SEG/New Orleans 2006 Annual Meeting

Size: px
Start display at page:

Download "SEG/New Orleans 2006 Annual Meeting"

Transcription

1 3-D tomographic updating with automatic volume-based picking Dimitri Bevc*, Moritz Fliedner, Joel VanderKwaak, 3DGeo Development Inc. Summary Whether refining seismic images to evaluate opportunities in mature areas and exploit the maximum resource, or exploring in frontier areas, determining an accurate velocity model within the turnaround time constraints of reservoir management and exploration timeframes is critical. Speed, robustness, and accuracy are equally important. Seismic imaging has made great strides in recent years with the advent of so-called wave-equation migration imaging methods. Given the correct acoustic propagation velocity for seismic waves in the Earth s subsurface, these waveequation methods yield the highest resolution and most accurate images of the earth. However, the process of determining the correct acoustic propagation velocity can be an elusive, time consuming, and costly procedure. We describe an approach both to shorten the process and to make the process less biased and more accurate. The process is shortened by automating the labor-intensive portion of the workflow, and made less biased and more robust and accurate by using much more data than is commonly used in manual picking approaches. Introduction We describe the implementation of an automatic method of signal detection that eliminates the need for manual reflector picking by scanning the seismic data volume with prediction-error filters and automatically selecting back projection points based on dip coherency and semblance strength. This approach can save months of human time on a typical 3-D seismic imaging project and, thereby, shortening seismic imaging project turnaround time while exploiting the full redundancy of the recorded data. The automation also reduces human bias and manual picking error, while retaining the option to control quality and steer the solution. Tomography For migration velocity analysis, residual moveout in the 3D angle-domain common-image gathers (ADCIGs) is parameterized as a residual slowness squared (or residual velocity), either by fitting a reflection event in a gather by semblance analysis, or by picking the relative depth error between normal and oblique incidence traces and applying the appropriate residual moveout formula for ADCIGs, which depends on the relative velocity error, depth, opening (reflection) angle, azimuth (angle of ray plane with acquisition direction), and local geological (reflector) dip (Biondi and Tisserant, 2004). The velocity model is then updated by raytracing tomography applying a global (Ji, 1995) or a local (Stork, 1992) approach to calculating the residual traveltime. The main difference between the two approaches is the use of the normal ray (zero offset) reflection to determine traveltime errors for the tomographic inversion. In the global approach, we compare the actual (raytraced) total normal ray traveltime with the expected, calculated from the residual slowness at the reflection point, i.e. a single parameter (residual slowness or velocity) describes the moveout behavior of the prestack image at each analysis point. The main advantage is the possibility to perform a less costly inversion based on normal rays alone (rather than tracing and inverting ray fans); applying one, consistent correction at each point makes the inversion also more robust. The local approach is based on converting the depth error between normal and oblique incidence rays in the prestack image into a relative time error based on the local velocity. Since each trace in the prestack image is analyzed separately, this approach has potentially a higher resolution (more than one independent parameter per backprojection point), but may for the same reason be less robust. Inversion of the normal rays alone is not possible with this approach (the normal ray residual is by definition zero). Backprojection points for the tomographic inversion can be chosen in two ways: (1) picking geological horizons, or (2) selecting individual reflection points based on local dip (i.e. reflector) coherence and semblance strength (i.e. reflection event coherence). Automatic picking of reflectors and reflection moveout is performed based on a horizon flattening algorithm (Lomask et al., 2005). The first approach has the advantage of producing geologically reasonable velocity models without further steering filters applied to the tomographic inversion, but it requires the manual input of an interpreter. To automate this process, an automatic horizon picker is required. The second approach requires an automated process to select backprojection points (Fliedner et al, 2003; Clapp, 2001; Clapp et al, 1998). Both approaches start with the calculation of a dip field from the stacked migrated image. Several methods have been tested and the approach that gives the best results (Fomel, 2000) selected: it achieves a sharp delineation of reflectors, as well as a smooth dip field (by applying increasing smoothing filters). Automatic Picking Procedure Selecting backprojection points independent of manually picked horizons involves calculating the best single dip in a window and the coherency of the dip by iterative 3330

