Ekofisk Life of Field Seismic: 4D Processing

Size: px
Start display at page:

Download "Ekofisk Life of Field Seismic: 4D Processing"

Transcription

1 Ekofisk Life of Field Seismic: 4D Processing Sebastien Buizard 1, Alexandre Bertrand 2, Karl Magnus Nielsen 1, Sylvain de Pierrepont 1, Andrea Grandi 3, Henning Hoeber 1, Geir Oexnevad 1, Alain Gresillaud 1 1 CGGVeritas, 2 ConocoPhillips, 3 Total E&P Norge Introduction We present the 4D processing sequence for the Ekofisk Permanent Reservoir Monitoring project. Four vintages of data were acquired between the end of 2010 and summer 2012 using 200km of trenched fibre optic seismic cables covering about 60 km² and with a total of C sensor stations. We discuss key aspects of the processing sequence, turnaround, and the integration of expertise between client and contractor. This delivers outstanding seismic repeatability with clean, well resolvable 4D signals and low residual 4D noise (NRMS of 3-5%).

2 Introduction 4D seismic is an important tool for reservoir management at the Ekofisk field in the southern part of the Norwegian North Sea. As subtle 4D seismic changes related to production and injection develop rapidly, frequent and highly repeatable 4D seismic monitoring is required to increase understanding of reservoir depletion zones and intra-reservoir injected water fronts (Hermansen, 2008). In 2008 ConocoPhillips decided to install a permanent reservoir monitoring (PRM) system at Ekofisk. An Optowave fibre optic system was chosen as the best long term solution to support the intensive drilling program planned for the next 15 years and for fast delivery of high fidelity 4D seismic products (Folstad et al., 2011). The system was installed according to plan and was fully functional in October Four Life of Field Seismic (LoFS) surveys have been acquired so far and two further surveys are planned in CGGVeritas is currently responsible for all the main elements of the seismic delivery chain for the Ekofisk LoFS project: equipment supply (Nakstad, 2011), acquisition and processing. The involvement of a single contractor group enables good coordination between the different phases of the project and has facilitated its realisation, reduced processing turnaround and enabled timely mitigation of any arising issues. Integration is further enhanced by co-location of the acquisition QC and processing teams in the operator s offices in Stavanger (Hoeber et al., 2011). This paper describes the P-wave data processing and shows examples of the resulting high-quality 4D seismic products. LoFS acquisition The permanent seismic recording system at Ekofisk consists of 200km of trenched fibre optic seismic cables covering about 60km², using a total of C sensor stations (15864 channels). The receiver array and the burial depth of the sensors are shown on Figure 1, overlaid on the map of infrastructure at the sea bottom (70-80m). The cables are spaced 300m apart and the receiver station interval is 50m. The seismic acquisition is performed with a containerized source system operated from one of the Ekofisk supply vessels. The shotlines are acquired parallel to the receiver lines, with 25m between shotpoints and 50m between shotlines. The shot effort extends over 2km beyond the limits of the receiver layout, giving approximately 143km² shot coverage. Table 1 shows the dates and durations of the four LoFS surveys acquired so far. Survey Acquisition period Duration (days) LoFS1 Nov 2010-Jan LoFS2 May-June LoFS3 Sept-Nov LoFS4 June-July Table 1 Acquisition periods and durations of LoFS1-4 surveys. Figure 1 (left) The Ekofisk PRM receiver array of fibre optic cables with overlay of the receiver station burial depth. During acquisition, raw data are transmitted near real-time via a dedicated fibre optic link to the ConocoPhillips offices in Stavanger where the contractor s acquisition QC and dedicated processing teams are located. The major benefit of this arrangement within the client s offices is the short communication path, a key factor in achieving the rapid turnaround required for the 4D processing. LoFS on LoFS 4D processing With fixed sensors, the high degree of acquisition repeatability on Ekofisk is ideal for repeat processing: the processing flow optimized from the base and first monitor surveys is applied to each

3 LoFS monitor vintage with a minimum of change between surveys. Our design of the LoFS 4D processing sequence was guided by the need for robustness and efficiency. By the second monitor acquisition (LoFS3) turnaround needed to be reduced to 1 month after the last shot, without loss of 4D resolution. Dedicated modules and solutions were developed for the processing of the LoFS data using expertise across divisions and via joint workshops at key stages. In order to achieve the required turnaround, optimizing the processing flow with regards to minimizing data sorting is essential. Shot domain processing on the Ekofisk project starts immediately after each line is acquired. Upon completion of the acquisition, full 3D receiver gathers are produced. True 3D processing, which optimally addresses the 3D nature of the LoFS acquisition, is then applied. Following this, the data is sorted to the common offset domain for Kirchhoff migration. Some of the key elements of the 4D processing sequence are described below in more detail. Shot domain processing As the acquisition proceeds, the data is quality checked and reformatted onshore in real time, and by a team co-located with the processing in the client s offices. Shot domain processing is initiated as soon as nav-seis merged data is available to the processing team, typically half a day after a sail line was acquired. Key steps of the shot domain processing include: - Pressure recording harmonization: analysis of several repeated lines of the first LoFS survey highlighted that a certain number of pressure recordings had degraded over time. Early detection and a close interaction with CGGVeritas/Optoplan R&D staff proved essential in designing a processing solution to this issue. - 3C Rotation and PZ summation: parameters and operators were established during the processing of the first LoFS survey and kept unchanged for subsequent monitors. The PZ summation consists of the following three-step procedure (Soubaras, 1996): calibration of the geophones (crossghosting technique); separation of the up- and down-going wavefields by summing the hydrophones and the calibrated geophones (ghost elimination); and lastly application of a source-side de-pegleg which amounts to a surface consistent gapped deconvolution in the receiver domain. - Denoise 1: The large concrete tank (100m diameter) which stands in the centre of the Ekofisk platform complex is a source of strong back-scattering noise affecting all sail lines (Figure 2a). The tank noise is removed in the 2D receiver domain by applying a high resolution linear Radon after tank noise flattening with the water velocity (Figure 2b). Another source of noise is seismic interference (SI) from other crews shooting in the vicinity of Ekofisk and recorded at several occasions during the LoFS surveys. This is removed by f-x prediction filtering. At the end of the shot processing the now significantly reduced data volume is transferred to CGGVeritas computer hub in the UK for the more computer intensive part of the processing sequence. 3D receiver domain processing After sorting the data into 3D receiver gathers, the following key processes are applied: - Denoise 2: within a 3D receiver gather sorted in the crossline direction the non-repeatable noise generated by vessels (and platforms) operating constantly in the Ekofisk area is randomized and can be removed by f-x projection filtering, as shown in Figures 2b-g. - 4D environmental corrections: tidal statics and water velocity corrections are derived from data measured during the acquisition. - 3D tau-px-py deconvolution is then applied, after interpolating shots down to 12.5m to reduce spatial aliasing. A mute is also applied in the tau-px-py domain (Figure 2h). - 4D trace editing is performed, instead of the more usual 4D binning, which is only suitable for 4D parallel processing (not repeat processing). A small number of traces are rejected based on a geometrical criterion fixed for all surveys and based on a threshold for source, the distance between actual and pre-plot shot coordinates. - Data regularization with missing trace restoration (midpoint regularization in the 3D receiver domain) ensures identical number and position of traces on every vintage.

