One-Pass Ranking Models for Low-Latency Product Recommendations

Size: px
Start display at page:

Download "One-Pass Ranking Models for Low-Latency Product Recommendations"

Transcription

1 One-Pass Ranking Models for Low-Latency Product Recommendations Martin MIT (Amazon Berlin)

2 One-Pass Ranking Models for Low-Latency Product Recommendations Amazon Machine Learning Team, Berlin Antonino Freno Rodolphe Jenatton Cédric Archambeau

3 Product Recommendations

4 Product Recommendations Constraints

5 Product Recommendations Constraints 1. Large # of examples Large # of features

6 Product Recommendations Constraints 1. Large # of examples Large # of features 2. Drifting distribution

7 Product Recommendations Constraints 1. Large # of examples Large # of features 2. Drifting distribution 3. Real-time ranking (<few ms)

8 Product Recommendations Constraints 1. Large # of examples Large # of features Small memory footprint 2. Drifting distribution 3. Real-time ranking (<few ms)

9 Product Recommendations Constraints 1. Large # of examples Large # of features Small memory footprint 2. Drifting distribution Fast training time 3. Real-time ranking (<few ms)

10 Product Recommendations Constraints 1. Large # of examples Large # of features Small memory footprint 2. Drifting distribution 3. Real-time ranking (<few ms) Fast training time Low prediction latency

11 Our approach Product Recommendations Small memory footprint Fast training time Low prediction latency

12 Our approach Product Recommendations Small memory footprint Fast training time Stochastic optimization One pass learning Low prediction latency

13 Our approach Product Recommendations Small memory footprint Fast training time Low prediction latency Stochastic optimization One pass learning Sparse models

14 Learning Ranking Functions

15 Learning Ranking Functions Three broad families of models 1. Pointwise (Logistic regression) 2. Pairwise (RankSVM) 3. Listwise (ListNet)

16 Learning Ranking Functions Three broad families of models 1. Pointwise (Logistic regression) 2. Pairwise (RankSVM) 3. Listwise (ListNet) Loss functions Evaluation functions (NDCG) Surrogate functions

17 Loss Function Lambda Rank (Burges et al., 2007)

18 Loss Function Lambda Rank (Burges et al., 2007) Product 1 Product 2 Product 3 Product 4 X: Features x 1 x 2 x 3 x 4 r : Ground-truth Rank

19 Loss Function Lambda Rank (Burges et al., 2007) Product 1 Product 2 Product 3 Product 4 X: Features x 1 x 2 x 3 x 4 r : Ground-truth Rank i j

20 Loss Function Lambda Rank (Burges et al., 2007) X: Features x 1 x 2 x 3 x 4 r : Ground-truth Rank Importance of sorting i and j correctly M = M(r) M(r i/j ) Product 1 Product 2 Product 3 Product 4 i j

21 Loss Function Lambda Rank (Burges et al., 2007) X: Features x 1 x 2 x 3 x 4 r : Ground-truth Rank Importance of sorting i and j correctly M = M(r) M(r i/j ) Difference in scores S = max{0, w T x j w T x i } Product 1 Product 2 Product 3 Product 4 i j

22 Loss Function Lambda Rank (Burges et al., 2007) X: Features x 1 x 2 x 3 x 4 r : Ground-truth Rank Importance of sorting i and j correctly M = M(r) M(r i/j ) Difference in scores S = max{0, w T x j w T x i } Loss L(X; w) = X Product 1 Product 2 Product 3 Product 4 r i appler j M S i j

23 ElasticRank Introducing Sparsity Adding l 1 and l 2 penalties L (X, w) =L(X, w)+ 1 w w 2 2

24 ElasticRank Introducing Sparsity l 1 l 2 Adding and penalties L (X, w) =L(X, w)+ 1 w w 2 2 Both and control model complexity 1 2

25 ElasticRank Introducing Sparsity l 1 l 2 Adding and penalties L (X, w) =L(X, w)+ 1 w w 2 2 Both and control model complexity 1 2 trades-off sparsity and performance 1