2 Automatic Tomography application of plane-wave destruction filters. Points that satisfy specified levels of dip coherence, amplitude, semblance strength, and distance from other points and the edges of the image are selected as backprojection points. This method allows for an even distribution of backprojection points in the absence of strong geological boundaries (reflectors) that define the velocity model. We implement a plane wave destructor prediction error filter (Claerbout, 1992) to run on 4-D and 5-D migrated data volumes from 3-D prestack data. Rather than using picked reflectors as the basis for back projection locations, points are selected according to reliability factors. This technique first calculates dip and coherency of the migrated image at each image location, providing an initial dip and coherence estimate in a region around each model location. From this result of the previous step, we calculate the best single dip within the region, and the coherence of that dip. This is then used as an initial dip estimate for the nonlinear, space varying dip estimation procedure such as the one described in Fomel (2000). Data Example To illustrate our approach, we present the back-projection point selection process as follows with an accompanying set of data images from the preliminary migration of a 2-D seismic data set (Figure 1): 1. Calculate dip and dip coherency at every model location (Figure 2). 2. Iteratively select a set of preliminary backprojection points that meet specified threshold criteria taking into account amplitude, coherency (Figure 3), spacing, etc. Amplitude and coherence criteria are relaxed at each iteration to select the best points in each region. 3. Calculate semblance (Figure 4). 4. Filter the preliminary point set, retaining points with maximum semblance above a specified threshold (Figure 5). Output from this is the coordinates, dips, coherency, and semblance of each remaining back-projection point. 5. The final point set is used as input into the tomographic inversion of the set of spatiallydisconnected points (Figure 6). This automatic migration velocity analysis method has been demonstrated on a wide ranging suite of 2-D and 3-D data sets: simple synthetics with analytically known kinematics, complex synthetic, and real data sets in 2D and 3D. Results from these tests will be presented. Conclusions We present a method to eliminate, or at least significantly reduce, the need for manual horizon picking. The method calculates a dip field and coherency from a migrated image by using a plane-wave estimator. The dip estimate is then refined and back projection points are automatically selected based on dip coherency and semblance strength. The selected points are used in a regularized migration reflection tomography inversion. The tomographic operator simultaneously accounts for velocity correction and reflector movement. The model can be preconditioned with a steering filter, which tends to create velocity variations consistent with geologic dip. The resulting tomographic update produces robust images with significantly reduced turnaround time for the entire velocity model building process. References Biondi, B. and T. Tisserant, 2004, 3D angle-domain common-image gathers for migration velocity analysis, Geophysical Prospecting, Claerbout, J. F., 1992, Earth Soundings Analysis: Processing versus Inversion: Blackwell Scientific Publications. Clapp, R. G., 2001, Geologically constrained migration velocity analysis: Ph.D. thesis, Stanford University. Clapp, R.G., B.L. Biondo, S.B. Fomel, and J.F. Claerbout, 1998, Regularizing velocity estimation using geologic dip information: 68 th Ann. Internat. Mtg. Soc. of Expl. Geophys., Fliedner, M., Bevc D., and Clapp R., 2003, Depth imaging velocity estimation by layer-stripping Dix update and dip-constrained tomography in a compressional tectonic regime73rd Ann. Internat. Mtg: Soc. of Expl. Geophys., Dallas. Fomel, S., 2000, Applications of plane-wave destructor filters: SEP-105, Ji, J., 1995, Sequential seismic inversion using plane-wave synthesis, Ph.D. thesis, Stanford. Lomask, J., A. Guitton, S. Fomel, and J. Claerbout, 2005, Update on flattening without picking, SEP Report 120, Stork, C., 1992, Reflection tomography in the postmigrated domain, Geophysics,

3 Figure 1. Starting model stacked image. Figure 2. Smoothed Dip Field calculated from starting seismic image of Figure 1. Figure 3. Coherency field used for point selection and tomographic inversion. 3332

4 Automatic Tomography Figure 4. Peak semblance field - prestack information for tomographic inversion. Figure 5. Automatically selected backprojection points. Different coherency and semblance criteria can be used to generate more or less points. Figure 6. Raytraced trajectories for backprojection in tomographic inversion. 3333

5 EDITED REFERENCES Note: This reference list is a copy-edited version of the reference list submitted by the author. Reference lists for the 2006 SEG Technical Program Expanded Abstracts have been copy edited so that references provided with the online metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web. REFERENCES Biondi, B., and T. Tisserant, 2004, 3D angle-domain common-image gathers for migration velocity analysis: Geophysical Prospecting, 52, Claerbout, J. F., 1992, Earth Soundings Analysis: Processing versus Inversion: Blackwell Scientific Publishing Company, Inc. Clapp, R. G., 2001, Geologically constrained migration velocity analysis: Ph.D. thesis, Stanford University. Clapp, R.G., B. L. Biondo, S. B. Fomel, and J. F. Claerbout, 1998, Regularizing velocity estimation using geologic dip information: 68th Annual International Meeting, SEG, Expanded Abstracts, Fliedner, M., D. Bevc, and R. G. Clapp, 2003, Depth imaging velocity estimation by layer-stripping Dix update and dip-constrained tomography in a compressional tectonic regime: 73rd Annual International Meeting, SEG, Expanded Abstracts, Fomel, S., 2000, Applications of plane-wave destructor filters: SEP, report 105, Ji, J., 1995, Sequential seismic inversion using plane-wave synthesis: Ph.D. thesis, Stanford University. Lomask, J., A. Guitton, S. Fomel, and J. Claerbout, 2005, Update on flattening without picking, SEP, report 120, Stork, C., 1992, Reflection tomography in the postmigrated domain: Geophysics, 57,

Ray-based tomography with limited picking

Ray-based tomography with limited picking Stanford Exploration Project, Report 110, September 18, 2001, pages 1 113 Short Note Ray-based tomography with limited picking Robert G. Clapp 1 INTRODUCTION In ray-based reflection tomography picking

More information

Residual move-out analysis with 3-D angle-domain common-image gathers

Residual move-out analysis with 3-D angle-domain common-image gathers Stanford Exploration Project, Report 115, May 22, 2004, pages 191 199 Residual move-out analysis with 3-D angle-domain common-image gathers Thomas Tisserant and Biondo Biondi 1 ABSTRACT We describe a method

More information

Dealing with errors in automatic velocity analysis

Dealing with errors in automatic velocity analysis Stanford Exploration Project, Report 112, November 11, 2002, pages 37 47 Dealing with errors in automatic velocity analysis Robert G. Clapp 1 ABSTRACT The lack of human interaction in automatic reflection

More information

Ray based tomography using residual Stolt migration

Ray based tomography using residual Stolt migration Stanford Exploration Project, Report 11, November 11, 00, pages 1 15 Ray based tomography using residual Stolt migration Robert G. Clapp 1 ABSTRACT In complex areas, residual vertical movement is not an