4 Figure 2 3D receiver gather at different denoise stages, sorted in inline/crossline (red surround) or crossline/inline (green surround). Before (a) and after (b) tank noise removal; before (c) and after (d, g) denoise; denoise difference (e, f); after 3D tau-p deconvolution and mute (h).green (resp. red) dotted lines indicate the locations of the displayed shotpoints (resp. shotlines). Offset domain and post-migration processing - The data is subsequently sorted to 50m offset classes prior to static binning (with fold weighting) and Kirchhoff pre-stack time migration. Pre-stack post-migration processing consists of RMO and Radon demultiple. The raw full offset stack was delivered one month after the last shot for LoFS3 and 3.5 weeks for LoFS4. The final full offset stack with Q compensation and dip consistent filtering is available shortly afterwards. Other than a small bulk time shift no further 4D spectral matching is applied. 4D results The LoFS 4D seismic data has remarkable repeatability, with extremely low NRMS values, on the order of 3 to 5%. In the NRMS displays (Figure 3) we have blanked an area of higher 4D noise at the centre of the field, the seismic obscured area (SOA), which is due to an overburden gas cloud. Figure 3 LoFS1/LoFS2 (left), LoFS2/LoFS3 (middle) and LoFS3/LoFS4 (right) NRMS maps (computed on final stacks in a ms window) Outside of the SOA clear 4D signals can be observed at injector and producer wells operating between LoFS surveys. The detection level for the 4D time shifts is below 0.2ms, a precision which would have been unachievable using streamer data. Figure 4 shows an example of the high quality 4D signal highlighting amplitude changes of the order of 5% caused by gas coming out of solution around a new producer (slightly more than a month of production at the time of LoFS3).

5 Figure 4 LoFS2 (left), LoFS3 (middle), 4D difference (right) scaled by a factor of 10. The two horizons are top and base reservoir. The SOA is visible on the left hand side of each panel. Potential further improvements in seismic processing include an additional denoise step to better address VZ noise prior to PZ summation, and the use of pre-stack depth instead of pre-stack time migration. We intend to use the improved P-velocity model updated in the overburden by Full Waveform Inversion, which significantly improves the imaging in the SOA (Bertrand et al., 2013). Reprocessing of the P-wave LoFS data with these improvements has started and is hoped to further enhance our confidence in the extremely subtle 4D effects detected so far. Conclusions We presented a 4D friendly processing sequence for the Ekofisk PRM project that delivers highquality 4D seismic products with very rapid turnaround. Key to this is the integration of expertise between client and contractor and transversely across all aspects, such as acquisition, acquisition QC, processing and imaging, and including R&D. The Ekofisk LoFS project is delivering outstanding seismic repeatability with clean 4D signals and low residual 4D noise (NRMS of 3-5%). This powerfully demonstrates the potential of Permanent Reservoir Monitoring. Acknowledgements We thank ConocoPhillips Norge AS and the PL018 Partnership (Total E&P Norge, ENI Norge, Statoil, and Petoro), as well as CGGVeritas management for their permission to publish this work. We acknowledge the work of all our colleagues involved with the Ekofisk LoFS project, and especially Habib Alkhatib, Julian Holden, Erlend Rønnekleiv and Bjarne Lyngnes. We dedicate this paper to the memory of our colleague and friend Haakon Haugvaldstad, ConocoPhillips Norge Operations Geophysicist. References Bertrand, A. et al., [2013], Wide-azimuth PP/PS depth imaging at Ekofisk using Full Waveform Inversion, submitted to the 75 th EAGE Conference, London. Folstad, P.G. et al., [2011] Ekofisk PRM The technical case for this brand new installation. EAGE Workshop on Permanent Reservoir Monitoring (PRM) Using Seismic Data, Extended Abstracts. Hermansen, H., [2008]. The Ekofisk Field: Achieving Three Times the Original Value, 19th World Petroleum Congress, June 29 - July 3, Madrid, Spain Hoeber, H. et al., [2011] The Ekofisk Life of Field Seismic An Integrated Operation, EAGE Workshop on Permanent Reservoir Monitoring (PRM) Using Seismic Data, Extended Abstracts. Nakstad, H., Langhammer, J. and Eriksrud, M., [2011], Permanent Reservoir Monitoring Technology Breakthrough in the North Sea, 73 rd EAGE Conference, Extended Abstract. Soubaras, R., [1996] Ocean-bottom hydrophone and geophone processing. 66 th annual SEG meeting, Extended Abstracts.

