G009 Multi-dimensional Coherency Driven Denoising of Irregular Data

Size: px
Start display at page:

Download "G009 Multi-dimensional Coherency Driven Denoising of Irregular Data"

Transcription

1 G009 Multi-dimensional Coherency Driven Denoising of Irregular Data G. Poole* (CGGVeritas Services (UK) Ltd) SUMMARY Many land and ocean bottom datasets suffer from high levels of noise which make the task of processing and interpretation difficult. With legacy land data, high noise levels are generally due to low CMP fold. High fold modern acquisition can also be noisy due to poor geophone coupling, ground or mud roll, or because single sensors rather than arrays are used. As these data often exhibit irregular sampling, denoising them can be difficult due to the majority of random noise attenuation algorithms requiring regularly sampled data. We introduce a semblance driven denoising algorithm in the high resolution tau-p domain that can offer strong denoising capabilities and work directly with irregularly sampled data. The algorithm can be applied in all five recording dimensions (inline, crossline, offset-x, offset-y, time) to avoid working on subsets of data, which increases the ability for weak signals to be uncovered from below high levels of noise. Application of the algorithm on irregularly sampled synthetic and real datasets demonstrate the power of the method by greatly reducing the noise content whilst accurately preserving the signal.

2 Introduction Many land and ocean bottom datasets suffer from high levels of noise which make the task of processing and interpretation difficult. For low fold datasets, regularization algorithms working simultaneously across all five recording axes (inline, crossline, offset-x, offset-y and time) have been shown to increase the sampling density; thus improving the signal-to-noise ratio of the stack section (Trad, 2009 and Poole, 2010). These methods often succeed where lower dimensional algorithms fail because 2D and 3D algorithms only work on a subset of the data. By working in 5D it is possible to uncover weak signal hidden below high amplitude noise. The simultaneous use of all recording directions avoids processing across discontinuities in the data, for example jitter within an offset volume relating to variations in offset and azimuth. Modern single sensor high fold datasets can also exhibit high noise levels due to poor coupling and ground or mud roll. For such datasets it can be pragmatic to reduce the noise level rather than interpolating even more densely. Denoising algorithms are generally split into two categories, those that are designed to remove random noise and those to remove coherent noise. The removal of random noise normally relies on the fact that while signal is predictable, incoherent noise is not. This principle is the basis for fx prediction filtering (Canales, 1984), fx projection filtering (Soubaras, 1994) and many coherency driven techniques (for example Gulunay, 2007). Other denoising algorithms attempt to mitigate coherent noise by characteristics that distinguish it from primary energy. For example, Radon demultiple makes the distinction that on normal moveout corrected CMP gathers primary energy is flat while multiple energy curves downwards (Hampson, 1986). Other coherent energy can be distinguished through modeling and subtraction (Le Meur et al, 2008). For random noise attenuation algorithms that require regularly sampled data, irregular datasets first need to be regularized prior to denoising. The simplest method of achieving this is through flex binning which duplicates traces from neighbouring bins to fill holes in coverage. While this method ensures one trace per bin, the flex bin traces will often not be a good representation of what would have been recorded in those bins; particularly for data with significant dip. In addition, jitter can be apparent in the data due to irregular sampling within the bins. The application of traditional methods (such as fx prediction filtering) in such circumstances will be sub-optimal as the irregularity of the sampling makes the primary energy disjointed. As such, the primary energy will be smeared and detail will be lost. Just as with data regularization, the success of denoising techniques can be greatly improved by applying them in 5D. Tau-p based coherency enhancement can be extended to work in 5D using the inline, crossline, offset-x, and offset-y directions simultaneously to enhance the signal. In this paper we introduce a method based on coherency enhancement for the suppression of random noise on irregularly sampled data. Algorithm The first step of the algorithm involves transforming the irregular input data into the slant stack domain. In order for the algorithm to be amplitude preserving and to model energy beyond aliasing, it is essential to use a high resolution transform. Either high resolution Radon transforms (Herrmann et al, 2000) or the slant stack equivalent of the anti-leakage Fourier transform (Xu et al, 2005, and Ng and Perz, 2004) fulfill this requirement. The next step of the process involves distinguishing regions of noise and regions of signal. Noise regions are scaled down, and finally the data is transformed back into the x-t domain. Scaling in the tau-p domain is similar to applying fx prediction filtering to the data as the response of prediction filters in the FK domain is strong for the main signal energy (which is predictable) and weak for noise areas. This property extends to the tau-p domain as utilized by the pyramid transform (Hung et al, 2004). One strength of this method over fx prediction/projection methods is that it can be applied to irregular data. The algorithm can either output the data on the original irregular coordinates