More information

Stanford Exploration Project, Report 120, May 3, 2005, pages

Stanford Exploration Project, Report 120, May 3, 2005, pages Stanford Exploration Project, Report 120, May 3, 2005, pages 167 179 166 Stanford Exploration Project, Report 120, May 3, 2005, pages 167 179 Non-linear estimation of vertical delays with a quasi-newton

More information

Wave-equation inversion prestack Hessian

Wave-equation inversion prestack Hessian Stanford Exploration Project, Report 125, January 16, 2007, pages 201 209 Wave-equation inversion prestack Hessian Alejandro A. Valenciano and Biondo Biondi ABSTRACT The angle-domain Hessian can be computed

More information

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO)

P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) P071 Land Data Regularization and Interpolation Using Azimuth Moveout (AMO) A.M. Popovici* (3DGeo Development Inc.), S. Crawley (3DGeo), D. Bevc (3DGeo) & D. Negut (Arcis Processing) SUMMARY Azimuth Moveout

More information

Reverse time migration in midpoint-offset coordinates

Reverse time migration in midpoint-offset coordinates Stanford Exploration Project, Report 111, June 9, 00, pages 19 156 Short Note Reverse time migration in midpoint-offset coordinates Biondo Biondi 1 INTRODUCTION Reverse-time migration (Baysal et al., 198)

More information

=, (1) SEG/New Orleans 2006 Annual Meeting

=, (1) SEG/New Orleans 2006 Annual Meeting U. Albertin* +, P. Sava ++, J. Etgen +, and M. Maharramov + + BP EPTG, Houston, Texas, ++ Colorado School of Mines, Goldin, Colorado Summary A methodology for velocity updating using one-way wavefield

More information

Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada

Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada Azimuth Moveout (AMO) for data regularization and interpolation. Application to shallow resource plays in Western Canada Dan Negut, Samo Cilensek, Arcis Processing, Alexander M. Popovici, Sean Crawley,

More information

Chapter 1. 2-D field tests INTRODUCTION AND SUMMARY

Chapter 1. 2-D field tests INTRODUCTION AND SUMMARY Chapter 1 2-D field tests INTRODUCTION AND SUMMARY The tomography method described in the preceding chapter is suited for a particular class of problem. Generating raypaths and picking reflectors requires

More information

Target-oriented wave-equation inversion with regularization in the subsurface-offset domain

Target-oriented wave-equation inversion with regularization in the subsurface-offset domain Stanford Exploration Project, Report 124, April 4, 2006, pages 1?? Target-oriented wave-equation inversion with regularization in the subsurface-offset domain Alejandro A. Valenciano ABSTRACT A complex

More information

Angle-gather time migration a

Angle-gather time migration a Angle-gather time migration a a Published in SEP report, 1, 141-15 (1999) Sergey Fomel and Marie Prucha 1 ABSTRACT Angle-gather migration creates seismic images for different reflection angles at the reflector.

More information

Iterative resolution estimation in Kirchhoff imaging

Iterative resolution estimation in Kirchhoff imaging Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 369?? Iterative resolution estimation in Kirchhoff imaging Robert G. Clapp, Sergey Fomel, and Marie Prucha 1 ABSTRACT We apply iterative

More information

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY We present a method to construct 3D angle gathers from extended images obtained

More information

Target-oriented wavefield tomography: A field data example

Target-oriented wavefield tomography: A field data example Target-oriented wavefield tomography: A field data example Yaxun Tang and Biondo Biondi ABSTRACT We present a strategy for efficient migration velocity analysis in complex geological settings. The proposed

More information

Prestack residual migration in the frequency domain

Prestack residual migration in the frequency domain GEOPHYSICS, VOL. 68, NO. (MARCH APRIL 3); P. 634 64, 8 FIGS. 1.119/1.156733 Prestack residual migration in the frequency domain Paul C. Sava ABSTRACT Prestack Stolt residual migration can be applied to

More information

Crosswell Imaging by 2-D Prestack Wavepath Migration

Crosswell Imaging by 2-D Prestack Wavepath Migration Crosswell Imaging by 2-D Prestack Wavepath Migration Hongchuan Sun ABSTRACT Prestack wavepath migration (WM) is applied to 2-D synthetic crosswell data, and the migrated images are compared to those from

More information

Stanford Exploration Project, Report 111, June 9, 2002, pages INTRODUCTION THEORY

Stanford Exploration Project, Report 111, June 9, 2002, pages INTRODUCTION THEORY Stanford Exploration Project, Report 111, June 9, 2002, pages 231 238 Short Note Speeding up wave equation migration Robert G. Clapp 1 INTRODUCTION Wave equation migration is gaining prominence over Kirchhoff

More information

Angle Gathers for Gaussian Beam Depth Migration

Angle Gathers for Gaussian Beam Depth Migration Angle Gathers for Gaussian Beam Depth Migration Samuel Gray* Veritas DGC Inc, Calgary, Alberta, Canada Sam Gray@veritasdgc.com Abstract Summary Migrated common-image-gathers (CIG s) are of central importance

More information

Provides New Tech Solution For Seismic Velocity Modeling

Provides New Tech Solution For Seismic Velocity Modeling JNURY 2009 The etter usiness Publication Serving the Exploration / Drilling / Production Industry Provides New Tech Solution For Seismic Velocity Modeling y Moritz M. Fliedner & Dimitri evc SNT CLR, C.

More information

Summary. Figure 1: Simplified CRS-based imaging workflow. This paper deals with the boxes highlighted in green.