G034 Improvements in 4D Seismic Processing - Foinaven 4 Years On

G034 Improvements in 4D Seismic Processing - Foinaven 4 Years On G034 Improvements in 4D Seismic Processing - Foinaven 4 Years On C. Lacombe* (CGGVeritas UK), S. Campbell (BP Aberdeen) & S. White (CGGVeritas UK) SUMMARY Using a case history from West of Shetlands, the

More information

C009 Wide Azimuth 3D 4C OBC A Key Breakthrough to Lead to the Development of Hild Field

C009 Wide Azimuth 3D 4C OBC A Key Breakthrough to Lead to the Development of Hild Field C009 Wide Azimuth 3D 4C OBC A Key Breakthrough to Lead to the Development of Hild Field D. Vaxelaire* (Total SA), K. Kravik (Total E&P Norge), F. Bertini (Total E&P Norge) & J.M. Mougenot (Total SA) SUMMARY

More information

G009 Multi-dimensional Coherency Driven Denoising of Irregular Data

G009 Multi-dimensional Coherency Driven Denoising of Irregular Data G009 Multi-dimensional Coherency Driven Denoising of Irregular Data G. Poole* (CGGVeritas Services (UK) Ltd) SUMMARY Many land and ocean bottom datasets suffer from high levels of noise which make the

More information

P068 Case Study 4D Processing OBC versus Streamer Example of OFON filed, Block OML102, Nigeria

P068 Case Study 4D Processing OBC versus Streamer Example of OFON filed, Block OML102, Nigeria P068 Case Study 4D Processing OBC versus Streamer Example of OFON filed, Block OML102, Nigeria T. Castex* (Total SA), P. Charrier (CGG), M.N. Dufrene (Total SA) & C. Orji (EPNL) SUMMARY This case study

More information

W015 Full-waveform Seismic Inversion at Reservoir Depths

W015 Full-waveform Seismic Inversion at Reservoir Depths W015 Full-waveform Seismic Inversion at Reservoir Depths T. Nangoo* (Imperial College London), M. Warner (Imperial College London), J. Morgan (Imperial College London), A. Umpleby (Imperial College London),

More information

Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea

Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea D.J. Anderson* (PGS), M. Wierzchowska (PGS), J. Oukili (PGS), D. Eckert (Statoil ASA),

More information

P292 Acquisition Footprint Removal from Time Lapse Datasets

P292 Acquisition Footprint Removal from Time Lapse Datasets P292 Acquisition Footprint Removal from Time Lapse Datasets E. Zabihi Naeini* (CGGVeritas) SUMMARY Water layer variations and acquisition differences are two important factors that introduce time shift

More information

Using Primaries and Multiples to Extend Reservoir Illumination for Time-lapse Monitoring - Application to Jubarte PRM

Using Primaries and Multiples to Extend Reservoir Illumination for Time-lapse Monitoring - Application to Jubarte PRM Using Primaries and Multiples to Extend Reservoir Illumination for Time-lapse Monitoring - Application to Jubarte PRM D. Lecerf* (PGS), A. Valenciano (PGS), N. Chemingui (PGS), S. Lu (PGS) & E. Hodges

More information

Tu N Maximising the Value of Seismic Data for Continued Mature Field Development in the East Shetland Basin

Tu N Maximising the Value of Seismic Data for Continued Mature Field Development in the East Shetland Basin Tu N103 16 Maximising the Value of Seismic Data for Continued Mature Field Development in the East Shetland Basin P. Mitchell (TAQA Bratani Limited), J. Raffle* (ION GXT), P. Brown (ION GXT), I. Humberstone

More information

Effectively Handling Different Types of Data in Facility Areas for Improved 4D Imaging

Effectively Handling Different Types of Data in Facility Areas for Improved 4D Imaging Effectively Handling Different Types of Data in Facility Areas for Improved 4D Imaging D. Chu* (ExxonMobil Exploration Company), G. Mohler (ExxonMobil Exploration Company), G. Chen (ExxonMobil Exploration

More information

We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study

We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study M. Branston* (Schlumberger Geosolutions), R. Campbell (Schlumberger Geosolutions), M. Rowlands

More information

A047 Simultaneous-source Acquisition in the North Sea Prospect Evaluation

A047 Simultaneous-source Acquisition in the North Sea Prospect Evaluation A047 Simultaneous-source Acquisition in the North Sea Prospect Evaluation B. Szydlik* (WesternGeco), C.J. Beasley (WesternGeco) & I. Moore (WesternGeco) SUMMARY This paper outlines a method for quantitative

More information

3D predictive deconvolution for wide-azimuth gathers

3D predictive deconvolution for wide-azimuth gathers 3D predictive deconvolution for wide-azimuth gathers P.Hugonnet(1), J.L.Boelle(2), P.Herrmann(1), F.Prat(1), S.Navion(1) (1) CGGVeritas, (2) Total E&P Summary Usual pre-stack predictive deconvolution solutions

More information

Summary. Introduction

Summary. Introduction Multivessel coil shooting acquisition with simultaneous sources Nick Moldoveanu¹, Ying Ji², Craig Beasley¹ ¹WesternGeco, ²Schlumberger Cambridge Research Summary Multivessel coil shooting is a towed-streamer

More information

Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey

Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey S. Gupta (Schlumberger), A. Merry (Maersk Oil), L.P. Jensen (Maersk Oil), A. Clarke

More information

Th Towards Improved Time-lapse Seismic Repetition Accuracy by Use of Multimeasurement Streamer Reconstruction