3 or on to other specified coordinates. This allows the dataset to be denoised, regularized or to be mapped on to the coordinates of a secondary dataset; for example another vintage of a timelapse study. The proposed method also offers more flexibility in controlling the level of denoising. The following examples demonstrate the power of the proposed method on synthetic and real datasets. Synthetic data example A synthetic dataset was generated using shot and receiver coordinates from a real land dataset with irregular spacing and poor sampling (~15 fold). The model consisted of a constant velocity medium (2000m/s) with a single dipping horizon (30 o dip). An inline from the dataset for offset range 1000m- 1100m is shown in Figure 1a where significant jitter is observed due to holes in coverage and variation in azimuth. After adding random noise to the dataset (Figure 1b), the dataset was denoised using the previously described algorithm in 3D and 5D. The 3D application used the inline and crossline directions to denoise the data, the output is displayed in Figure 1c with difference in Figure 1e. While the algorithm has removed much of the noise, significant signal damage can be observed due to the azimuth related jitter not being modelled by the transform. The results of the 5D application (inline, crossline, offset-x, offset-y, time) along with difference are given in Figures 1d and 1f respectively. We observe a similar level of denoising as the 3D application but with excellent preservation of primary energy. By operating in 5D, the algorithm can model the variation of reflected energy with all spatial coordinates and is able to preserve the clarity of the event. Figure 1 a) Synthetic data based on coordinates from a real dataset, b) input with added random noise, c) results after 3D denoise, d) results after 5D denoise, e) difference b) c), f) difference b) d) Ocean bottom cable example This ocean bottom cable (OBC) acquisition utilised 10 cables with 500m spacing. The receivers were composed of a hydrophone and 3 geophones with a 75m separation. Shots were fired on a 50m x 50m grid with maximum offset 5km. The dataset was processed on a common-offset-vector (COV) grid (150m inline-offset 1000m crossline-offset) with a 25m 25m bin size In OBC processing, the upgoing wavefield can be estimated by summing the pressure (P) and vertical geophone (Z) components. Multiple energy is suppressed due to the difference in polarity between P and Z components. One drawback of this process is that the Z component is inherently noisy which degrades the P component. Although PZ summation can be modified to reduce the amount of noise contamination (Zabihi et al, 2011), further denoising is often required. As these data are irregularly sampled this dataset would have to be regularised before application of traditional methods, and even then would be sub-optimal. For this reason coherency enhancement was applied after PZ summation but before imaging. Figure 2 shows a common midpoint (CMP) gather

4 and stack section from the dataset before and after denoising. The high level of noise is easily seen on the input CMP, but after denoising the signal becomes much more coherent. As the transform fully respects the irregular recording coordinates, the algorithm is ideally suited to irregular data such as this. Although the stack section exhibits a higher signal-to-noise ratio than the pre-stack data, we can also observe a significant improvement in the coherency of events. a) Input CMP gather b) Input stack section c) Denoised CMP gather d) Denoised stack section Figure 2 Pre-imaging CMP and stack section before (top) and after (bottom) denoising While the migration process itself cancels out a lot of incoherent energy, the advantages of the denoising technique are still apparent. Figure 3 shows a migrated common image point gather (CIP) and stack section before and after denoising. The displays demonstrate an uplift in the coherency of reflection energy and a suppression of noise. For this dataset the denoising algorithm was particularly useful to aid velocity model building through reflection tomography. Conclusions We have introduced a new coherency driven random noise attenuation method in the high resolution tau-p domain. The method has benefits over traditional denoising algorithms as it offers high flexibility in the level of denoising, can work directly with irregular data, and can be applied in up to five dimensions (inline, crossline, offset-x, offset-y, and time). The large number of dimensions avoids cascaded applications of lower dimensional algorithms which only work on small subsets of the available data and are less effective at enhancing very weak signals hidden under high amplitude noise. We have demonstrated the power of the technique on synthetic data as well as a real ocean bottom cable dataset. The resulting pre- and post-stack data exhibits much improved continuity whilst preserving the weak reflected energy.

5 a) Migrated CIP b) Migrated stack section c) Denoised migrated CIP d) Denoised migrated stack section Figure 3 Post-imaging CIP and stack section before (top) and after (bottom) denoising Acknowledgements We would like to thank BP for permission to show the real data example and CGGVeritas to allow the submission of this paper. Also we would like to thank the team at CGGVeritas who processed the data including Ewan Hillier, Sharon Howe, and Sandrine David. References Canales, L. L. [1984] Random noise reduction. 54 th SEG Annual International Meeting, Expanded Abstracts, 3, no. 1, Gulunay, N., Holden, J., and Connor, J. [2007] Coherency enhancement on 3D seismic data by dip detection and dip selection. 77 th SEG Annual International Meeting, Expanded Abstracts Hampson, D. [1986] Inverse velocity stacking for multiple elimination. Canadian Journal of Exp. Geophysics, 22, Herrmann, P., Mojesky, T., Magesan, M., and Hugonnet, P. [2000] De-aliased, high-resolution Radon transforms. 70 th SEG Annual International Meeting, Expanded Abstracts, Hung, B., Notfors, C., and Ronen, S. [2004] Robust prediction filtering using the pyramid transform. 66 th EAGE Conference & Exhibition, Expanded Abstracts, Z-99. Le Meur, D., Benjamin, N., Cole, R., and Al Harthy, M. [2008] Adaptive groundroll filtering. 70 th EAGE Conference & Exhibition, Expanded Abstracts. Ng, M., and Perz, M. [2004] High resolution Radon transform in the t-x domain using intelligent prioritization of the Gauss-Seidel estimation sequence. 74 th SEG Annual International Meeting, Expanded Abstracts. Poole, G. [2010] 5D data reconstruction using the anti-leakage Fourier transform. 72 nd EAGE Conference & Exhibition, Expanded Abstracts, B046.