Summary. Figure 1: Simplified CRS-based imaging workflow. This paper deals with the boxes highlighted in green. Smoothing and automated picking of kinematic wavefield attributes Tilman Klüver and Jürgen Mann, Geophysical Institute, University of Karlsruhe, Germany Copyright 2005, SBGf Sociedade Brasiliera de Geofísica

More information

Angle-domain parameters computed via weighted slant-stack

Angle-domain parameters computed via weighted slant-stack Angle-domain parameters computed via weighted slant-stack Claudio Guerra 1 INTRODUCTION Angle-domain common image gathers (ADCIGs), created from downward-continuation or reverse time migration, can provide

More information

Angle-dependent reflectivity by wavefront synthesis imaging

Angle-dependent reflectivity by wavefront synthesis imaging Stanford Exploration Project, Report 80, May 15, 2001, pages 1 477 Angle-dependent reflectivity by wavefront synthesis imaging Jun Ji 1 ABSTRACT Elsewhere in this report, Ji and Palacharla (1994) show

More information

EARTH SCIENCES RESEARCH JOURNAL

EARTH SCIENCES RESEARCH JOURNAL EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 10, No. 2 (December 2006): 117-129 ATTENUATION OF DIFFRACTED MULTIPLES WITH AN APEX-SHIFTED TANGENT- SQUARED RADON TRANSFORM IN IMAGE SPACE Gabriel

More information

We Fast Beam Migration Using Plane Wave Destructor (PWD) Beam Forming SUMMARY

We Fast Beam Migration Using Plane Wave Destructor (PWD) Beam Forming SUMMARY We-02-12 Fast Beam Migration Using Plane Wave Destructor (PWD) Beam Forming A.M. Popovici* (Z-Terra Inc.), N. Tanushev (Z-Terra Inc.), I. Sturzu (Z-Terra Inc.), I. Musat (Z-Terra Inc.), C. Tsingas (Saudi

More information

Three critical concerns for marine seismics with portable systems. Source strength and tuning Streamer length 2D vs. 3D

Three critical concerns for marine seismics with portable systems. Source strength and tuning Streamer length 2D vs. 3D Three critical concerns for marine seismics with portable systems Source strength and tuning Streamer length 2D vs. 3D Airgun Source Single airgun Multiple airguns signal strength volume 1/3 1 x (200 in

More information

IMAGING USING MULTI-ARRIVALS: GAUSSIAN BEAMS OR MULTI-ARRIVAL KIRCHHOFF?

IMAGING USING MULTI-ARRIVALS: GAUSSIAN BEAMS OR MULTI-ARRIVAL KIRCHHOFF? IMAGING USING MULTI-ARRIVALS: GAUSSIAN BEAMS OR MULTI-ARRIVAL KIRCHHOFF? Summary Samuel H. Gray* Veritas DGC Inc., 715 Fifth Ave. SW, Suite 2200, Calgary, AB Sam_gray@veritasdgc.com Carl Notfors Veritas

More information

Wave-equation MVA applied to 4-D seismic monitoring

Wave-equation MVA applied to 4-D seismic monitoring Stanford Exploration Project, Report 112, November 11, 2002, pages 15 21 Short Note Wave-equation MVA applied to 4-D seismic monitoring Paul Sava, John Etgen, and Leon Thomsen 1 INTRODUCTION 4-D seismic

More information

Main Menu. Well. is the data misfit vector, corresponding to residual moveout, well misties, etc. The L matrix operator contains the d / α

Main Menu. Well. is the data misfit vector, corresponding to residual moveout, well misties, etc. The L matrix operator contains the d / α Application of steering filters to localized anisotropic tomography with well data Andrey Bakulin, Marta Woodward*, Yangjun (Kevin) Liu, Olga Zdraveva, Dave Nichols, Konstantin Osypov WesternGeco Summary

More information

Target-oriented wave-equation inversion

Target-oriented wave-equation inversion Stanford Exploration Project, Report 120, May 3, 2005, pages 23 40 Target-oriented wave-equation inversion Alejandro A. Valenciano, Biondo Biondi, and Antoine Guitton 1 ABSTRACT A target-oriented strategy

More information

Amplitude and kinematic corrections of migrated images for non-unitary imaging operators

Amplitude and kinematic corrections of migrated images for non-unitary imaging operators Stanford Exploration Project, Report 113, July 8, 2003, pages 349 363 Amplitude and kinematic corrections of migrated images for non-unitary imaging operators Antoine Guitton 1 ABSTRACT Obtaining true-amplitude

More information

We G High-resolution Tomography Using Offsetdependent Picking and Inversion Conditioned by Image-guided Interpolation

We G High-resolution Tomography Using Offsetdependent Picking and Inversion Conditioned by Image-guided Interpolation We G103 05 High-resolution Tomography Using Offsetdependent Picking and Inversion Conditioned by Image-guided Interpolation G. Hilburn* (TGS), Y. He (TGS), Z. Yan (TGS) & F. Sherrill (TGS) SUMMARY An approach

More information

Velocity-independent time-domain seismic imaging using local event slopes a

Velocity-independent time-domain seismic imaging using local event slopes a Velocity-independent time-domain seismic imaging using local event slopes a a Published in Geophysics, 72, no. 3, S139-S147, (2007) Sergey Fomel ABSTRACT I show that, by estimating local event slopes in

More information

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling

G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling G021 Subsalt Velocity Analysis Using One-Way Wave Equation Based Poststack Modeling B. Wang* (CGG Americas Inc.), F. Qin (CGG Americas Inc.), F. Audebert (CGG Americas Inc.) & V. Dirks (CGG Americas Inc.)

