Study We-04-11 The Effects of Marine Data Acquisition Practices on Imaging in Complex Geological Setting - Modeling Study M. Cvetkovic* (ION Geophysical), P.A. Farmer (ION Geophysical) & R.I. Bloor (ION Geophysical)

More information

High Resolution Imaging by Wave Equation Reflectivity Inversion

High Resolution Imaging by Wave Equation Reflectivity Inversion High Resolution Imaging by Wave Equation Reflectivity Inversion A. Valenciano* (Petroleum Geo-Services), S. Lu (Petroleum Geo-Services), N. Chemingui (Petroleum Geo-Services) & J. Yang (University of Houston)

More information

Illumination-based normalization for wave-equation depth migration

Illumination-based normalization for wave-equation depth migration Illumination-based normalization for wave-equation depth migration James E. Rickett ChevronTexaco Exploration and Production Technology Company, 6001 Bollinger Canyon Road, San Ramon, CA 94583-2324 formerly

More information

Least-squares migration/inversion of blended data

Least-squares migration/inversion of blended data Least-squares migration/inversion of blended data Yaxun Tang and Biondo Biondi ABSTRACT We present a method based on least-squares migration/inversion to directly image data collected from recently developed

More information

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic A.S. Long* (PGS), S. Lu (PGS), D. Whitmore (PGS), H. LeGleut (PGS), R. Jones (Lundin

More information

Automatic wave equation migration velocity analysis by differential semblance optimization

Automatic wave equation migration velocity analysis by differential semblance optimization Automatic wave equation migration velocity analysis by differential semblance optimization Peng Shen, Christiaan Stolk, William W. Symes The Rice Inversion Project Rice University Thanks to Dr. Scott Morton

More information

We C 07 Least-squares Inversion for Imaging the Full Seismic Wavefield

We C 07 Least-squares Inversion for Imaging the Full Seismic Wavefield We C 07 Least-squares Inversion for Imaging the Full Seismic Wavefield S. Lu* (Petroleum Geo-Services), F. Liu (Petroleum Geo-Services), N. Chemingui (Petroleum Geo-Services), M. Orlovich (Petroleum Geo-Services)

More information

Lab 3: Depth imaging using Reverse Time Migration

Lab 3: Depth imaging using Reverse Time Migration Due Wednesday, May 1, 2013 TA: Yunyue (Elita) Li Lab 3: Depth imaging using Reverse Time Migration Your Name: Anne of Cleves ABSTRACT In this exercise you will familiarize yourself with full wave-equation

More information

Seismic Inversion: Progress and Prospects

Seismic Inversion: Progress and Prospects Seismic Inversion: Progress and Prospects William W. Symes Rice University SEG 07 William W. Symes ( Rice University) Seismic Inversion: Progress and Prospects 24-09-2007 1 / 18 Introduction Focus: recent

More information

Machine-learning Based Automated Fault Detection in Seismic Traces

Machine-learning Based Automated Fault Detection in Seismic Traces Machine-learning Based Automated Fault Detection in Seismic Traces Chiyuan Zhang and Charlie Frogner (MIT), Mauricio Araya-Polo and Detlef Hohl (Shell International E & P Inc.) June 9, 24 Introduction

More information

Efficient Beam Velocity Model Building with Tomography Designed to Accept 3d Residuals Aligning Depth Offset Gathers

Efficient Beam Velocity Model Building with Tomography Designed to Accept 3d Residuals Aligning Depth Offset Gathers Efficient Beam Velocity Model Building with Tomography Designed to Accept 3d Residuals Aligning Depth Offset Gathers J.W.C. Sherwood* (PGS), K. Sherwood (PGS), H. Tieman (PGS), R. Mager (PGS) & C. Zhou

More information

Linearized wave-equation migration velocity analysis by image warping

Linearized wave-equation migration velocity analysis by image warping CWP-708 Linearized wave-equation migration velocity analysis by image warping Francesco Perrone 1, Paul Sava 1, Clara Andreoletti 2, and Nicola Bienati 2 1 Center for Wave Phenomena, Colorado School of

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Recovering the Reflectivity Matrix and Angle-dependent Plane-wave Reflection Coefficients from Imaging of Multiples Alba Ordoñez PGS/UiO*, Walter Söllner PGS, Tilman Klüver PGS and Leiv J. Gelius UiO Summary

More information

Q-compensation in complex media ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco.