6 Soubaras, R. [1994] Signal-preserving random noise attenuation by the F-X projection. 64 th SEG Annual International Meeting, Expanded Abstracts, 13, no. 1, Trad, D. [2009] Five-dimensional interpolation: Recovering from acquisition constraints. Geophysics, 74, V123. Xu, S., Zhang, Y., Pham, D., and Lambare, G. [2005] Anti-leakage Fourier transform for seismic data regularization. Geophysics, 70, Zabihi Naeini, E., Baboulaz, L., and Grion, S. [2011] Enhanced wavefield separation for OBC/OBS data processing. Submitted for acceptance 73 rd EAGE Conference & Exhibition, Expanded Abstracts.

y Input k y2 k y1 Introduction

y Input k y2 k y1 Introduction A regularization workflow for the processing of cross-spread COV data Gordon Poole 1, Philippe Herrmann 1, Erika Angerer 2, and Stephane Perrier 1 1 : CGG-Veritas, 2 : OMV Data regularization is critical

More information

Anisotropy-preserving 5D interpolation by hybrid Fourier transform

Anisotropy-preserving 5D interpolation by hybrid Fourier transform Anisotropy-preserving 5D interpolation by hybrid Fourier transform Juefu Wang and Shaowu Wang, CGG Summary We present an anisotropy-preserving interpolation method based on a hybrid 5D Fourier transform,

More information

Practical implementation of SRME for land multiple attenuation

Practical implementation of SRME for land multiple attenuation Practical implementation of SRME for land multiple attenuation Juefu Wang* and Shaowu Wang, CGGVeritas, Calgary, Canada juefu.wang@cggveritas.com Summary We present a practical implementation of Surface

More information

We LHR2 08 Simultaneous Source Separation Using an Annihilation Filter Approach

We LHR2 08 Simultaneous Source Separation Using an Annihilation Filter Approach We LHR2 08 Simultaneous Source Separation Using an Annihilation Filter Approach J. Rohnke* (CGG) & G. Poole (CGG) SUMMARY Simultaneous shooting increases acquisition efficiency by activating more than

More information

Downloaded 09/20/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/20/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Joint SRME and model-based water-layer demultiple for ocean bottom node Hui Huang*, Ping Wang, Jing Yang, Hui Chen (CGG); Pierre-Olivier Ariston, Imtiaz Ahmed, and Nick Bassett (BP) Summary Ocean bottom

More information

South Oman Salt Basin: High-Density Wide-Azimuth Land Seismic Acquisition and Processing

South Oman Salt Basin: High-Density Wide-Azimuth Land Seismic Acquisition and Processing South Oman Salt Basin: High-Density Wide-Azimuth Land Seismic Acquisition and Processing Petroleum Development Oman (PDO) : Richard Smith, Paul Zwartjes and Tom Van Dijk. CGGVeritas : Richard Wombell,

More information

We N Simultaneous Shooting for Sparse OBN 4D Surveys and Deblending Using Modified Radon Operators

We N Simultaneous Shooting for Sparse OBN 4D Surveys and Deblending Using Modified Radon Operators We N101 08 Simultaneous Shooting for Sparse OBN 4D Surveys and Deblending Using Modified Radon Operators R.R. Haacke* (CGG), G. Hampson (Chevron) & B. Golebiowski (CGG) SUMMARY Significant gains in productivity

More information

Introduction. Surface and Interbed Multtple Elimination

Introduction. Surface and Interbed Multtple Elimination Pre-stack Land Surface and Interbed Demultiple Methodology An Example from the Arabian Peninsula Roald van Borselen, Grog Fookes, Michel Schonewille, Constantine Tsingas, Michael West PGS Geophysical;

More information

3D predictive deconvolution for wide-azimuth gathers

3D predictive deconvolution for wide-azimuth gathers 3D predictive deconvolution for wide-azimuth gathers P.Hugonnet(1), J.L.Boelle(2), P.Herrmann(1), F.Prat(1), S.Navion(1) (1) CGGVeritas, (2) Total E&P Summary Usual pre-stack predictive deconvolution solutions

More information

C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico

C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico M. Magesan (CGGVeritas), J.-C. Ferran* (CGGVeritas), S. Kaculini (CGGVeritas), C.J.

More information

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco)

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) I040 Case Study - Residual Scattered Noise Attenuation for 3D Land Seismic Data P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) SUMMARY We show that

More information

5D leakage: measuring what 5D interpolation misses Peter Cary*and Mike Perz, Arcis Seismic Solutions

5D leakage: measuring what 5D interpolation misses Peter Cary*and Mike Perz, Arcis Seismic Solutions Peter Cary*and Mike Perz, Arcis Seismic Solutions Summary 5D interpolation methods have proven to be capable of overcoming the constraints of actual data acquisition in a wide range of situations. However,

More information

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer data James Rickett*, Schlumberger Gould Research Summary Combining deghosting with crossline interpolation

More information

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Didier Lecerf*, Philippe Herrmann, Gilles Lambaré, Jean-Paul Tourré and Sylvian Legleut, CGGVeritas Summary

More information

Tu N Internal Multiple Attenuation on Radial Gathers With Inverse-scattering Series Prediction

Tu N Internal Multiple Attenuation on Radial Gathers With Inverse-scattering Series Prediction Tu N114 05 Internal Multiple Attenuation on Radial Gathers With Inverse-scattering Series Prediction F. Xavier de Melo* (Schlumberger), C. Kostov (Schlumberger) & J. Wu (Schlumberger) SUMMARY We present

More information

Internal Multiple Attenuation on Radial Gathers With Inverse- Scattering Series Prediction

Internal Multiple Attenuation on Radial Gathers With Inverse- Scattering Series Prediction Internal Multiple Attenuation on Radial Gathers With Inverse- Scattering Series Prediction Frederico Xavier de Melo, Clément Kostov, James Wu Schlumberger Summary We present a novel workflow for pre-stack

More information

We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study

We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study M. Branston* (Schlumberger Geosolutions), R. Campbell (Schlumberger Geosolutions), M. Rowlands

More information

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry D.F. Halliday* (Schlumberger Cambridge Research), P.J. Bilsby (WesternGeco), J. Quigley (WesternGeco) & E. Kragh (Schlumberger