More information

Minimizing Fracture Characterization Uncertainties Using Full Azimuth Imaging in Local Angle Domain

Minimizing Fracture Characterization Uncertainties Using Full Azimuth Imaging in Local Angle Domain P-237 Minimizing Fracture Characterization Uncertainties Using Full Azimuth Imaging in Local Angle Domain Shiv Pujan Singh*, Duane Dopkin, Paradigm Geophysical Summary Shale plays are naturally heterogeneous

More information

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Summary Anisotropic depth model building using surface seismic data alone is non-unique and

More information

Seismic data interpolation with the offset continuation equation

Seismic data interpolation with the offset continuation equation Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 125?? Seismic data interpolation with the offset continuation equation Sergey Fomel 1 ABSTRACT I propose a finite-difference offset

More information

Interval velocity estimation through convex optimization

Interval velocity estimation through convex optimization Stanford Exploration Project, Report 125, January 16, 2007, pages 1?? Interval velocity estimation through convex optimization Ben Witten and Michael Grant ABSTRACT Convex optimization is an optimization

More information

Equivalent offset migration: the implementation and application update

Equivalent offset migration: the implementation and application update Equivalent offset migration: the implementation and application update Xinxiang Li, Yong Xu and John C. Bancroft INTRODUCTION We have some improvements about equivalent offset migration (EOM) method. In

More information

Seismic reflection data interpolation with differential offset and shot continuation a

Seismic reflection data interpolation with differential offset and shot continuation a Seismic reflection data interpolation with differential offset and shot continuation a a Published in Geophysics, 68, 733-744 (2003) Sergey Fomel ABSTRACT I propose a finite-difference offset continuation

More information

Stratigraphic coordinates, a coordinate system tailored to seismic interpretation a

Stratigraphic coordinates, a coordinate system tailored to seismic interpretation a Stratigraphic coordinates, a coordinate system tailored to seismic interpretation a a Published in Geophysical Prospecting, v. 63, 1246-1255, (2015) Parvaneh Karimi and Sergey Fomel ABSTRACT In certain

More information

Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space

Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space Gabriel Alvarez, Biondo Biondi, and Antoine Guitton 1 ABSTRACT We propose to attenuate diffracted

More information

Wave-equation migration velocity analysis II: Subsalt imaging examples. Geophysical Prospecting, accepted for publication

Wave-equation migration velocity analysis II: Subsalt imaging examples. Geophysical Prospecting, accepted for publication Wave-equation migration velocity analysis II: Subsalt imaging examples Geophysical Prospecting, accepted for publication Paul Sava and Biondo Biondi Stanford Exploration Project, Mitchell Bldg., Department

More information

Volumetric flattening: an interpretation tool

Volumetric flattening: an interpretation tool Volumetric flattening: an interpretation tool Jesse Lomask and Antoine Guitton *Stanford Exploration Project, Mitchell Bldg., Department of Geophysics, Stanford University, Stanford, CA 94305-2215 3DGeo

More information

Multichannel deconvolution imaging condition for shot-profile migration

Multichannel deconvolution imaging condition for shot-profile migration Stanford Exploration Project, Report 113, July 8, 2003, pages 127 139 Multichannel deconvolution imaging condition for shot-profile migration Alejandro A. Valenciano and Biondo Biondi 1 ABSTRACT A significant

More information

2010 SEG SEG Denver 2010 Annual Meeting

2010 SEG SEG Denver 2010 Annual Meeting Localized anisotropic tomography with checkshot : Gulf of Mexico case study Andrey Bakulin*, Yangjun (Kevin) Liu, Olga Zdraveva, WesternGeco/Schlumberger Summary Borehole information must be used to build

More information

Prestack Kirchhoff time migration for complex media

Prestack Kirchhoff time migration for complex media Stanford Exploration Project, Report 97, July 8, 998, pages 45 6 Prestack Kirchhoff time migration for complex media Tariq Alkhalifah keywords: time migration, anisotropy ABSTRACT Constructing the seismic

More information

Data dependent parameterization and covariance calculation for inversion of focusing operators

Data dependent parameterization and covariance calculation for inversion of focusing operators Stanford Exploration Project, Report 11, September 18, 21, pages 1 91 Data dependent parameterization and covariance calculation for inversion of focusing operators Barbara E. Cox 1 ABSTRACT The Common

More information

Coherent partial stacking by offset continuation of 2-D prestack data

Coherent partial stacking by offset continuation of 2-D prestack data Stanford Exploration Project, Report 82, May 11, 2001, pages 1 124 Coherent partial stacking by offset continuation of 2-D prestack data Nizar Chemingui and Biondo Biondi 1 ABSTRACT Previously, we introduced

More information

Source-receiver migration of multiple reflections

Source-receiver migration of multiple reflections Stanford Exploration Project, Report 113, July 8, 2003, pages 75 85 Source-receiver migration of multiple reflections Guojian Shan 1 ABSTRACT Multiple reflections are usually considered to be noise and

More information

Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66

Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66 Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66 48 Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66 Mapping of specularly-reflected multiples to image space: An

More information

Directions in 3-D imaging - Strike, dip, both?