Th Towards Improved Time-lapse Seismic Repetition Accuracy by Use of Multimeasurement Streamer Reconstruction Th-11-02 Towards Improved Time-lapse Seismic Repetition Accuracy by Use of Multimeasurement Streamer Reconstruction P.J. Smith* (WesternGeco), J. Thekkekara (WesternGeco), G. Byerley (Apache North Sea

More information

Ocean Bottom Node Acquisition

Ocean Bottom Node Acquisition Ocean Bottom Node Acquisition 8 March 2012 Bjorn Olofsson (SeaBird Exploration, on behalf of Fugro) Ocean Bottom Node Acquisition What is it? 4 component seismic sensor: 3 geophones (XYZ) - also MEMS or

More information

The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution

The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution SPECIAL M u l t SECTION: i c o m p o Mn ue ln t t i cs oe mi s p m o i nc e n t s e i s m i c The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution

More information

Source deghosting for synchronized multi-level source streamer data Zhan Fu*, Nan Du, Hao Shen, Ping Wang, and Nicolas Chazalnoel (CGG)

Source deghosting for synchronized multi-level source streamer data Zhan Fu*, Nan Du, Hao Shen, Ping Wang, and Nicolas Chazalnoel (CGG) Source deghosting for synchronized multi-level source streamer data Zhan Fu*, Nan Du, Hao Shen, Ping Wang, and Nicolas Chazalnoel (CGG) Summary Ghost wavefield elimination is pivotal for improving the

More information

Improved Imaging through Pre-stack Trace Interpolation for missing offsets of OBC data A case study from North Tapti area of West Coast, India

Improved Imaging through Pre-stack Trace Interpolation for missing offsets of OBC data A case study from North Tapti area of West Coast, India P-256 Improved Imaging through Pre-stack Trace Interpolation for missing offsets of OBC data A case study from North Tapti area of West Coast, India M Lal, CPS Rana, Ramji Pathak, BN Bhatta, DP Sinha,

More information

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer data James Rickett*, Schlumberger Gould Research Summary Combining deghosting with crossline interpolation

More information

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic A.S. Long* (PGS), S. Lu (PGS), D. Whitmore (PGS), H. LeGleut (PGS), R. Jones (Lundin

More information

Time-lapse acquisition with a dual-sensor streamer over a conventional baseline survey

Time-lapse acquisition with a dual-sensor streamer over a conventional baseline survey Time-lapse acquisition with a dual-sensor streamer over a conventional baseline survey Anthony Day, * Martin Widmaier, Torben Høy and Berit Osnes, PGS, describe an experiment to validate the use of a dual-sensor

More information

y Input k y2 k y1 Introduction

y Input k y2 k y1 Introduction A regularization workflow for the processing of cross-spread COV data Gordon Poole 1, Philippe Herrmann 1, Erika Angerer 2, and Stephane Perrier 1 1 : CGG-Veritas, 2 : OMV Data regularization is critical

More information

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG)

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Summary Compared to towed-streamer data, deep-water ocean bottom node (OBN) data by nature have a broader bandwidth; however, the presence of

More information

A Novel 3-D De-multiple Workflow for Shallow Water Environments - a Case Study from the Brage field, North Sea

A Novel 3-D De-multiple Workflow for Shallow Water Environments - a Case Study from the Brage field, North Sea A Novel 3-D De-multiple Workflow for Shallow Water Environments - a Case Study from the Brage field, North Sea J. Oukili* (PGS), T. Jokisch (PGS), A. Pankov (PGS), B. Farmani (PGS), G. Ronhølt (PGS), Ø.

More information

PGS hyperbeam - rapid scenario-testing of velocity models to optimize depth imaging

PGS hyperbeam - rapid scenario-testing of velocity models to optimize depth imaging A Publication of Petroleum Geo-Services Vol. 10 No. 4 April 2010 PGS hyperbeam - rapid scenario-testing of velocity models to optimize depth imaging Introduction Depth imaging is now established as a key

More information

Seismic Time Processing. The Basis for Modern Seismic Exploration

Seismic Time Processing. The Basis for Modern Seismic Exploration The Future of E&P Seismic Time Processing The Basis for Modern Seismic Exploration Fusion is a leading provider of Seismic Processing for the oil and gas industry from field tapes through final migration.

More information

Maximizing the value of the existing seismic data in Awali field Bahrain, by utilizing advanced 3D processing technology.

Maximizing the value of the existing seismic data in Awali field Bahrain, by utilizing advanced 3D processing technology. Maximizing the value of the existing seismic data in Awali field Bahrain, by utilizing advanced 3D processing technology. Eduard Maili* (OXY - Tatweer), Scott Burns (OXY), Neil Jones (Consultant, OXY)

More information

Shot-based pre-processing solutions for wide azimuth towed streamer datasets

Shot-based pre-processing solutions for wide azimuth towed streamer datasets first break volume 25, March 2007 focus on azimuth Shot-based pre-processing solutions for wide azimuth towed streamer datasets Philippe Herrmann, 1* Gordon Poole, 2 Antonio Pica, 1 Sylvain Le Roy, 1 and

More information

Tu A11 01 Seismic Re-processing and Q-FWI Model Building to Optimise AVO and Resolution in the Shallow Wisting Discovery

Tu A11 01 Seismic Re-processing and Q-FWI Model Building to Optimise AVO and Resolution in the Shallow Wisting Discovery Tu A11 01 Seismic Re-processing and Q-FWI Model Building to Optimise AVO and Resolution in the Shallow Wisting Discovery G. Apeland* (WesternGeco), P. Smith (WesternGeco), O. Lewis (WesternGeco), S. Way

More information

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry D.F. Halliday* (Schlumberger Cambridge Research), P.J. Bilsby (WesternGeco), J. Quigley (WesternGeco) & E. Kragh (Schlumberger

More information

Mitigating Uncertainties in Towed Streamer Acquisition and Imaging by Survey Planning