Q-compensation in complex media ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco. ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco. Summary We apply and compare three model-based Q-compensation approaches. The first two approaches

More information

Least-squares RTM: Reality and possibilities for subsalt imaging Ping Wang*, Adriano Gomes, Zhigang Zhang, and Ming Wang, CGG

Least-squares RTM: Reality and possibilities for subsalt imaging Ping Wang*, Adriano Gomes, Zhigang Zhang, and Ming Wang, CGG Least-squares RTM: Reality and possibilities for subsalt imaging Ping Wang*, Adriano Gomes, Zhigang Zhang, and Ming Wang, CGG Summary We investigated how current least-squares reverse time migration (LSRTM)

More information

Iterative resolution estimation in Kirchhoff imaging

Iterative resolution estimation in Kirchhoff imaging Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 369?? Iterative resolution estimation in Kirchhoff imaging Robert G. Clapp, Sergey Fomel, and Marie Prucha 1 ABSTRACT We apply iterative

More information

Prestack residual migration in the frequency domain

Prestack residual migration in the frequency domain GEOPHYSICS, VOL. 68, NO. (MARCH APRIL 3); P. 634 64, 8 FIGS. 1.119/1.156733 Prestack residual migration in the frequency domain Paul C. Sava ABSTRACT Prestack Stolt residual migration can be applied to

More information

Model-space vs. data-space normalization for recursive depth migration

Model-space vs. data-space normalization for recursive depth migration Stanford Exploration Project, Report 108, April 29, 2001, pages 1?? Model-space vs. data-space normalization for recursive depth migration James Rickett 1 ABSTRACT Illumination problems caused by finite-recording

More information

Scalar imaging condition for elastic reverse time migration

Scalar imaging condition for elastic reverse time migration GEOPHYSICS, VOL. 80, NO. 4 (JULY-AUGUST 2015); P. S127 S136, 17 FIGS. 10.1190/GEO2014-0453.1 Scalar imaging condition for elastic reverse time migration Yuting Duan 1 and Paul Sava 1 ABSTRACT Polarity

More information

Strategies for elastic full waveform inversion Espen Birger Raknes and Børge Arntsen, Norwegian University of Science and Technology

Strategies for elastic full waveform inversion Espen Birger Raknes and Børge Arntsen, Norwegian University of Science and Technology Strategies for elastic full waveform inversion Espen Birger Raknes and Børge Arntsen, Norwegian University of Science and Technology SUMMARY Ocean-bottom cables (OBC) have become common in reservoir monitoring

More information

F020 Methods for Computing Angle Gathers Using RTM

F020 Methods for Computing Angle Gathers Using RTM F020 Methods for Computing Angle Gathers Using RTM M. Vyas* (WesternGeco), X. Du (WesternGeco), E. Mobley (WesternGeco) & R. Fletcher (WesternGeco) SUMMARY Different techniques can be used to compute angle-domain

More information

Full waveform inversion of physical model data Jian Cai*, Jie Zhang, University of Science and Technology of China (USTC)

Full waveform inversion of physical model data Jian Cai*, Jie Zhang, University of Science and Technology of China (USTC) of physical model data Jian Cai*, Jie Zhang, University of Science and Technology of China (USTC) Summary (FWI) is a promising technology for next generation model building. However, it faces with many

More information

Wave-equation migration from topography: Imaging Husky

Wave-equation migration from topography: Imaging Husky Stanford Exploration Project, Report 123, October 31, 2005, pages 49 56 Short Note Wave-equation migration from topography: Imaging Husky Jeff Shragge 1 INTRODUCTION Imaging land seismic data is wrought

More information

Overview and classification of wavefield seismic imaging methods

Overview and classification of wavefield seismic imaging methods Overview and classification of wavefield seismic imaging methods Paul Sava and Stephen J. Hill, Colorado School of Mines Prepared for The Leading Edge Introduction. The literature and seismic processing

More information

P262 Limited-aperture Acquisition Compensation for Shot Profile Imaging

P262 Limited-aperture Acquisition Compensation for Shot Profile Imaging P262 Limited-aperture Acquisition Compensation for Shot Profile Imaging C.E. Yarman* (WesternGeco-Schlumberger), R. Fletcher (WesternGeco- Schlumberger) & X. Xiao (WesternGeco-Schlumberger) SUMMARY We