Directions in 3-D imaging - Strike, dip, both? Stanford Exploration Project, Report 113, July 8, 2003, pages 363 369 Short Note Directions in 3-D imaging - Strike, dip, both? Marie L. Clapp 1 INTRODUCTION In an ideal world, a 3-D seismic survey would

More information

Z-99 3D Sub-salt Tomography Based on Wave Equation Migration Perturbation Scans

Z-99 3D Sub-salt Tomography Based on Wave Equation Migration Perturbation Scans 1 Z-99 3D Sub-salt Tomography Based on Wave Equation Migration Perturbation Scans BIN WANG 1, VOLKER DIRKS 1, PATRICE GUILLAUME 2, FRANÇOIS AUDEBERT 1, ANNING HOU 1 AND DURYODHAN EPILI 1 1 CGG Americas;

More information

Target-oriented computation of the wave-equation imaging Hessian

Target-oriented computation of the wave-equation imaging Hessian Stanford Exploration Project, Report 117, October 23, 2004, pages 63 77 Target-oriented computation of the wave-equation imaging Hessian Alejandro A. Valenciano and Biondo Biondi 1 ABSTRACT A target-oriented

More information

Inversion after depth imaging

Inversion after depth imaging Robin P. Fletcher *, Stewart Archer, Dave Nichols, and Weijian Mao, WesternGeco Summary In many areas, depth imaging of seismic data is required to construct an accurate view of the reservoir structure.

More information

96 Alkhalifah & Biondi

96 Alkhalifah & Biondi Stanford Exploration Project, Report 97, July 8, 1998, pages 95 116 The azimuth moveout operator for vertically inhomogeneous media Tariq Alkhalifah and Biondo L. Biondi 1 keywords: AMO, DMO, dip moveout

More information

Attribute combinations for image segmentation

Attribute combinations for image segmentation Attribute combinations for image segmentation Adam Halpert and Robert G. Clapp ABSTRACT Seismic image segmentation relies upon attributes calculated from seismic data, but a single attribute (usually amplitude)

More information

Iterative velocity model building for 3-D depth migration by integrating GOCAD and AVS

Iterative velocity model building for 3-D depth migration by integrating GOCAD and AVS Stanford Exploration Project, Report 80, May 15, 2001, pages 1 616 Iterative velocity model building for 3-D depth migration by integrating GOCAD and AVS Robert G Clapp and Biondo Biondi 1 ABSTRACT We

More information

Transformation to dip-dependent Common Image Gathers

Transformation to dip-dependent Common Image Gathers Stanford Exploration Project, Report 11, November 11, 00, pages 65 83 Transformation to dip-dependent Common Image Gathers Biondo Biondi and William Symes 1 ABSTRACT We introduce a new transform of offset-domain

More information

Least-squares joint imaging of primaries and pegleg multiples: 2-D field data test

Least-squares joint imaging of primaries and pegleg multiples: 2-D field data test Stanford Exploration Project, Report 113, July 8, 2003, pages 17 30 Least-squares joint imaging of primaries and pegleg multiples: 2-D field data test Morgan Brown 1 ABSTRACT In this paper I present an

More information

GEOPHYS 242: Near Surface Geophysical Imaging. Class 5: Refraction Migration Methods Wed, April 13, 2011

GEOPHYS 242: Near Surface Geophysical Imaging. Class 5: Refraction Migration Methods Wed, April 13, 2011 GEOPHYS 242: Near Surface Geophysical Imaging Class 5: Refraction Migration Methods Wed, April 13, 2011 Migration versus tomography Refraction traveltime and wavefield migration The theory of interferometry

More information

(t x) domain, pattern-based multiple separation

(t x) domain, pattern-based multiple separation Stanford Exploration Project, Report 103, April 27, 2000, pages 63?? (t x) domain, pattern-based multiple separation Robert G. Clapp and Morgan Brown 1 ABSTRACT Pattern-based signal/noise separation is

More information

High definition tomography brings velocities to light Summary Introduction Figure 1:

High definition tomography brings velocities to light Summary Introduction Figure 1: Saverio Sioni, Patrice Guillaume*, Gilles Lambaré, Anthony Prescott, Xiaoming Zhang, Gregory Culianez, and Jean- Philippe Montel (CGGVeritas) Summary Velocity model building remains a crucial step in seismic

More information

Target-oriented wavefield tomography using demigrated Born data

Target-oriented wavefield tomography using demigrated Born data Target-oriented wavefield tomography using demigrated Born data Yaxun Tang and Biondo Biondi ABSTRACT We present a method to reduce the computational cost of image-domain wavefield tomography. Instead

More information

Separation of specular reflection and diffraction images in Kirchhoff depth migration Faruq E Akbar and Jun Ma, SEIMAX Technologies, LP

Separation of specular reflection and diffraction images in Kirchhoff depth migration Faruq E Akbar and Jun Ma, SEIMAX Technologies, LP Separation of specular reflection and diffraction images in Kirchhoff depth migration Faruq E Akbar and Jun Ma, SEIMAX Technologies, LP Summary Seismic diffractions may occur from faults, fractures, rough

More information

Fast 3D wave-equation migration-velocity analysis using the. prestack exploding-reflector model

Fast 3D wave-equation migration-velocity analysis using the. prestack exploding-reflector model Fast 3D wave-equation migration-velocity analysis using the prestack exploding-reflector model Claudio Guerra and Biondo Biondi Formerly Stanford Exploration Project, Geophysics Department, Stanford University,

More information

Reconciling processing and inversion: Multiple attenuation prior to wave-equation inversion

Reconciling processing and inversion: Multiple attenuation prior to wave-equation inversion Reconciling processing and inversion: Multiple attenuation prior to wave-equation inversion Claudio Guerra and Alejandro Valenciano ABSTRACT Seismic inversion is very sensitive to the presence of noise.