Mitigating Uncertainties in Towed Streamer Acquisition and Imaging by Survey Planning Mitigating Uncertainties in Towed Streamer Acquisition and Imaging by Survey Planning M.T. Widmaier* (Petroleum Geo-Services) SUMMARY Uncertainties in seismic images or reservoir characterisation can very

More information

We N Simultaneous Shooting for Sparse OBN 4D Surveys and Deblending Using Modified Radon Operators

We N Simultaneous Shooting for Sparse OBN 4D Surveys and Deblending Using Modified Radon Operators We N101 08 Simultaneous Shooting for Sparse OBN 4D Surveys and Deblending Using Modified Radon Operators R.R. Haacke* (CGG), G. Hampson (Chevron) & B. Golebiowski (CGG) SUMMARY Significant gains in productivity

More information

Th SRS3 07 A Global-scale AVO-based Pre-stack QC Workflow - An Ultra-dense Dataset in Tunisia

Th SRS3 07 A Global-scale AVO-based Pre-stack QC Workflow - An Ultra-dense Dataset in Tunisia Th SRS3 07 A Global-scale AVO-based Pre-stack QC Workflow - An Ultra-dense Dataset in Tunisia A. Rivet* (CGG), V. Souvannavong (CGG), C. Lacombe (CGG), T. Coleou (CGG) & D. Marin (CGG) SUMMARY Throughout

More information

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Summary Anisotropic depth model building using surface seismic data alone is non-unique and

More information

Tu-P05-05 Multi-azimuth Anisotropic Tomography and PreSDM of a North Sea Streamer Survey

Tu-P05-05 Multi-azimuth Anisotropic Tomography and PreSDM of a North Sea Streamer Survey Tu-P05-05 Multi-azimuth Anisotropic Tomography and PreSDM of a North Sea Streamer Survey D. Sekulic* (ION Geophysical), O. Matveenko (Total E&P Norge), J.K. Fruehn (ION GXT) & G. Mikkelsen (Total E&P Norge)

More information

C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico

C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico M. Magesan (CGGVeritas), J.-C. Ferran* (CGGVeritas), S. Kaculini (CGGVeritas), C.J.

More information

Summary. Introduction

Summary. Introduction Dmitry Alexandrov, Saint Petersburg State University; Andrey Bakulin, EXPEC Advanced Research Center, Saudi Aramco; Pierre Leger, Saudi Aramco; Boris Kashtan, Saint Petersburg State University Summary

More information

Examples of GLOBE Claritas Processing

Examples of GLOBE Claritas Processing V6.0 Examples of GLOBE Claritas Processing Refraction Statics Removal of Noise (Land, 3D) Removal of Swell Noise Interpolation : shots/receivers Interpolation : 5D (STITCH) Demultiple : High Resolution

More information

Tu LHR5 02 Sparse Nodes and Shallow Water - PS Imaging Challenges on the Alwyn North Field

Tu LHR5 02 Sparse Nodes and Shallow Water - PS Imaging Challenges on the Alwyn North Field Tu LHR5 02 Sparse Nodes and Shallow Water - PS Imaging Challenges on the Alwyn North Field J. Holden (CGG), D. Fritz (CGG), O. Bukola (CGG), J. McLeman (CGG), R. Refaat (CGG), C. Page* (CGG), J. Brunelliere

More information

Acquisition of high shot density blended seismic data: a WAZ sea trial Thomas Mensch*, Damien Grenié, Risto Siliqi and Yunfeng Li.

Acquisition of high shot density blended seismic data: a WAZ sea trial Thomas Mensch*, Damien Grenié, Risto Siliqi and Yunfeng Li. Acquisition of high shot density blended seismic data: a WAZ sea trial Thomas Mensch*, Damien Grenié, Risto Siliqi and Yunfeng Li Summary In this paper, we present the results of a high shot density sea

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Multi-dimensional Free-surface Multiple Elimination and Source Deblending of Volve OBC Data Citation for published version: Ravasi, M, Vasconcelos, I, Curtis, A & Kritski, A

More information

Th N D Source Designature Using Source-receiver Symmetry in the Shot Tau-px-py Domain

Th N D Source Designature Using Source-receiver Symmetry in the Shot Tau-px-py Domain Th N103 13 3D Source Designature Using Source-receiver Symmetry in the Shot Tau-px-py Domain G. Poole* (CGG), J. Cooper (CGG), S. King (CGG) & P. Wang (CGG) SUMMARY While sufficient for many deep water

More information

We D03 Limitations of 2D Deghosting and Redatuming in Time-lapse Processing of Towed-streamer Data

We D03 Limitations of 2D Deghosting and Redatuming in Time-lapse Processing of Towed-streamer Data We D03 Limitations of 2D Deghosting and Redatuming in Time-lapse Processing of Towed-streamer Data K. Eggenberger* (Schlumberger), P. Caprioli (Schlumberger) & R. Bloor (Schlumberger) SUMMARY Implications

More information

Least-squares Wave-Equation Migration for Broadband Imaging

Least-squares Wave-Equation Migration for Broadband Imaging Least-squares Wave-Equation Migration for Broadband Imaging S. Lu (Petroleum Geo-Services), X. Li (Petroleum Geo-Services), A. Valenciano (Petroleum Geo-Services), N. Chemingui* (Petroleum Geo-Services),

More information

Time in ms. Chan. Summary

Time in ms. Chan. Summary Marine source signature estimation with dual near-field hydrophones Rob Telling*, Sergio Grion Stuart Denny & R. Gareth Williams, Shearwater GeoServices Summary We derive marine seismic signatures using

More information

We Survey Design and Modeling Framework for Towed Multimeasurement Seismic Streamer Data

We Survey Design and Modeling Framework for Towed Multimeasurement Seismic Streamer Data We-04-12 Survey Design and Modeling Framework for Towed Multimeasurement Seismic Streamer Data K. Eggenberger* (Schlumberger), P. Christie (Schlumberger), M. Vassallo (Schlumberger) & D.J. van Manen (Schlumberger)