26 ElasticRank Introducing Sparsity l 1 l 2 Adding and penalties L (X, w) =L(X, w)+ 1 w w 2 2 Both and control model complexity trades-off sparsity and performance 1 adds strong convexity & improves convergence 2 1 2

27 Optimization Algorithms Extensions of Stochastic Gradient Descent

28 Optimization Algorithms Extensions of Stochastic Gradient Descent FOBOS Forward-Backward Splitting (Duchi, 2009) 1. Gradient step 2. Proximal step involving the regularization

29 Optimization Algorithms Extensions of Stochastic Gradient Descent FOBOS Forward-Backward Splitting (Duchi, 2009) 1. Gradient step 2. Proximal step involving the regularization RDA Regularized Dual Averaging (Xiao, 2010) Keeps a running average of all past gradients Solves a proximal step using the average

30 Optimization Algorithms Extensions of Stochastic Gradient Descent FOBOS Forward-Backward Splitting (Duchi, 2009) 1. Gradient step 2. Proximal step involving the regularization RDA Regularized Dual Averaging (Xiao, 2010) Keeps a running average of all past gradients Solves a proximal step using the average psgd Pruned Stochastic Gradient Descent Prunes every k gradient steps If w i < ) w i =0

31 Hyper-parameter Optimization Turn-key inference Automatic adjustment of hyper-parameters Bayesian Approach (Snoek, Larochelle, Adams; 2012) Gaussian Process Thomson Sampling

32 LETOR Experiments ElasticRank is comparable with state-of-the-art models OHSUMED TD2003 TD2004 Logistic Regression RankSVM ListNet ElasticRank

33 Amazon.com Experiments Experimental Setup # examples millions # features thousands (millions of dimensions) Purchase logs from contiguous time interval Training Validation Testing

34 Experimental Results ElasticRank performs best RankSVM ElasticRank psgd ElasticRank FOBOS ElasticRank RDA 1 Logistic Regression

35 Sparsity vs Performance RDA achieves the best trade-off RDA psgd FOBOS PSGD FOBOS RDA Number of Weights

36 Prediction Time 15 Microseconds μs 8.7 μs 10.9 μs Number of Weights

37 Contributions How to learn ranking functions with Single pass Small memory footprint Sparse WITHOUT sacrificing performance

38 References C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost functions. In Advances in Neural Information Processing Systems (NIPS), J. C. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research (JMLR), L. Xiao. Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization. Journal of Machine Learning Research (JMLR), J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems (NIPS), 2012.

39 One-Pass Ranking Models for Low-Latency Product Recommendations Martin MIT (Amazon Berlin)

WebSci and Learning to Rank for IR

WebSci and Learning to Rank for IR WebSci and Learning to Rank for IR Ernesto Diaz-Aviles L3S Research Center. Hannover, Germany diaz@l3s.de Ernesto Diaz-Aviles www.l3s.de 1/16 Motivation: Information Explosion Ernesto Diaz-Aviles

More information

Information Retrieval

Information Retrieval Information Retrieval Learning to Rank Ilya Markov i.markov@uva.nl University of Amsterdam Ilya Markov i.markov@uva.nl Information Retrieval 1 Course overview Offline Data Acquisition Data Processing Data

More information

Structured Ranking Learning using Cumulative Distribution Networks

Structured Ranking Learning using Cumulative Distribution Networks Structured Ranking Learning using Cumulative Distribution Networks Jim C. Huang Probabilistic and Statistical Inference Group University of Toronto Toronto, ON, Canada M5S 3G4 jim@psi.toronto.edu Brendan

More information

Learning to Rank for Information Retrieval. Tie-Yan Liu Lead Researcher Microsoft Research Asia