More information

Improved image segmentation for tracking salt boundaries

Improved image segmentation for tracking salt boundaries Stanford Exploration Project, Report 115, May 22, 2004, pages 357 366 Improved image segmentation for tracking salt boundaries Jesse Lomask, Biondo Biondi and Jeff Shragge 1 ABSTRACT Normalized cut image

More information

Efficient Beam Velocity Model Building with Tomography Designed to Accept 3d Residuals Aligning Depth Offset Gathers

Efficient Beam Velocity Model Building with Tomography Designed to Accept 3d Residuals Aligning Depth Offset Gathers Efficient Beam Velocity Model Building with Tomography Designed to Accept 3d Residuals Aligning Depth Offset Gathers J.W.C. Sherwood* (PGS), K. Sherwood (PGS), H. Tieman (PGS), R. Mager (PGS) & C. Zhou

More information

SUMMARY. method to synthetic datasets is discussed in the present paper.

SUMMARY. method to synthetic datasets is discussed in the present paper. Geophysical modeling through simultaneous Joint Inversion of Seismic, Gravity and Magnetotelluric data Michele De Stefano (1), Daniele Colombo (1) WesternGeco EM - Geosystem, via Clericetti 42/A, 20133

More information

It is widely considered that, in regions with significant

It is widely considered that, in regions with significant Multifocusing-based multiple attenuation Alex Berkovitch and Kostya Deev, Geomage Evgeny Landa, OPERA It is widely considered that, in regions with significant geologic complexity, methods which work directly

More information

Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT. August Lau and Chuan Yin.

Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT. August Lau and Chuan Yin. Geometric theory of inversion and seismic imaging II: INVERSION + DATUMING + STATIC + ENHANCEMENT August Lau and Chuan Yin January 6, 2017 Abstract The goal of seismic processing is to convert input data

More information

Marmousi synthetic dataset

Marmousi synthetic dataset Stanford Exploration Project, Report DATALIB, January 16, 2002, pages 1?? Marmousi synthetic dataset Carmen B. Mora 1 ABSTRACT Marmousi is a 2-D synthetic dataset generated at the Institut Français du

More information

Migration from a non-flat datum via reverse-time extrapolation

Migration from a non-flat datum via reverse-time extrapolation Stanford Exploration Project, Report 84, May 9, 2001, pages 1 50 Migration from a non-flat datum via reverse-time extrapolation Gopal Palacharla 1 ABSTRACT Land surveys usually have elevation changes,

More information

Seismic reflection data interpolation with differential offset and shot continuation

Seismic reflection data interpolation with differential offset and shot continuation GEOPHYSICS, VOL. 68, NO. 2 (MARCH-APRIL 2003; P. 733 744, 12 FIGS. 10.1190/1.1567243 Seismic reflection data interpolation with differential offset and shot continuation Sergey Fomel ABSTRACT I propose

More information

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media M. Cavalca* (WesternGeco), I. Moore (WesternGeco), L. Zhang (WesternGeco), S.L. Ng (WesternGeco), R.P. Fletcher (WesternGeco)

More information

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at ACQUISITION APERTURE CORRECTION IN ANGLE-DOMAIN TOWARDS THE TRUE- REFLECTION RTM Rui Yan 1*, Huimin Guan 2, Xiao-Bi Xie 1, Ru-Shan Wu 1, 1 IGPP, Earth and Planetary Sciences Department, University of California,

More information

Wave-equation migration velocity analysis by focusing diffractions and reflections

Wave-equation migration velocity analysis by focusing diffractions and reflections GEOPHYSICS, VOL. 70, NO. 3 (MAY-JUNE 2005); P. U19 U27, 14 FIGS. 10.1190/1.1925749 Wave-equation migration velocity analysis by focusing diffractions and reflections Paul C. Sava 1, Biondo Biondi 2, and

More information

Stanford Exploration Project, Report 103, April 27, 2000, pages

Stanford Exploration Project, Report 103, April 27, 2000, pages Stanford Exploration Project, Report 103, April 27, 2000, pages 205 324 204 Stanford Exploration Project, Report 103, April 27, 2000, pages 205 324 Data alignment with non-stationary shaping filters James

More information

Wave-equation migration velocity analysis with time-lag imaging

Wave-equation migration velocity analysis with time-lag imaging 1 Wave-equation migration velocity analysis with time-lag imaging 2 3 Tongning Yang and Paul Sava Center for Wave Phenomena, Colorado School of Mines 4 5 6 (September 30, 2010) Running head: WEMVA with

More information

Illumination-based normalization for wave-equation depth migration

Illumination-based normalization for wave-equation depth migration Illumination-based normalization for wave-equation depth migration James E. Rickett ChevronTexaco Exploration and Production Technology Company, 6001 Bollinger Canyon Road, San Ramon, CA 94583-2324 formerly

More information

Fast 3D wave-equation migration-velocity analysis using the prestack exploding-reflector model

Fast 3D wave-equation migration-velocity analysis using the prestack exploding-reflector model Fast 3D wave-equation migration-velocity analysis using the prestack exploding-reflector model Claudio Guerra and Biondo Biondi ABSTRACT In areas of complex geology, velocity-model definition should use

More information

Angle-domain common-image gathers for migration velocity analysis by. wavefield-continuation imaging

Angle-domain common-image gathers for migration velocity analysis by. wavefield-continuation imaging Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging Biondo Biondi and William Symes 1 Stanford Exploration Project, Mitchell Bldg., Department of Geophysics,