More information

Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data

Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data Th ELI1 12 Joint Crossline Reconstruction and 3D Deghosting of Shallow Seismic Events from Multimeasurement Streamer Data Y.I. Kamil* (Schlumberger), M. Vassallo (Schlumberger), W. Brouwer (Schlumberger),

More information

Multicomponent wide-azimuth seismic data for defining fractured reservoirs

Multicomponent wide-azimuth seismic data for defining fractured reservoirs Multicomponent wide-azimuth seismic data for defining fractured reservoirs Evaluating and exploiting azimuthal anisotropy Data Processing Figure 1 A typical surface outcrop showing aligned fractures Figure

More information

The Omega Seismic Processing System. Seismic analysis at your fingertips

The Omega Seismic Processing System. Seismic analysis at your fingertips The Omega Seismic Processing System Seismic analysis at your fingertips Omega is a flexible, scalable system that allows for processing and imaging on a single workstation up to massive compute clusters,

More information

Full Azimuth Seismic Acquisition with Coil Shooting

Full Azimuth Seismic Acquisition with Coil Shooting P-224 Full Azimuth Seismic Acquisition with Coil Shooting Edward Hager*, WesternGeco Summary The wavefield created by a seismic source propagates in all three dimensions. Marine seismic towed streamer

More information

2011 SEG SEG San Antonio 2011 Annual Meeting 3938

2011 SEG SEG San Antonio 2011 Annual Meeting 3938 Depth imaging Coil data: Multi azimuthal tomography earth model building and depth imaging the full azimuth Tulip coil project Michele Buia 1, Peter Brown 2, Bakhrudin Mansyur 2, Michelle Tham 3, Suyang

More information

Challenges of pre-salt imaging in Brazil s Santos Basin: A case study on a variable-depth streamer data set Summary

Challenges of pre-salt imaging in Brazil s Santos Basin: A case study on a variable-depth streamer data set Summary Challenges of pre-salt imaging in Brazil s Santos Basin: A case study on a variable-depth streamer data set Jeremy Langlois, Bing Bai, and Yan Huang (CGGVeritas) Summary Recent offshore discoveries in

More information

Practical implementation of SRME for land multiple attenuation

Practical implementation of SRME for land multiple attenuation Practical implementation of SRME for land multiple attenuation Juefu Wang* and Shaowu Wang, CGGVeritas, Calgary, Canada juefu.wang@cggveritas.com Summary We present a practical implementation of Surface

More information

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco)

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) I040 Case Study - Residual Scattered Noise Attenuation for 3D Land Seismic Data P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) SUMMARY We show that

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Marchenko Imaging of Volve Field, North Sea Citation for published version: Ravasi, M, Vasconcelos, I, Kritski, A, Curtis, A, Da Costa Filho, CA & Meles, G 5, 'Marchenko Imaging

More information

Th N Deghosting by Echo-deblending SUMMARY. A.J. Berkhout* (Delft University of Technology) & G. Blacquiere (Delft University of Technology)

Th N Deghosting by Echo-deblending SUMMARY. A.J. Berkhout* (Delft University of Technology) & G. Blacquiere (Delft University of Technology) Th N103 11 Deghosting by Echo-deblending A.J. Berkhout* (Delft University of Technology) & G. Blacquiere (Delft University of Technology) SUMMARY Because of the strong sea surface reflectivity, a marine

More information

Flexi Binning : A Solution for Irregular Acquisition Geometry

Flexi Binning : A Solution for Irregular Acquisition Geometry 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 199-203 Flexi Binning : A Solution for Irregular Acquisition Geometry M. S. Rawat 1, M. Goswamy 1 & M. Das 2 1 GEOPIC, ONGC,

More information

Refraction Full-waveform Inversion in a Shallow Water Environment

Refraction Full-waveform Inversion in a Shallow Water Environment Refraction Full-waveform Inversion in a Shallow Water Environment Z. Zou* (PGS), J. Ramos-Martínez (PGS), S. Kelly (PGS), G. Ronholt (PGS), L.T. Langlo (PGS), A. Valenciano Mavilio (PGS), N. Chemingui

More information

SeisSpace Software. SeisSpace enables the processor to be able focus on the science instead of being a glorified data manager.

SeisSpace Software. SeisSpace enables the processor to be able focus on the science instead of being a glorified data manager. SeisSpace Software OVERVIEW Delivering large volumes of data quickly and accurately remains the hallmark of any seismic processing system. With intuitive analysis tools, state-of-the-art geophysical algorithms

More information

Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM)

Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM) Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM) S. Lu* (Petroleum Geo-Services), N.D. Whitmore (Petroleum Geo- Services), A.A. Valenciano (Petroleum Geo-Services) & N. Chemingui (Petroleum

More information

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Summary Conventional shot domain migration constructs a subsurface image

More information

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries M. Cvetkovic* (ION Geophysical), Z. Zhou (ION Geophysical / GXT Imaging Solutions) &

More information

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data S. Sonika* (WesternGeco), A. Zarkhidze (WesternGeco), J. Heim (WesternGeco) & B. Dragoset (WesternGeco) SUMMARY Interbed multiples

More information

Common Reflection Angle Migration (CRAM) for improved input to reservoir description an example from Mumbai High Field

Common Reflection Angle Migration (CRAM) for improved input to reservoir description an example from Mumbai High Field P-313 Summary Common Reflection Angle Migration (CRAM) for improved input to reservoir description D.P. Sinha, Apurba Saha, A. Ghosh, ONGC; Dean K. Clark*, Paradigm A new seismic subsurface imaging technology

More information

South Oman Salt Basin: High-Density Wide-Azimuth Land Seismic Acquisition and Processing