More information

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data S. Sonika* (WesternGeco), A. Zarkhidze (WesternGeco), J. Heim (WesternGeco) & B. Dragoset (WesternGeco) SUMMARY Interbed multiples

More information

A Review of Current Marine Demultiple Techniques with Examples from the East Coast of Canada

A Review of Current Marine Demultiple Techniques with Examples from the East Coast of Canada A Review of Current Marine De Techniques with Examples from the East Coast of Canada ABSTRACT R.Brooymans*, T.Mojesky and L.Pham CGG Canada Services Ltd., Calgary rbrooymans@ca.cgg.com Introduction Multiple

More information

Shot-based pre-processing solutions for wide azimuth towed streamer datasets

Shot-based pre-processing solutions for wide azimuth towed streamer datasets first break volume 25, March 2007 focus on azimuth Shot-based pre-processing solutions for wide azimuth towed streamer datasets Philippe Herrmann, 1* Gordon Poole, 2 Antonio Pica, 1 Sylvain Le Roy, 1 and

More information

Azimuthal anisotropy? The time and depth imaging points of view: an imaging case history.

Azimuthal anisotropy? The time and depth imaging points of view: an imaging case history. Azimuthal anisotropy? The time and depth imaging points of view: an imaging case history. Serge Zimine 1, Gilles Lambaré* 1, Patrice Guillaume 1, Jean-Philippe Montel 1, Jean-Paul Touré 1, Nicolas Deladerrière

More information

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG)

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Summary Compared to towed-streamer data, deep-water ocean bottom node (OBN) data by nature have a broader bandwidth; however, the presence of

More information

Summary. Introduction

Summary. Introduction Multivessel coil shooting acquisition with simultaneous sources Nick Moldoveanu¹, Ying Ji², Craig Beasley¹ ¹WesternGeco, ²Schlumberger Cambridge Research Summary Multivessel coil shooting is a towed-streamer

More information

Seismic data interpolation and de-noising in the frequency-wavenumber domain

Seismic data interpolation and de-noising in the frequency-wavenumber domain Seismic data interpolation and de-noising in the frequency-wavenumber domain Mostafa Naghizadeh ABSTRACT I introduce a unified approach for de-noising and interpolation of seismic data in the frequency-wavenumber

More information

Seismic data Interpolation in the Continuous Wavenumber Domain, Flexibility and Accuracy

Seismic data Interpolation in the Continuous Wavenumber Domain, Flexibility and Accuracy Seismic data Interpolation in the Continuous Wavenumber Domain, Flexibility and Accuracy Ye Zheng Geo-X Exploration Services Inc. Summary Our recently developed algorithm, ASFT (Arbitrarily Sampled Fourier

More information

Directions in 3-D imaging - Strike, dip, both?

Directions in 3-D imaging - Strike, dip, both? Stanford Exploration Project, Report 113, July 8, 2003, pages 363 369 Short Note Directions in 3-D imaging - Strike, dip, both? Marie L. Clapp 1 INTRODUCTION In an ideal world, a 3-D seismic survey would

More information

P292 Acquisition Footprint Removal from Time Lapse Datasets

P292 Acquisition Footprint Removal from Time Lapse Datasets P292 Acquisition Footprint Removal from Time Lapse Datasets E. Zabihi Naeini* (CGGVeritas) SUMMARY Water layer variations and acquisition differences are two important factors that introduce time shift

More information

3D pyramid interpolation

3D pyramid interpolation 3D pyramid interpolation Xukai Shen ABSTRACT Seismic data geometries are not always as nice and regular as we want due to various acquisition constraints. In such cases, data interpolation becomes necessary.

More information

Summary. Offset Vector Tiling for CBM

Summary. Offset Vector Tiling for CBM Extending MAZ PSDM velocity model building to land context using controlled beam migration, a case study Olivier Hermant*, Jean-Paul Gruffeille, Serge Zimine, Sylvain Navion, CGGVeritas Summary 3D marine

More information

Source deghosting for synchronized multi-level source streamer data Zhan Fu*, Nan Du, Hao Shen, Ping Wang, and Nicolas Chazalnoel (CGG)

Source deghosting for synchronized multi-level source streamer data Zhan Fu*, Nan Du, Hao Shen, Ping Wang, and Nicolas Chazalnoel (CGG) Source deghosting for synchronized multi-level source streamer data Zhan Fu*, Nan Du, Hao Shen, Ping Wang, and Nicolas Chazalnoel (CGG) Summary Ghost wavefield elimination is pivotal for improving the

More information

High definition tomography brings velocities to light Summary Introduction Figure 1:

High definition tomography brings velocities to light Summary Introduction Figure 1: Saverio Sioni, Patrice Guillaume*, Gilles Lambaré, Anthony Prescott, Xiaoming Zhang, Gregory Culianez, and Jean- Philippe Montel (CGGVeritas) Summary Velocity model building remains a crucial step in seismic

More information

Can we correct for azimuthal variations of residual move-out in land WAZ context, using depth non-linear slope tomography? An imaging case history.