More information

Equivalence of source-receiver migration and shot-profile migration

Equivalence of source-receiver migration and shot-profile migration Stanford Exploration Project, Report 112, November 11, 2002, pages 109 117 Short Note Equivalence of source-receiver migration and shot-profile migration Biondo Biondi 1 INTRODUCTION At first glance, shot

More information

High Resolution Imaging by Wave Equation Reflectivity Inversion

High Resolution Imaging by Wave Equation Reflectivity Inversion High Resolution Imaging by Wave Equation Reflectivity Inversion A. Valenciano* (Petroleum Geo-Services), S. Lu (Petroleum Geo-Services), N. Chemingui (Petroleum Geo-Services) & J. Yang (University of Houston)

More information

Flattening without picking

Flattening without picking Stanford Exploration Project, Report 112, November 11, 2002, pages 141 151 Flattening without picking Jesse Lomask and Jon Claerbout 1 ABSTRACT We introduce an analytical method for integrating dip information

More information

Simultaneous joint inversion of refracted and surface waves Simone Re *, Claudio Strobbia, Michele De Stefano and Massimo Virgilio - WesternGeco

Simultaneous joint inversion of refracted and surface waves Simone Re *, Claudio Strobbia, Michele De Stefano and Massimo Virgilio - WesternGeco Simultaneous joint inversion of refracted and surface waves Simone Re *, Claudio Strobbia, Michele De Stefano and Massimo Virgilio - WesternGeco Summary In this paper, we review the near-surface challenges

More information

Missing trace interpolation and its enhancement of seismic processes

Missing trace interpolation and its enhancement of seismic processes Missing trace interpolation Missing trace interpolation and its enhancement of seismic processes Wai-kin Chan and Robert R. Stewart ABSTRACT Many multi-channel seismic algorithms assume that the input

More information

Multi-azimuth velocity estimation

Multi-azimuth velocity estimation Stanford Exploration Project, Report 84, May 9, 2001, pages 1 87 Multi-azimuth velocity estimation Robert G. Clapp and Biondo Biondi 1 ABSTRACT It is well known that the inverse problem of estimating interval

More information

The power of stacking, Fresnel zones, and prestack migration

The power of stacking, Fresnel zones, and prestack migration The power of stacking, Fresnel zones, and prestack migration John C. Bancroft and Shuang Sun ABSTRACT The stacking of common midpoint (CMP) gathers assumes the presence of specula reflection energy and

More information

Model-space vs. data-space normalization for recursive depth migration

Model-space vs. data-space normalization for recursive depth migration Stanford Exploration Project, Report 108, April 29, 2001, pages 1?? Model-space vs. data-space normalization for recursive depth migration James Rickett 1 ABSTRACT Illumination problems caused by finite-recording

More information

Converted wave dip moveout

Converted wave dip moveout Stanford Exploration Project, Report 111, June 9, 2002, pages 47 59 Converted wave dip moveout Daniel Rosales 1 ABSTRACT Dip moveout (DMO) introduces a dip-dependent correction for a more appropiate transformation

More information

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Didier Lecerf*, Philippe Herrmann, Gilles Lambaré, Jean-Paul Tourré and Sylvian Legleut, CGGVeritas Summary

More information

3D image-domain wavefield tomography using time-lag extended images

3D image-domain wavefield tomography using time-lag extended images CWP-748 3D image-domain wavefield tomography using time-lag extended images Tongning Yang and Paul Sava Center for Wave Phenomena, Colorado School of Mines ABSTRACT Image-domain wavefield tomography is

More information

Obstacles in the analysis of azimuth information from prestack seismic data Anat Canning* and Alex Malkin, Paradigm.

Obstacles in the analysis of azimuth information from prestack seismic data Anat Canning* and Alex Malkin, Paradigm. Obstacles in the analysis of azimuth information from prestack seismic data Anat Canning* and Alex Malkin, Paradigm. Summary The azimuth information derived from prestack seismic data at target layers

More information

= 0) is the 2-D Fourier transform of the field (1),, z = 0). The phase ) is defined in the dispersion relation as where

= 0) is the 2-D Fourier transform of the field (1),, z = 0). The phase ) is defined in the dispersion relation as where GEOPHYSICS, VOL. 61, NO. 5 (SEPTEMBER-OCTOBER 1996); P. 1412 1416, 4 FIGS. Short Note Prestack migration by split-step DSR. Alexander Mihai Popovici* INTRODUCTION The double-square-root (DSR) prestack

More information

SUMMARY. amounts to solving the projected differential equation in model space by a marching method.

SUMMARY. amounts to solving the projected differential equation in model space by a marching method. Subsurface Domain Image Warping by Horizontal Contraction and its Application to Wave-Equation Migration Velocity Analysis Peng Shen, Shell International E&P, William W. Symes, Rice University SUMMARY

More information

Solution steering with space-variant filters

Solution steering with space-variant filters Stanford Exploration Project, Report SERGEY, November 9, 2000, pages 225?? Solution steering with space-variant filters Robert G. Clapp, Sergey Fomel, and Jon Claerbout 1 ABSTRACT Most geophysical problem

More information

Short Note. DMO velocity analysis with Jacubowicz s dip-decomposition method. David Kessler and Wai-Kin Chan*

Short Note. DMO velocity analysis with Jacubowicz s dip-decomposition method. David Kessler and Wai-Kin Chan* GEOPHYSICS, VOL. 58, NO. 10 (OCTOBER 1993); P. 1517-1524,9 FIGS. Short Note DMO velocity analysis with Jacubowicz s dip-decomposition method David Kessler and Wai-Kin Chan* INTRODUCTION Dip-moveout (DMO)

More information