South Oman Salt Basin: High-Density Wide-Azimuth Land Seismic Acquisition and Processing South Oman Salt Basin: High-Density Wide-Azimuth Land Seismic Acquisition and Processing Petroleum Development Oman (PDO) : Richard Smith, Paul Zwartjes and Tom Van Dijk. CGGVeritas : Richard Wombell,

More information

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO)

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) A.M. Popovici* (3DGeo Development Inc.), S. Crawley (3DGeo), D. Bevc (3DGeo) & D. Negut (Arcis Processing) SUMMARY Azimuth Moveout

More information

Summary. Offset Vector Tiling for CBM

Summary. Offset Vector Tiling for CBM Extending MAZ PSDM velocity model building to land context using controlled beam migration, a case study Olivier Hermant*, Jean-Paul Gruffeille, Serge Zimine, Sylvain Navion, CGGVeritas Summary 3D marine

More information

Tu N Internal Multiple Attenuation on Radial Gathers With Inverse-scattering Series Prediction

Tu N Internal Multiple Attenuation on Radial Gathers With Inverse-scattering Series Prediction Tu N114 05 Internal Multiple Attenuation on Radial Gathers With Inverse-scattering Series Prediction F. Xavier de Melo* (Schlumberger), C. Kostov (Schlumberger) & J. Wu (Schlumberger) SUMMARY We present

More information

M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube)

M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube) Tu A12 15 High-Resolution Reflection FWI M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube) Summary We demonstrate reflection FWI on a less-than-ideal 3D narrow-azimuth

More information

Th LHR5 08 Multi-modal Surface Wave Inversion and Application to North Sea OBN Data

Th LHR5 08 Multi-modal Surface Wave Inversion and Application to North Sea OBN Data Th LHR5 08 Multi-modal Surface Wave Inversion and pplication to North Sea ON Data S. Hou (CGG), D. Zheng (CGG), X.G. Miao* (CGG) & R.R. Haacke (CGG) SUMMRY Surface-wave inversion (SWI) for S-wave velocity

More information

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Didier Lecerf*, Philippe Herrmann, Gilles Lambaré, Jean-Paul Tourré and Sylvian Legleut, CGGVeritas Summary

More information

Summary. Introduction

Summary. Introduction Chris Davison*, Andrew Ratcliffe, Sergio Grion (CGGeritas), Rodney Johnston, Carlos Duque, Jeremy Neep, Musa Maharramov (BP). Summary Azimuthal velocity models for HTI (Horizontal Transverse Isotropy)

More information

We Solutions for Scattered Surface-wave Attenuation in the Western Desert of Egypt

We Solutions for Scattered Surface-wave Attenuation in the Western Desert of Egypt We-14-11 Solutions for Scattered Surface-wave Attenuation in the Western Desert of Egypt D. Yanchak* (Apache Corporation), D. Monk (Apache Corporation), A.V. Zarkhidze (WesternGeco), P. Blair (WesternGeco),

More information

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Summary We present a new method for performing full-waveform inversion that appears

More information

IPTC Title: High Resolution, Simultaneous VSP and Land Seismic Acquisition. Scott Robinson, Qatar Petroleum

IPTC Title: High Resolution, Simultaneous VSP and Land Seismic Acquisition. Scott Robinson, Qatar Petroleum Title: High Resolution, Simultaneous VSP and Land Seismic Acquisition Authors Scott Robinson, Qatar Petroleum primary author o P. O. Box 47, Doha, Qatar; (+974) 440-1465; s_robinson@qp.com.qa Salva R Seeni,

More information

We N Depth Domain Inversion Case Study in Complex Subsalt Area

We N Depth Domain Inversion Case Study in Complex Subsalt Area We N104 12 Depth Domain Inversion Case Study in Complex Subsalt Area L.P. Letki* (Schlumberger), J. Tang (Schlumberger) & X. Du (Schlumberger) SUMMARY Geophysical reservoir characterisation in a complex

More information

VISTA. Desktop seismic data processing software

VISTA. Desktop seismic data processing software VISTA Desktop seismic data processing software VERSION 2017 VISTA desktop seismic data processing software VISTA Desktop seismic data processing software Comprehensive seismic processing and QC software

More information

Seismic Data Acquisition COPYRIGHT. Introduction

Seismic Data Acquisition COPYRIGHT. Introduction Introduction Seismic Data Acquisition Core Introduction In this module, the acquisition of Land Data and Marine Data are discussed in considerable detail These are the two end members of a continuum of

More information

Introduction. Surface and Interbed Multtple Elimination

Introduction. Surface and Interbed Multtple Elimination Pre-stack Land Surface and Interbed Demultiple Methodology An Example from the Arabian Peninsula Roald van Borselen, Grog Fookes, Michel Schonewille, Constantine Tsingas, Michael West PGS Geophysical;

More information

L 5 Seismic Method. Courtesy of ExxonMobil. Mitchum et al., 1977b

L 5 Seismic Method. Courtesy of ExxonMobil. Mitchum et al., 1977b Courtesy of ExxonMobil L 5 Seismic Method AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use. Mitchum et al., 1977b Basic Exploration Workflow Identify Opportunities

More information

Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada

Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada Dan Negut, Samo Cilensek, Arcis Processing, Alexander M. Popovici, Sean Crawley,

More information

Pre-stack deghosting for variable-depth streamer data. R. Soubaras* (CGGVeritas) Summary

Pre-stack deghosting for variable-depth streamer data. R. Soubaras* (CGGVeritas) Summary Pre-stack deghosting for variable-depth streamer data R. Soubaras* (CGGVeritas) Summary Variable-depth streamer acquisition is an acquisition technique aiming at achieving the best possible signal-to-noise

More information

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media M. Cavalca* (WesternGeco), I. Moore (WesternGeco), L. Zhang (WesternGeco), S.L. Ng (WesternGeco), R.P. Fletcher (WesternGeco)