Can we correct for azimuthal variations of residual move-out in land WAZ context, using depth non-linear slope tomography? An imaging case history. Can we correct for azimuthal variations of residual move-out in land WAZ context, using depth non-linear slope tomography? An imaging case history. Serge Zimine* 1, Gilles Lambaré 1, Patrice Guillaume

More information

Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure

Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure T. Nguyen* (PGS), Y.J. Liu (PGS) Summary The curvelet transform is a known tool used in the attenuation of coherent and incoherent

More information

Improved Imaging through Pre-stack Trace Interpolation for missing offsets of OBC data A case study from North Tapti area of West Coast, India

Improved Imaging through Pre-stack Trace Interpolation for missing offsets of OBC data A case study from North Tapti area of West Coast, India P-256 Improved Imaging through Pre-stack Trace Interpolation for missing offsets of OBC data A case study from North Tapti area of West Coast, India M Lal, CPS Rana, Ramji Pathak, BN Bhatta, DP Sinha,

More information

High Resolution 3D parabolic Radon filtering

High Resolution 3D parabolic Radon filtering Session: 99 High Resolution 3D parabolic Radon filtering Pierre Hugonnet (CGGVeritas), Jean-Luc Boelle (Total E&P), Majda Mihoub (CGGVeritas), Philippe Herrmann (CGGVeritas) Summar D parabolic Radon filtering

More information

C009 Wide Azimuth 3D 4C OBC A Key Breakthrough to Lead to the Development of Hild Field

C009 Wide Azimuth 3D 4C OBC A Key Breakthrough to Lead to the Development of Hild Field C009 Wide Azimuth 3D 4C OBC A Key Breakthrough to Lead to the Development of Hild Field D. Vaxelaire* (Total SA), K. Kravik (Total E&P Norge), F. Bertini (Total E&P Norge) & J.M. Mougenot (Total SA) SUMMARY

More information

Multicomponent f-x seismic random noise attenuation via vector autoregressive operators

Multicomponent f-x seismic random noise attenuation via vector autoregressive operators Multicomponent f-x seismic random noise attenuation via vector autoregressive operators Mostafa Naghizadeh and Mauricio Sacchi ABSTRACT We propose an extension of the traditional frequency-space (f-x)

More information

Preconditioning seismic data with 5D interpolation for computing geometric attributes

Preconditioning seismic data with 5D interpolation for computing geometric attributes Satinder Chopra* and Kurt J. Marfurt *Arcis Seismic Solutions, TGS, Calgary; The University of Oklahoma, Norman Summary The most common preconditioning of seismic data improves the signal-to-noise ratio

More information

Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey

Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey S. Gupta (Schlumberger), A. Merry (Maersk Oil), L.P. Jensen (Maersk Oil), A. Clarke

More information

Using Similarity Attribute as a Quality Control Tool in 5D Interpolation

Using Similarity Attribute as a Quality Control Tool in 5D Interpolation Using Similarity Attribute as a Quality Control Tool in 5D Interpolation Muyi Kola-Ojo Launch Out Geophysical Services, Calgary, Alberta, Canada Summary Seismic attributes in the last two decades have

More information

A047 Simultaneous-source Acquisition in the North Sea Prospect Evaluation

A047 Simultaneous-source Acquisition in the North Sea Prospect Evaluation A047 Simultaneous-source Acquisition in the North Sea Prospect Evaluation B. Szydlik* (WesternGeco), C.J. Beasley (WesternGeco) & I. Moore (WesternGeco) SUMMARY This paper outlines a method for quantitative

More information

Enhanced adaptive subtraction method for simultaneous source separation Zhaojun Liu*, Bin Wang, Jim Specht, Jeffery Sposato and Yongbo Zhai, TGS

Enhanced adaptive subtraction method for simultaneous source separation Zhaojun Liu*, Bin Wang, Jim Specht, Jeffery Sposato and Yongbo Zhai, TGS Enhanced adaptive subtraction method for simultaneous source separation Zhaojun Liu*, Bin Wang, Jim Specht, Jeffery Sposato and Yongbo Zhai, TGS Summary We have developed an iterative adaptive subtraction

More information

Azimuth Moveout Transformation some promising applications from western Canada

Azimuth Moveout Transformation some promising applications from western Canada Azimuth Moveout Transformation some promising applications from western Canada Satinder Chopra and Dan Negut Arcis Corporation, Calgary, Canada Summary Azimuth moveout (AMO) is a partial migration operator

More information

Apex Shifted Radon Transform

Apex Shifted Radon Transform Apex Shifted Radon Transform Daniel Trad* Veritas DGC Inc., Calgary, Alberta, Canada dtrad@veritasdgc.com ABSTRACT The Apex Shifted Radon transform (ASRT) is an extension of the standard hyperbolic RT,

More information

Coherent partial stacking by offset continuation of 2-D prestack data

Coherent partial stacking by offset continuation of 2-D prestack data Stanford Exploration Project, Report 82, May 11, 2001, pages 1 124 Coherent partial stacking by offset continuation of 2-D prestack data Nizar Chemingui and Biondo Biondi 1 ABSTRACT Previously, we introduced

More information

G034 Improvements in 4D Seismic Processing - Foinaven 4 Years On

G034 Improvements in 4D Seismic Processing - Foinaven 4 Years On G034 Improvements in 4D Seismic Processing - Foinaven 4 Years On C. Lacombe* (CGGVeritas UK), S. Campbell (BP Aberdeen) & S. White (CGGVeritas UK) SUMMARY Using a case history from West of Shetlands, the

More information

Advances in radial trace domain coherent noise attenuation

Advances in radial trace domain coherent noise attenuation Advances in radial trace domain coherent noise attenuation ABSTRACT David C. Henley* CREWES, Department of Geology and Geophysics University of Calgary, Calgary, AB henley@crewes.org The radial trace transform,

More information

Missing trace interpolation and its enhancement of seismic processes

Missing trace interpolation and its enhancement of seismic processes Missing trace interpolation Missing trace interpolation and its enhancement of seismic processes Wai-kin Chan and Robert R. Stewart ABSTRACT Many multi-channel seismic algorithms assume that the input