Learning to Rank for Information Retrieval. Tie-Yan Liu Lead Researcher Microsoft Research Asia Learning to Rank for Information Retrieval Tie-Yan Liu Lead Researcher Microsoft Research Asia 4/20/2008 Tie-Yan Liu @ Tutorial at WWW 2008 1 The Speaker Tie-Yan Liu Lead Researcher, Microsoft Research

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

High-dimensional Data Stream Classification via Sparse Online Learning

High-dimensional Data Stream Classification via Sparse Online Learning High-dimensional Data Stream Classification via Sparse Online Learning Dayong Wang, Pengcheng Wu, Peilin Zhao, Yue Wu, Chunyan Miao and Steven C.H. Hoi School of Computer Engineering, Nanyang Technological

More information

Learning-to-rank with Prior Knowledge as Global Constraints

Learning-to-rank with Prior Knowledge as Global Constraints Learning-to-rank with Prior Knowledge as Global Constraints Tiziano Papini and Michelangelo Diligenti 1 Abstract. A good ranking function is the core of any Information Retrieval system. The ranking function

More information

Case Study 1: Estimating Click Probabilities

Case Study 1: Estimating Click Probabilities Case Study 1: Estimating Click Probabilities SGD cont d AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade March 31, 2015 1 Support/Resources Office Hours Yao Lu:

More information

CS 179 Lecture 16. Logistic Regression & Parallel SGD

CS 179 Lecture 16. Logistic Regression & Parallel SGD CS 179 Lecture 16 Logistic Regression & Parallel SGD 1 Outline logistic regression (stochastic) gradient descent parallelizing SGD for neural nets (with emphasis on Google s distributed neural net implementation)

More information

arxiv: v1 [cs.ir] 19 Sep 2016

arxiv: v1 [cs.ir] 19 Sep 2016 Enhancing LambdaMART Using Oblivious Trees Marek Modrý 1 and Michal Ferov 2 arxiv:1609.05610v1 [cs.ir] 19 Sep 2016 1 Seznam.cz, Radlická 3294/10, 150 00 Praha 5, Czech Republic marek.modry@firma.seznam.cz

More information

Learning to Rank. from heuristics to theoretic approaches. Hongning Wang

Learning to Rank. from heuristics to theoretic approaches. Hongning Wang Learning to Rank from heuristics to theoretic approaches Hongning Wang Congratulations Job Offer from Bing Core Ranking team Design the ranking module for Bing.com CS 6501: Information Retrieval 2 How

More information

Composite Self-concordant Minimization

Composite Self-concordant Minimization Composite Self-concordant Minimization Volkan Cevher Laboratory for Information and Inference Systems-LIONS Ecole Polytechnique Federale de Lausanne (EPFL) volkan.cevher@epfl.ch Paris 6 Dec 11, 2013 joint

More information

LEARNING to rank is a crucial issue in the field of

LEARNING to rank is a crucial issue in the field of TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, DECEMBER 2012 1 Non-convex Regularizations for Feature Selection in Ranking With Sparse SVM Léa Laporte, Rémi Flamary, Stéphane Canu,

More information

Optimization for Machine Learning

Optimization for Machine Learning with a focus on proximal gradient descent algorithm Department of Computer Science and Engineering Outline 1 History & Trends 2 Proximal Gradient Descent 3 Three Applications A Brief History A. Convex

More information

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking

S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking S-MART: Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking Yi Yang * and Ming-Wei Chang # * Georgia Institute of Technology, Atlanta # Microsoft Research, Redmond Traditional

More information

Ranking via Robust Binary Classification

Ranking via Robust Binary Classification Ranking via Robust Binary Classification Hyokun Yun Amazon Seattle, WA 9809 yunhyoku@amazon.com Parameswaran Raman, S. V. N. Vishwanathan Department of Computer Science University of California Santa Cruz,

More information

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Xu SUN ( 孙栩 ) Peking University xusun@pku.edu.cn Motivation Neural networks -> Good Performance CNN, RNN, LSTM