More information

We N Converted-phase Seismic Imaging - Amplitudebalancing Source-independent Imaging Conditions

We N Converted-phase Seismic Imaging - Amplitudebalancing Source-independent Imaging Conditions We N106 02 Converted-phase Seismic Imaging - Amplitudebalancing -independent Imaging Conditions A.H. Shabelansky* (Massachusetts Institute of Technology), A.E. Malcolm (Memorial University of Newfoundland)

More information

Least squares Kirchhoff depth migration with. preconditioning

Least squares Kirchhoff depth migration with. preconditioning Least squares Kirchhoff depth migration with preconditioning Aaron Stanton University of Alberta, Department of Physics, 4-83 CCIS, Edmonton AB T6G E (April, 3) Running head: Least Squares Migration ABSTRACT

More information

DSR Migration Velocity Analysis by Differential Semblance Optimization

DSR Migration Velocity Analysis by Differential Semblance Optimization DSR Migration Velocity Analysis by Differential Semblance Optimization A. Khoury (Total E&P France), W. W. Symes (Rice University), P. Williamson and P. Shen (Total E&P USA Inc.) Society of Exploration

More information

Residual move-out analysis with 3-D angle-domain common-image gathers

Residual move-out analysis with 3-D angle-domain common-image gathers Stanford Exploration Project, Report 115, May 22, 2004, pages 191 199 Residual move-out analysis with 3-D angle-domain common-image gathers Thomas Tisserant and Biondo Biondi 1 ABSTRACT We describe a method

More information

Progress Report on: Interferometric Interpolation of 3D SSP Data

Progress Report on: Interferometric Interpolation of 3D SSP Data Progress Report on: Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy ABSTRACT We present the theory and numerical results for interferometrically interpolating and extrapolating 3D marine

More information

Writing Kirchhoff migration/modelling in a matrix form

Writing Kirchhoff migration/modelling in a matrix form Writing Kirchhoff migration/modelling in a matrix form Abdolnaser Yousefzadeh and John C. Bancroft Kirchhoff migration matrix ABSTRACT Kirchhoff prestack migration and modelling are linear operators. Therefore,

More information

Interferometric imaging condition for wave-equation migration

Interferometric imaging condition for wave-equation migration GEOPHYSICS, VOL., NO. MARCH-APRIL 00 ; P. S S1, 1 FIGS. 10.110/1.0 Interferometric imaging condition for wave-equation migration Paul Sava 1 and Oleg Poliannikov ABSTRACT The fidelity of depth seismic

More information

Inexact Full Newton Method for Full Waveform Inversion using Simultaneous encoded sources

Inexact Full Newton Method for Full Waveform Inversion using Simultaneous encoded sources Inexact Full Newton Method for Full Waveform Inversion using Simultaneous encoded sources Summary Amsalu Y. Anagaw, University of Alberta, Edmonton, Canada aanagaw@ualberta.ca and Mauricio D. Sacchi, University

More information

SeisSpace Software. SeisSpace enables the processor to be able focus on the science instead of being a glorified data manager.

SeisSpace Software. SeisSpace enables the processor to be able focus on the science instead of being a glorified data manager. SeisSpace Software OVERVIEW Delivering large volumes of data quickly and accurately remains the hallmark of any seismic processing system. With intuitive analysis tools, state-of-the-art geophysical algorithms

More information

Full waveform inversion guided migration velocity analysis Thibaut Allemand* and Gilles Lambaré (CGG)

Full waveform inversion guided migration velocity analysis Thibaut Allemand* and Gilles Lambaré (CGG) Thibaut Allemand* and Gilles Lambaré (CGG) Summary While difficulties of full waveform inversion (FWI) using reflected waves only have been well identified, the combination of FWI with migration velocity

More information

We N Depth Domain Inversion Case Study in Complex Subsalt Area

We N Depth Domain Inversion Case Study in Complex Subsalt Area We N104 12 Depth Domain Inversion Case Study in Complex Subsalt Area L.P. Letki* (Schlumberger), J. Tang (Schlumberger) & X. Du (Schlumberger) SUMMARY Geophysical reservoir characterisation in a complex

More information