More information

Th Towards Improved Time-lapse Seismic Repetition Accuracy by Use of Multimeasurement Streamer Reconstruction

Th Towards Improved Time-lapse Seismic Repetition Accuracy by Use of Multimeasurement Streamer Reconstruction Th-11-02 Towards Improved Time-lapse Seismic Repetition Accuracy by Use of Multimeasurement Streamer Reconstruction P.J. Smith* (WesternGeco), J. Thekkekara (WesternGeco), G. Byerley (Apache North Sea

More information

SUMMARY. denoise the original data at each iteration. This can be

SUMMARY. denoise the original data at each iteration. This can be A comparison of D reconstruction methods Aaron Stanton*, Nadia Kreimer, David Bonar, Mostafa Naghizadeh, and Mauricio Sacchi, Department of Physics, University of Alberta SUMMARY A comparison is made between

More information

Summary. Introduction

Summary. Introduction Chris Davison*, Andrew Ratcliffe, Sergio Grion (CGGeritas), Rodney Johnston, Carlos Duque, Jeremy Neep, Musa Maharramov (BP). Summary Azimuthal velocity models for HTI (Horizontal Transverse Isotropy)

More information

High-resolution Moveout Transform; a robust technique for modeling stackable seismic events Hassan Masoomzadeh* and Anthony Hardwick, TGS

High-resolution Moveout Transform; a robust technique for modeling stackable seismic events Hassan Masoomzadeh* and Anthony Hardwick, TGS High-resolution Moveout Transform; a robust technique for modeling stackable seismic events Hassan Masoomzadeh* and Anthony Hardwick, TGS Summary We propose a time-domain approach to transform a gather

More information

It is widely considered that, in regions with significant

It is widely considered that, in regions with significant Multifocusing-based multiple attenuation Alex Berkovitch and Kostya Deev, Geomage Evgeny Landa, OPERA It is widely considered that, in regions with significant geologic complexity, methods which work directly

More information

Ekofisk Life of Field Seismic: 4D Processing

Ekofisk Life of Field Seismic: 4D Processing Ekofisk Life of Field Seismic: 4D Processing Sebastien Buizard 1, Alexandre Bertrand 2, Karl Magnus Nielsen 1, Sylvain de Pierrepont 1, Andrea Grandi 3, Henning Hoeber 1, Geir Oexnevad 1, Alain Gresillaud

More information

Can we correct for azimuthal variations of residual move-out in land WAZ context, using depth non-linear slope tomography? An imaging case history.

Can we correct for azimuthal variations of residual move-out in land WAZ context, using depth non-linear slope tomography? An imaging case history. Can we correct for azimuthal variations of residual move-out in land WAZ context, using depth non-linear slope tomography? An imaging case history. Jean-Philippe Montel*, Serge Zimine, Gilles Lambaré,

More information

Tu N Maximising the Value of Seismic Data for Continued Mature Field Development in the East Shetland Basin

Tu N Maximising the Value of Seismic Data for Continued Mature Field Development in the East Shetland Basin Tu N103 16 Maximising the Value of Seismic Data for Continued Mature Field Development in the East Shetland Basin P. Mitchell (TAQA Bratani Limited), J. Raffle* (ION GXT), P. Brown (ION GXT), I. Humberstone

More information

Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data

Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data Y.I. Kamil* (Schlumberger), M. Vassallo (Schlumberger), W. Brouwer (Schlumberger),

More information

Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea

Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea D.J. Anderson* (PGS), M. Wierzchowska (PGS), J. Oukili (PGS), D. Eckert (Statoil ASA),

More information

CLASSIFICATION OF MULTIPLES

CLASSIFICATION OF MULTIPLES Introduction Subsurface images provided by the seismic reflection method are the single most important tool used in oil and gas exploration. Almost exclusively, our conceptual model of the seismic reflection

More information

Selection of an optimised multiple attenuation scheme for a west coast of India data set

Selection of an optimised multiple attenuation scheme for a west coast of India data set P-391 Selection of an optimised multiple attenuation scheme for a west coast of India data set Summary R Pathak*, PC Kalita, CPS Rana, Dr. S. Viswanathan, ONGC In recent years a number of new algorithms

More information

Deconvolution in the radial trace domain

Deconvolution in the radial trace domain R-T domain deconvolution Deconvolution in the radial trace domain David C. Henley ABSTRACT The radial trace (R-T) domain has been shown to be useful for coherent noise attenuation and other seismic wavefield

More information

P068 Case Study 4D Processing OBC versus Streamer Example of OFON filed, Block OML102, Nigeria

P068 Case Study 4D Processing OBC versus Streamer Example of OFON filed, Block OML102, Nigeria P068 Case Study 4D Processing OBC versus Streamer Example of OFON filed, Block OML102, Nigeria T. Castex* (Total SA), P. Charrier (CGG), M.N. Dufrene (Total SA) & C. Orji (EPNL) SUMMARY This case study

More information

Pre-stack deghosting for variable-depth streamer data. R. Soubaras* (CGGVeritas) Summary

Pre-stack deghosting for variable-depth streamer data. R. Soubaras* (CGGVeritas) Summary Pre-stack deghosting for variable-depth streamer data R. Soubaras* (CGGVeritas) Summary Variable-depth streamer acquisition is an acquisition technique aiming at achieving the best possible signal-to-noise

More information

G009 Scale and Direction-guided Interpolation of Aliased Seismic Data in the Curvelet Domain