More information

BudgetedSVM: A Toolbox for Scalable SVM Approximations

BudgetedSVM: A Toolbox for Scalable SVM Approximations Journal of Machine Learning Research 14 (2013) 3813-3817 Submitted 4/13; Revised 9/13; Published 12/13 BudgetedSVM: A Toolbox for Scalable SVM Approximations Nemanja Djuric Liang Lan Slobodan Vucetic 304

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

SpicyMKL Efficient multiple kernel learning method using dual augmented Lagrangian

SpicyMKL Efficient multiple kernel learning method using dual augmented Lagrangian SpicyMKL Efficient multiple kernel learning method using dual augmented Lagrangian Taiji Suzuki Ryota Tomioka The University of Tokyo Graduate School of Information Science and Technology Department of

More information

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model

Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Object Detection with Partial Occlusion Based on a Deformable Parts-Based Model Johnson Hsieh (johnsonhsieh@gmail.com), Alexander Chia (alexchia@stanford.edu) Abstract -- Object occlusion presents a major

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Learning to Rank for Faceted Search Bridging the gap between theory and practice

Learning to Rank for Faceted Search Bridging the gap between theory and practice Learning to Rank for Faceted Search Bridging the gap between theory and practice Agnes van Belle @ Berlin Buzzwords 2017 Job-to-person search system Generated query Match indicator Faceted search Multiple

More information

CS535 Big Data Fall 2017 Colorado State University 10/10/2017 Sangmi Lee Pallickara Week 8- A.

CS535 Big Data Fall 2017 Colorado State University   10/10/2017 Sangmi Lee Pallickara Week 8- A. CS535 Big Data - Fall 2017 Week 8-A-1 CS535 BIG DATA FAQs Term project proposal New deadline: Tomorrow PA1 demo PART 1. BATCH COMPUTING MODELS FOR BIG DATA ANALYTICS 5. ADVANCED DATA ANALYTICS WITH APACHE

More information

CIS581: Computer Vision and Computational Photography Project 4, Part B: Convolutional Neural Networks (CNNs) Due: Dec.11, 2017 at 11:59 pm

CIS581: Computer Vision and Computational Photography Project 4, Part B: Convolutional Neural Networks (CNNs) Due: Dec.11, 2017 at 11:59 pm CIS581: Computer Vision and Computational Photography Project 4, Part B: Convolutional Neural Networks (CNNs) Due: Dec.11, 2017 at 11:59 pm Instructions CNNs is a team project. The maximum size of a team

More information

Lecture 19: November 5

Lecture 19: November 5 0-725/36-725: Convex Optimization Fall 205 Lecturer: Ryan Tibshirani Lecture 9: November 5 Scribes: Hyun Ah Song Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

Parallel learning of content recommendations using map- reduce

Parallel learning of content recommendations using map- reduce Parallel learning of content recommendations using map- reduce Michael Percy Stanford University Abstract In this paper, machine learning within the map- reduce paradigm for ranking

More information

Neural Network Optimization and Tuning / Spring 2018 / Recitation 3

Neural Network Optimization and Tuning / Spring 2018 / Recitation 3 Neural Network Optimization and Tuning 11-785 / Spring 2018 / Recitation 3 1 Logistics You will work through a Jupyter notebook that contains sample and starter code with explanations and comments throughout.

More information

Cache-efficient Gradient Descent Algorithm

Cache-efficient Gradient Descent Algorithm Cache-efficient Gradient Descent Algorithm Imen Chakroun, Tom Vander Aa and Thomas J. Ashby Exascience Life Lab, IMEC, Leuven, Belgium Abstract. Best practice when using Stochastic Gradient Descent (SGD)

More information

CPSC 340: Machine Learning and Data Mining. More Regularization Fall 2017

CPSC 340: Machine Learning and Data Mining. More Regularization Fall 2017 CPSC 340: Machine Learning and Data Mining More Regularization Fall 2017 Assignment 3: Admin Out soon, due Friday of next week. Midterm: You can view your exam during instructor office hours or after class