More information

Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM)

Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM) Anatomy of CSP gathers Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM) John C. Bancroft and Hugh D. Geiger SUMMARY The equivalent offset method of

More information

Considerations in 3D depth-specific P-S survey design

Considerations in 3D depth-specific P-S survey design Considerations in 3D depth-specific P-S survey design Don C. Lawton and Peter W. Cary 3D P-S survey design ABSTRACT A new sparse-shot design for 3D P-S surveys is introduced. In the sparse shot design

More information

Predicting rugged water-bottom multiples through wavefield extrapolation with rejection and injection

Predicting rugged water-bottom multiples through wavefield extrapolation with rejection and injection Predicting rugged water-bottom multiples through wavefield extrapolation with rejection and injection Benxi Ke ABSTRACT Although convolution-based and WEM-modeling-based methods for predicting surface-related

More information

Attenuation of water-layer-related multiples Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger

Attenuation of water-layer-related multiples Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger Summary We present a method for modeling and separation of waterlayer-related multiples in towed streamer

More information

DUG HAS EXTENSIVE EXPERIENCE WITH COMPLEX DEPTH IMAGING PROJECTS FROM ALL MAJOR OIL AND GAS PRECINCTS

DUG HAS EXTENSIVE EXPERIENCE WITH COMPLEX DEPTH IMAGING PROJECTS FROM ALL MAJOR OIL AND GAS PRECINCTS DEPTH IMAGING DUG HAS EXTENSIVE EXPERIENCE WITH COMPLEX DEPTH IMAGING PROJECTS FROM ALL MAJOR OIL AND GAS PRECINCTS This combined experience, along with our advanced toolkit, means that we are ready and

More information

Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure

Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure T. Nguyen* (PGS), Y.J. Liu (PGS) Summary The curvelet transform is a known tool used in the attenuation of coherent and incoherent

More information

G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis

G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis G042 Subsalt Imaging Challenges - A Deepwater Imaging Analysis M. Cogan* (WesternGeco), J. Gardner (WesternGeco) & N. Moldoveanu (WesternGeco) SUMMARY Upon completion of the final reverse-time migration

More information

3D Seismic Data Merging A Case History in Indian Context S. Basu, S.N. Dalei and D.P. Sinha SPIC ONGC Mumbai,

3D Seismic Data Merging A Case History in Indian Context S. Basu, S.N. Dalei and D.P. Sinha SPIC ONGC Mumbai, 3D Seismic Data Merging A Case History in Indian Context S. Basu, S.N. Dalei and D.P. Sinha SPIC ONGC Mumbai, Email: basusubhankar@hotmail.com SUMMARY 3D Seismic data acquisition & processing has been

More information

Minimizing Fracture Characterization Uncertainties Using Full Azimuth Imaging in Local Angle Domain

Minimizing Fracture Characterization Uncertainties Using Full Azimuth Imaging in Local Angle Domain P-237 Minimizing Fracture Characterization Uncertainties Using Full Azimuth Imaging in Local Angle Domain Shiv Pujan Singh*, Duane Dopkin, Paradigm Geophysical Summary Shale plays are naturally heterogeneous

More information

3-D vertical cable processing using EOM

3-D vertical cable processing using EOM Carlos Rodriguez-Suarez, John C. Bancroft, Yong Xu and Robert R. Stewart ABSTRACT Three-dimensional seismic data using vertical cables was modeled and processed using equivalent offset migration (EOM),

More information

Seismic Imaging: Prestack

Seismic Imaging: Prestack Seismic Imaging: Prestack John C. Bancroft DEPARTMENT OF GEOLOGY & GEOPHYSICS, UNIVERSITY OF CALGARY, CALGARY, ALBERTA CSEG RECORDER NOV 2002 VOL. 26 NO. 09 Article Bios References Print Abstract The kinematics

More information

The impact of the acoustic approximation on time-lapse FWI Bram Willemsen, M.I.T, Jun Cao, ConocoPhillips and Baishali Roy, ConocoPhillips

The impact of the acoustic approximation on time-lapse FWI Bram Willemsen, M.I.T, Jun Cao, ConocoPhillips and Baishali Roy, ConocoPhillips Bram Willemsen, M.I.T, Jun Cao, ConocoPhillips and Baishali Roy, ConocoPhillips SUMMARY Conventional time-lapse analysis methods are adequate for relatively simple geologies, but may degrade in the presence

More information

We LHR5 06 Multi-dimensional Seismic Data Decomposition for Improved Diffraction Imaging and High Resolution Interpretation

We LHR5 06 Multi-dimensional Seismic Data Decomposition for Improved Diffraction Imaging and High Resolution Interpretation We LHR5 06 Multi-dimensional Seismic Data Decomposition for Improved Diffraction Imaging and High Resolution Interpretation G. Yelin (Paradigm), B. de Ribet* (Paradigm), Y. Serfaty (Paradigm) & D. Chase

More information

4D Seismic Inversion on Continuous Land Seismic Reservoir Monitoring of Thermal EOR

4D Seismic Inversion on Continuous Land Seismic Reservoir Monitoring of Thermal EOR 4D Seismic Inversion on Continuous Land Seismic Reservoir Monitoring of Thermal EOR Laurene Michou, CGGVeritas, Massy, France, laurene.michou@cggveritas.com Thierry Coleou, CGGVeritas, Massy, France, thierry.coleou@cggveritas.com

More information

Multiple attenuation for shallow-water surveys: Notes on old challenges and new opportunities

Multiple attenuation for shallow-water surveys: Notes on old challenges and new opportunities Multiple attenuation for shallow-water surveys: Notes on old challenges and new opportunities Clement Kostov 1, Frederico Xavier de Melo 1, Abhishek Raj 1, Alexander Zarkhidze 1, Alex Cooke 1, Glenn Miers

More information