G009 Scale and Direction-guided Interpolation of Aliased Seismic Data in the Curvelet Domain G009 Scale and Direction-guided Interpolation of Aliased Seismic Data in the Curvelet Domain M. Naghizadeh* (University of Alberta) & M. Sacchi (University of Alberta) SUMMARY We propose a robust interpolation

More information

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Summary Conventional shot domain migration constructs a subsurface image

More information

B023 Seismic Data Interpolation by Orthogonal Matching Pursuit

B023 Seismic Data Interpolation by Orthogonal Matching Pursuit B023 Seismic Data Interpolation by Orthogonal Matching Pursuit Y. Hollander* (Paradigm Geophysical), D. Kosloff (Paradigm Geophysical), Z. Koren (Paradigm Geophysical) & A. Bartana (Paradigm Geophysical)

More information

Interpolation with pseudo-primaries: revisited

Interpolation with pseudo-primaries: revisited Stanford Exploration Project, Report 129, May 6, 2007, pages 85 94 Interpolation with pseudo-primaries: revisited William Curry ABSTRACT Large gaps may exist in marine data at near offsets. I generate

More information

VISTA. Desktop seismic data processing software

VISTA. Desktop seismic data processing software VISTA Desktop seismic data processing software VERSION 2017 VISTA desktop seismic data processing software VISTA Desktop seismic data processing software Comprehensive seismic processing and QC software

More information

Obstacles in the analysis of azimuth information from prestack seismic data Anat Canning* and Alex Malkin, Paradigm.

Obstacles in the analysis of azimuth information from prestack seismic data Anat Canning* and Alex Malkin, Paradigm. Obstacles in the analysis of azimuth information from prestack seismic data Anat Canning* and Alex Malkin, Paradigm. Summary The azimuth information derived from prestack seismic data at target layers

More information

CIP gather. Image dip

CIP gather. Image dip From time to depth imaging: an accurate workflow Gilles Lambaré*, Philippe Herrmann, Jean-Paul Touré, Laure Capar, Patrice Guillaume, Nicolas Bousquié, Damien Grenié, Serge imine, CGGVeritas. Summary We

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Multi-dimensional Free-surface Multiple Elimination and Source Deblending of Volve OBC Data Citation for published version: Ravasi, M, Vasconcelos, I, Curtis, A & Kritski, A

More information

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media M. Cavalca* (WesternGeco), I. Moore (WesternGeco), L. Zhang (WesternGeco), S.L. Ng (WesternGeco), R.P. Fletcher (WesternGeco)

More information

Maximizing the value of the existing seismic data in Awali field Bahrain, by utilizing advanced 3D processing technology.

Maximizing the value of the existing seismic data in Awali field Bahrain, by utilizing advanced 3D processing technology. Maximizing the value of the existing seismic data in Awali field Bahrain, by utilizing advanced 3D processing technology. Eduard Maili* (OXY - Tatweer), Scott Burns (OXY), Neil Jones (Consultant, OXY)

More information

SEISMIC INTERPOLATION VIA CONJUGATE GRADIENT PURSUIT L. Fioretti 1, P. Mazzucchelli 1, N. Bienati 2 1

SEISMIC INTERPOLATION VIA CONJUGATE GRADIENT PURSUIT L. Fioretti 1, P. Mazzucchelli 1, N. Bienati 2 1 SEISMIC INTERPOLATION VIA CONJUGATE GRADIENT PURSUIT L. Fioretti 1, P. Mazzucchelli 1, N. Bienati 2 1 Aresys, Milano, Italy 2 eni E&P, San Donato Milanese, Italy Introduction. Seismic processing methods

More information

Reverse time migration of multiples: Applications and challenges

Reverse time migration of multiples: Applications and challenges Reverse time migration of multiples: Applications and challenges Zhiping Yang 1, Jeshurun Hembd 1, Hui Chen 1, and Jing Yang 1 Abstract Marine seismic acquisitions record both primary and multiple wavefields.

More information

Progress Report on: Interferometric Interpolation of 3D SSP Data

Progress Report on: Interferometric Interpolation of 3D SSP Data Progress Report on: Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy ABSTRACT We present the theory and numerical results for interferometrically interpolating and extrapolating 3D marine

More information

Examples of GLOBE Claritas Processing

Examples of GLOBE Claritas Processing V6.0 Examples of GLOBE Claritas Processing Refraction Statics Removal of Noise (Land, 3D) Removal of Swell Noise Interpolation : shots/receivers Interpolation : 5D (STITCH) Demultiple : High Resolution

More information

Summary. Introduction

Summary. Introduction Dmitry Alexandrov, Saint Petersburg State University; Andrey Bakulin, EXPEC Advanced Research Center, Saudi Aramco; Pierre Leger, Saudi Aramco; Boris Kashtan, Saint Petersburg State University Summary

More information

Th C 02 Model-Based Surface Wave Analysis and Attenuation

Th C 02 Model-Based Surface Wave Analysis and Attenuation Th C 02 Model-Based Surface Wave Analysis and Attenuation J. Bai* (Paradigm Geophysical), O. Yilmaz (Paradigm Geophysical) Summary Surface waves can significantly degrade overall data quality in seismic

More information

Downloaded 09/01/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/01/14 to Redistribution subject to SEG license or copyright; see Terms of Use at Random Noise Suppression Using Normalized Convolution Filter Fangyu Li*, Bo Zhang, Kurt J. Marfurt, The University of Oklahoma; Isaac Hall, Star Geophysics Inc.; Summary Random noise in seismic data hampers

More information

The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution

The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution SPECIAL M u l t SECTION: i c o m p o Mn ue ln t t i cs oe mi s p m o i nc e n t s e i s m i c The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution

More information

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO)