More information

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning,

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning, A Acquisition function, 298, 301 Adam optimizer, 175 178 Anaconda navigator conda command, 3 Create button, 5 download and install, 1 installing packages, 8 Jupyter Notebook, 11 13 left navigation pane,

More information

From Neural Re-Ranking to Neural Ranking:

From Neural Re-Ranking to Neural Ranking: From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation for Inverted Indexing Hamed Zamani (1), Mostafa Dehghani (2), W. Bruce Croft (1), Erik Learned-Miller (1), and Jaap Kamps (2)

More information

Parallel Stochastic Gradient Descent

Parallel Stochastic Gradient Descent University of Montreal August 11th, 2007 CIAR Summer School - Toronto Stochastic Gradient Descent Cost to optimize: E z [C(θ, z)] with θ the parameters and z a training point. Stochastic gradient: θ t+1

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models DB Tsai Steven Hillion Outline Introduction Linear / Nonlinear Classification Feature Engineering - Polynomial Expansion Big-data

More information

More on Neural Networks. Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5.

More on Neural Networks. Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5. More on Neural Networks Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5.6 Recall the MLP Training Example From Last Lecture log likelihood

More information

Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data

Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data Batch-Incremental vs. Instance-Incremental Learning in Dynamic and Evolving Data Jesse Read 1, Albert Bifet 2, Bernhard Pfahringer 2, Geoff Holmes 2 1 Department of Signal Theory and Communications Universidad

More information

Random Walk Distributed Dual Averaging Method For Decentralized Consensus Optimization

Random Walk Distributed Dual Averaging Method For Decentralized Consensus Optimization Random Walk Distributed Dual Averaging Method For Decentralized Consensus Optimization Cun Mu, Asim Kadav, Erik Kruus, Donald Goldfarb, Martin Renqiang Min Machine Learning Group, NEC Laboratories America

More information

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey Chapter 4 : Optimization for Machine Learning Summary of Chapter 2 Chapter 2: Convex Optimization with Sparsity

More information

Ranking with Query-Dependent Loss for Web Search

Ranking with Query-Dependent Loss for Web Search Ranking with Query-Dependent Loss for Web Search Jiang Bian 1, Tie-Yan Liu 2, Tao Qin 2, Hongyuan Zha 1 Georgia Institute of Technology 1 Microsoft Research Asia 2 Outline Motivation Incorporating Query

More information

Lecture #11: The Perceptron

Lecture #11: The Perceptron Lecture #11: The Perceptron Mat Kallada STAT2450 - Introduction to Data Mining Outline for Today Welcome back! Assignment 3 The Perceptron Learning Method Perceptron Learning Rule Assignment 3 Will be

More information

Class 6 Large-Scale Image Classification

Class 6 Large-Scale Image Classification Class 6 Large-Scale Image Classification Liangliang Cao, March 7, 2013 EECS 6890 Topics in Information Processing Spring 2013, Columbia University http://rogerioferis.com/visualrecognitionandsearch Visual

More information

arxiv: v1 [cs.ir] 16 Oct 2017

arxiv: v1 [cs.ir] 16 Oct 2017 DeepRank: A New Deep Architecture for Relevance Ranking in Information Retrieval Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, Xueqi Cheng pl8787@gmail.com,{lanyanyan,guojiafeng,junxu,cxq}@ict.ac.cn,xujingfang@sogou-inc.com

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Efficient Feature Learning Using Perturb-and-MAP

Efficient Feature Learning Using Perturb-and-MAP Efficient Feature Learning Using Perturb-and-MAP Ke Li, Kevin Swersky, Richard Zemel Dept. of Computer Science, University of Toronto {keli,kswersky,zemel}@cs.toronto.edu Abstract Perturb-and-MAP [1] is

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

arxiv: v1 [stat.ml] 10 Nov 2017

arxiv: v1 [stat.ml] 10 Nov 2017 A Batch Learning Framework for Scalable Personalized Ranking Kuan Liu, Prem Natarajan Information Sciences Institute & Computer Science Department University of Southern California arxiv:1711.04019v1 [stat.ml]