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) A.M. Popovici* (3DGeo Development Inc.), S. Crawley (3DGeo), D. Bevc (3DGeo) & D. Negut (Arcis Processing) SUMMARY Azimuth Moveout

More information

A simulated Simultaneous Source Experiment in Shallow waters and the Impact of Randomization Schemes Rolf Baardman, Roald van Borselen, PGS

A simulated Simultaneous Source Experiment in Shallow waters and the Impact of Randomization Schemes Rolf Baardman, Roald van Borselen, PGS simulated Simultaneous Source Experiment in Shallow waters and the Impact of Randomization Schemes Rolf aardman, Roald van orselen, PGS Summary In simultaneous source acquisition, seismic data can be recorded

More information

Seismic Attributes on Frequency-enhanced Seismic Data

Seismic Attributes on Frequency-enhanced Seismic Data Seismic Attributes on Frequency-enhanced Seismic Data Satinder Chopra* Arcis Corporation, Calgary, Canada schopra@arcis.com Kurt J. Marfurt The University of Oklahoma, Norman, US and Somanath Misra Arcis

More information

SeisSpace Software. SeisSpace enables the processor to be able focus on the science instead of being a glorified data manager.

SeisSpace Software. SeisSpace enables the processor to be able focus on the science instead of being a glorified data manager. SeisSpace Software OVERVIEW Delivering large volumes of data quickly and accurately remains the hallmark of any seismic processing system. With intuitive analysis tools, state-of-the-art geophysical algorithms

More information

Lessons in Spatial Sampling Or... Does Anybody Know the Shape of a Wavefield?

Lessons in Spatial Sampling Or... Does Anybody Know the Shape of a Wavefield? Lessons in Spatial Sampling Or... Does Anybody Know the Shape of a Wavefield? Norm Cooper - Mustagh Resources Ltd., Calgary, Canada In a homogeneous, isotropic, infinite half space (remember those regimes

More information

Attenuation of water-layer-related multiples Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger

Attenuation of water-layer-related multiples Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger Summary We present a method for modeling and separation of waterlayer-related multiples in towed streamer

More information

Interpolation of irregularly sampled data

Interpolation of irregularly sampled data Chapter 3 Interpolation of irregularly sampled data Most modern seismic acquisition methods aim to sample data regularly along all axes. Deviations from this sampling happen for various reasons. On land

More information

Short Note. DMO velocity analysis with Jacubowicz s dip-decomposition method. David Kessler and Wai-Kin Chan*

Short Note. DMO velocity analysis with Jacubowicz s dip-decomposition method. David Kessler and Wai-Kin Chan* GEOPHYSICS, VOL. 58, NO. 10 (OCTOBER 1993); P. 1517-1524,9 FIGS. Short Note DMO velocity analysis with Jacubowicz s dip-decomposition method David Kessler and Wai-Kin Chan* INTRODUCTION Dip-moveout (DMO)

More information

Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM)

Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM) Anatomy of CSP gathers Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM) John C. Bancroft and Hugh D. Geiger SUMMARY The equivalent offset method of

More information

HIGH RESOLUTION STACKING OF SEISMIC DATA. Marcos Ricardo Covre, Tiago Barros and Renato da Rocha Lopes

HIGH RESOLUTION STACKING OF SEISMIC DATA. Marcos Ricardo Covre, Tiago Barros and Renato da Rocha Lopes HIGH RESOLUTION STACKING OF SEISMIC DATA Marcos Ricardo Covre, Tiago Barros and Renato da Rocha Lopes School of Electrical and Computer Engineering, University of Campinas DSPCom Laboratory, Department

More information

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic A.S. Long* (PGS), S. Lu (PGS), D. Whitmore (PGS), H. LeGleut (PGS), R. Jones (Lundin

More information

Non-stationary interpolation in the f-x domain

Non-stationary interpolation in the f-x domain Stanford Exploration Project, Report 129, May 6, 2007, pages 75 85 Non-stationary interpolation in the f-x domain William Curry ABSTRACT Interpolation of seismic data has previously been performed using

More information

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling B. Wang* (CGG Americas Inc.), F. Qin (CGG Americas Inc.), F. Audebert (CGG Americas Inc.) & V. Dirks (CGG Americas Inc.)

More information

Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66

Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66 Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66 48 Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66 Mapping of specularly-reflected multiples to image space: An

More information

EARTH SCIENCES RESEARCH JOURNAL

EARTH SCIENCES RESEARCH JOURNAL EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 10, No. 2 (December 2006): 117-129 ATTENUATION OF DIFFRACTED MULTIPLES WITH AN APEX-SHIFTED TANGENT- SQUARED RADON TRANSFORM IN IMAGE SPACE Gabriel

More information

Five Dimensional Interpolation:exploring different Fourier operators

Five Dimensional Interpolation:exploring different Fourier operators Five Dimensional Interpolation:exploring different Fourier operators Daniel Trad CREWES-University of Calgary Summary Five-Dimensional interpolation has become a very popular method to pre-condition data

More information

Considerations in 3D depth-specific P-S survey design

Considerations in 3D depth-specific P-S survey design Considerations in 3D depth-specific P-S survey design Don C. Lawton and Peter W. Cary 3D P-S survey design ABSTRACT A new sparse-shot design for 3D P-S surveys is introduced. In the sparse shot design

More information

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/29/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Pitfalls in seismic processing: part 1 groundroll sourced acquisition footprint Sumit Verma*, Marcus P. Cahoj, Tengfei Lin, Fangyu Li, Bryce Hutchinson and Kurt J. Marfurt, the University of Oklahoma Summary

More information