More information

CME 213 SPRING Eric Darve

CME 213 SPRING Eric Darve CME 213 SPRING 2017 Eric Darve Final project Final project is about implementing a neural network in order to recognize hand-written digits. Logistics: Preliminary report: Friday June 2 nd Final report

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

Convex Optimization: from Real-Time Embedded to Large-Scale Distributed

Convex Optimization: from Real-Time Embedded to Large-Scale Distributed Convex Optimization: from Real-Time Embedded to Large-Scale Distributed Stephen Boyd Neal Parikh, Eric Chu, Yang Wang, Jacob Mattingley Electrical Engineering Department, Stanford University Springer Lectures,

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

A Stochastic Learning-To-Rank Algorithm and its Application to Contextual Advertising

A Stochastic Learning-To-Rank Algorithm and its Application to Contextual Advertising A Stochastic Learning-To-Rank Algorithm and its Application to Contextual Advertising ABSTRACT Maryam Karimzadehgan Department of Computer Science University of Illinois at Urbana-Champaign Urbana, IL

More information

Artificial Intelligence. Programming Styles

Artificial Intelligence. Programming Styles Artificial Intelligence Intro to Machine Learning Programming Styles Standard CS: Explicitly program computer to do something Early AI: Derive a problem description (state) and use general algorithms to

More information

Lizhe Sun. November 17, Florida State University. Ranking in Statistics and Machine Learning. Lizhe Sun. Introduction

Lizhe Sun. November 17, Florida State University. Ranking in Statistics and Machine Learning. Lizhe Sun. Introduction in in Florida State University November 17, 2017 Framework in 1. our life 2. Early work: Model Examples 3. webpage Web page search modeling Data structure Data analysis with machine learning algorithms

More information

IE598 Big Data Optimization Summary Nonconvex Optimization

IE598 Big Data Optimization Summary Nonconvex Optimization IE598 Big Data Optimization Summary Nonconvex Optimization Instructor: Niao He April 16, 2018 1 This Course Big Data Optimization Explore modern optimization theories, algorithms, and big data applications

More information

arxiv: v1 [cs.ir] 16 Sep 2018

arxiv: v1 [cs.ir] 16 Sep 2018 A Novel Algorithm for Unbiased Learning to Rank arxiv:1809.05818v1 [cs.ir] 16 Sep 2018 ABSTRACT Ziniu Hu University of California, Los Angeles acbull@g.ucla.edu Qu Peng ByteDance Technology pengqu@bytedance.com

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Learning to Rank with Deep Neural Networks

Learning to Rank with Deep Neural Networks Learning to Rank with Deep Neural Networks Dissertation presented by Goeric HUYBRECHTS for obtaining the Master s degree in Computer Science and Engineering Options: Artificial Intelligence Computing and

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Deep Learning for Embedded Security Evaluation

Deep Learning for Embedded Security Evaluation Deep Learning for Embedded Security Evaluation Emmanuel Prouff 1 1 Laboratoire de Sécurité des Composants, ANSSI, France April 2018, CISCO April 2018, CISCO E. Prouff 1/22 Contents 1. Context and Motivation

More information

Learning Dense Models of Query Similarity from User Click Logs

Learning Dense Models of Query Similarity from User Click Logs Learning Dense Models of Query Similarity from User Click Logs Fabio De Bona, Stefan Riezler*, Keith Hall, Massi Ciaramita, Amac Herdagdelen, Maria Holmqvist Google Research, Zürich *Dept. of Computational

More information

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set.

Evaluation. Evaluate what? For really large amounts of data... A: Use a validation set. Evaluate what? Evaluation Charles Sutton Data Mining and Exploration Spring 2012 Do you want to evaluate a classifier or a learning algorithm? Do you want to predict accuracy or predict which one is better?

More information

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart Machine Learning The Breadth of ML Neural Networks & Deep Learning Marc Toussaint University of Stuttgart Duy Nguyen-Tuong Bosch Center for Artificial Intelligence Summer 2017 Neural Networks Consider

More information

Classification: Linear Discriminant Functions

Classification: Linear Discriminant Functions Classification: Linear Discriminant Functions CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Discriminant functions Linear Discriminant functions

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Practice Questions for Midterm

Practice Questions for Midterm Practice Questions for Midterm - 10-605 Oct 14, 2015 (version 1) 10-605 Name: Fall 2015 Sample Questions Andrew ID: Time Limit: n/a Grade Table (for teacher use only) Question Points Score 1 6 2 6 3 15

More information

Dropout. Sargur N. Srihari This is part of lecture slides on Deep Learning:

Dropout. Sargur N. Srihari This is part of lecture slides on Deep Learning: Dropout Sargur N. srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Regularization Strategies 1. Parameter Norm Penalties 2. Norm Penalties

More information

Deep Learning Applications

Deep Learning Applications October 20, 2017 Overview Supervised Learning Feedforward neural network Convolution neural network Recurrent neural network Recursive neural network (Recursive neural tensor network) Unsupervised Learning

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

Sparse Feature Learning

Sparse Feature Learning Sparse Feature Learning Philipp Koehn 1 March 2016 Multiple Component Models 1 Translation Model Language Model Reordering Model Component Weights 2 Language Model.05 Translation Model.26.04.19.1 Reordering

More information

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund Optimization Plugin for RapidMiner Technical Report Venkatesh Umaashankar Sangkyun Lee 04/2012 technische universität dortmund Part of the work on this technical report has been supported by Deutsche Forschungsgemeinschaft

More information

Package graddescent. January 25, 2018

Package graddescent. January 25, 2018 Package graddescent January 25, 2018 Maintainer Lala Septem Riza Type Package Title Gradient Descent for Regression Tasks Version 3.0 URL https://github.com/drizzersilverberg/graddescentr

More information

Fall Lecture 16: Learning-to-rank

Fall Lecture 16: Learning-to-rank Fall 2016 CS646: Information Retrieval Lecture 16: Learning-to-rank Jiepu Jiang University of Massachusetts Amherst 2016/11/2 Credit: some materials are from Christopher D. Manning, James Allan, and Honglin

More information

Conditional gradient algorithms for machine learning

Conditional gradient algorithms for machine learning 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Linear Regression Optimization

Linear Regression Optimization Gradient Descent Linear Regression Optimization Goal: Find w that minimizes f(w) f(w) = Xw y 2 2 Closed form solution exists Gradient Descent is iterative (Intuition: go downhill!) n w * w Scalar objective:

More information

arxiv: v2 [cs.ir] 27 Feb 2019

arxiv: v2 [cs.ir] 27 Feb 2019 Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm arxiv:1809.05818v2 [cs.ir] 27 Feb 2019 ABSTRACT Ziniu Hu University of California, Los Angeles, USA bull@cs.ucla.edu Recently a number

More information

CafeGPI. Single-Sided Communication for Scalable Deep Learning

CafeGPI. Single-Sided Communication for Scalable Deep Learning CafeGPI Single-Sided Communication for Scalable Deep Learning Janis Keuper itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Deep Neural Networks

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Learning to rank, a supervised approach for ranking of documents Master Thesis in Computer Science - Algorithms, Languages and Logic KRISTOFER TAPPER

Learning to rank, a supervised approach for ranking of documents Master Thesis in Computer Science - Algorithms, Languages and Logic KRISTOFER TAPPER Learning to rank, a supervised approach for ranking of documents Master Thesis in Computer Science - Algorithms, Languages and Logic KRISTOFER TAPPER Chalmers University of Technology University of Gothenburg

More information

CPSC 340: Machine Learning and Data Mining. Multi-Class Classification Fall 2017

CPSC 340: Machine Learning and Data Mining. Multi-Class Classification Fall 2017 CPSC 340: Machine Learning and Data Mining Multi-Class Classification Fall 2017 Assignment 3: Admin Check update thread on Piazza for correct definition of trainndx. This could make your cross-validation

More information

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES Deep Learning Practical introduction with Keras Chapter 3 27/05/2018 Neuron A neural network is formed by neurons connected to each other; in turn, each connection of one neural network is associated

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information

Effective Latent Models for Binary Feedback in Recommender Systems

Effective Latent Models for Binary Feedback in Recommender Systems Effective Latent Models for Binary Feedback in Recommender Systems ABSTRACT Maksims N. Volkovs Milq Inc 151 Bloor Street West Toronto, ON M5S 1S4 maks@milq.com In many collaborative filtering (CF) applications,

More information

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska

Classification Lecture Notes cse352. Neural Networks. Professor Anita Wasilewska Classification Lecture Notes cse352 Neural Networks Professor Anita Wasilewska Neural Networks Classification Introduction INPUT: classification data, i.e. it contains an classification (class) attribute

More information

arxiv: v1 [cs.ir] 19 Dec 2018

arxiv: v1 [cs.ir] 19 Dec 2018 xx Factorization Machines for Datasets with Implicit Feedback Babak Loni, Delft University of Technology Martha Larson, Delft University of Technology Alan Hanjalic, Delft University of Technology arxiv:1812.08254v1

More information

Model Inference and Averaging. Baging, Stacking, Random Forest, Boosting

Model Inference and Averaging. Baging, Stacking, Random Forest, Boosting Model Inference and Averaging Baging, Stacking, Random Forest, Boosting Bagging Bootstrap Aggregating Bootstrap Repeatedly select n data samples with replacement Each dataset b=1:b is slightly different

More information

Parallel and Distributed Sparse Optimization Algorithms

Parallel and Distributed Sparse Optimization Algorithms Parallel and Distributed Sparse Optimization Algorithms Part I Ruoyu Li 1 1 Department of Computer Science and Engineering University of Texas at Arlington March 19, 2015 Ruoyu Li (UTA) Parallel and Distributed

More information

Deep Neural Networks Optimization

Deep Neural Networks Optimization Deep Neural Networks Optimization Creative Commons (cc) by Akritasa http://arxiv.org/pdf/1406.2572.pdf Slides from Geoffrey Hinton CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy

More information

Conquering Massive Clinical Models with GPU. GPU Parallelized Logistic Regression

Conquering Massive Clinical Models with GPU. GPU Parallelized Logistic Regression Conquering Massive Clinical Models with GPU Parallelized Logistic Regression M.D./Ph.D. candidate in Biomathematics University of California, Los Angeles Joint Statistical Meetings Vancouver, Canada, July

More information

Learning to Rank. Tie-Yan Liu. Microsoft Research Asia CCIR 2011, Jinan,

Learning to Rank. Tie-Yan Liu. Microsoft Research Asia CCIR 2011, Jinan, Learning to Rank Tie-Yan Liu Microsoft Research Asia CCIR 2011, Jinan, 2011.10 History of Web Search Search engines powered by link analysis Traditional text retrieval engines 2011/10/22 Tie-Yan Liu @

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

Leaves Machine Learning and Optimization Library

Leaves Machine Learning and Optimization Library Leaves Machine Learning and Optimization Library October 7, 07 This document describes how to use LEaves Machine Learning and Optimization Library (LEMO) for modeling. LEMO is an open source library for

More information

Logistic Regression. Abstract

Logistic Regression. Abstract Logistic Regression Tsung-Yi Lin, Chen-Yu Lee Department of Electrical and Computer Engineering University of California, San Diego {tsl008, chl60}@ucsd.edu January 4, 013 Abstract Logistic regression

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI Parallel Stochastic Gradient Descent: The case for native GPU-side GPI J. Keuper Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Mark Silberstein Accelerated Computer

More information