Optimization. Industrial AI Lab.

Size: px
Start display at page:

Download "Optimization. Industrial AI Lab."

Transcription

1 Optimization Industrial AI Lab.

2 Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2

3 Optimization People optimize (source: 3

4 Optimization Nature optimizes (source: 4

5 Optimization 3 key components 1) Objective function 2) Decision variable or unknown 3) Constraints Procedures 1) The process of identifying objective, variables, and constraints for a given problem (known as "modeling ) 2) Once the model has been formulated, optimization algorithm can be used to find its solutions 5

6 Optimization: Mathematical Model In mathematical expression x = x 1 x n R n is the decision variable f: R n R is objective function Feasible region: C = {x: g i (x) 0, i = 1,, m} x R n is an optimal solution if x C and f(x ) f x, x C 6

7 Optimization: Mathematical Model In mathematical expression Remarks: equivalent 7

8 Unconstrained vs. Constrained 8

9 Convex vs. Nonconvex 9

10 Convex Optimization 10

11 Convex Optimization An extremely powerful subset of all optimization problems f: R n R is a convex function and Feasible region C is a convex set Key property of convex optimization: all local solutions are global solutions We will use CVX (or CVXPY) as a convex optimization solver Many examples later 11

12 Linear Interpolation between Two Points Ԧz = θ Ԧx + (1 θ) Ԧy and θ [0,1] 12

13 Convex Function and Convex Set convex function convex set Images from 13

14 Solving Optimization Problems 14

15 Solving Optimization Problems Starting with the unconstrained, one dimensional case To find minimum point x, we can look at the derivative of the function f x Any location where f x = 0 will be a flat point in the function For convex problems, this is guaranteed to be a minimum 15

16 Solving Optimization Problems Generalization for multivariate function f: R n R the gradient of f must be zero For defined as above, gradient is a n-dimensional vector containing partial derivatives with respect to each dimension For continuously differentiable f and unconstrained optimization, optimal point must have x f x = 0 16

17 How do we Find x f x = 0 Direct solution In some cases, it is possible to analytically compute x such that x f x = 0 17

18 Gradients Matrix derivatives 18

19 How to Find x f x = 0 Direct solution In some cases, it is possible to analytically compute x such that x f x = 0 19

20 Examples, P = P T 20

21 Revisit: Least-Square Solution Scalar Objective: J = Ax y 2 21

22 How do we Find x f x = 0 Iterative methods More commonly the condition that the gradient equal zero will not have an analytical solution, require iterative methods The gradient points in the direction of steepest ascent for function f 22

23 Descent Direction (1D) It motivates the gradient descent algorithm, which repeatedly takes steps in the direction of the negative gradient 23

24 Gradient Descent 24

25 Gradient Descent in High Dimension 25

26 Gradient Descent in High Dimension 26

27 Gradient Descent Update rule: 27

28 Choosing Step Size α Learning rate 28

29 Where will We Converge? Random initialization Multiple trials 29

30 Gradient Descent vs. Analytical Solution Analytical solution for MSE Gradient descent Easy to implement Very general, can be applied to any differentiable loss functions Requires less memory and computations (for stochastic methods) Gradient descent provides a general learning framework Can be used both for classification and regression Training Neural Networks: Gradient Descent 30

31 Practically Solving Optimization Problems The good news: for many classes of optimization problems, people have already done all the hard work of developing numerical algorithms A wide range of tools that can take optimization problems in natural forms and compute a solution We will use CVX (or CVXPY) as an optimization solver Only for convex problems Download: Gradient descent Neural networks/deep learning TensorFlow 31

32 Summary: Training Neural Networks Optimization procedure It is not easy to numerically compute gradients in network in general. The good news: people have already done all the "hard work" of developing numerical solvers (or libraries) There are a wide range of tools We will use TensorFlow 32

33 Examples 33

34 Linear Programming Objective function and constraints are both linear Convex 34

35 Method 1: Geometric Approach x 2 x 3 * 2 x 1 35

36 Method 2: CVXPY Many examples will be provided throughout the lecture 36

37 Method 2: CVXPY 37

38 Quadratic Form 38

39 Quadratic Programming The problem can be found at 39

40 Quadratic Programming The problem can be found at 40

41 Example: Shortest Distance Find the best location to listen to singer's voice 41

42 Example: Shortest Distance 42

43 Example: Supply Chain Management Find a point that minimizes the sum of the transportation costs (or distance) from this point to 3 destination points 43

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab POSTECH. Table of Contents

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab  POSTECH. Table of Contents Optimization by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Optimization II. 2. Solving Optimization Problems III. 3. How do we Find x f(x) = 0 IV.

More information

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro

CMU-Q Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 9: Optimization II: Constrained,Unconstrained Optimization Convex optimization Teacher: Gianni A. Di Caro GLOBAL FUNCTION OPTIMIZATION Find the global maximum of the function f x (and

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Simplest

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Regression

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Introduction to Optimization Problems and Methods

Introduction to Optimization Problems and Methods Introduction to Optimization Problems and Methods wjch@umich.edu December 10, 2009 Outline 1 Linear Optimization Problem Simplex Method 2 3 Cutting Plane Method 4 Discrete Dynamic Programming Problem Simplex

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund

Optimization Plugin for RapidMiner. Venkatesh Umaashankar Sangkyun Lee. Technical Report 04/2012. technische universität dortmund Optimization Plugin for RapidMiner Technical Report Venkatesh Umaashankar Sangkyun Lee 04/2012 technische universität dortmund Part of the work on this technical report has been supported by Deutsche Forschungsgemeinschaft

More information

6 BLAS (Basic Linear Algebra Subroutines)

6 BLAS (Basic Linear Algebra Subroutines) 161 BLAS 6.1 Motivation 6 BLAS (Basic Linear Algebra Subroutines) 6.1 Motivation How to optimise programs that use a lot of linear algebra operations? Efficiency depends on but also on: processor speed

More information

Image Registration Lecture 4: First Examples

Image Registration Lecture 4: First Examples Image Registration Lecture 4: First Examples Prof. Charlene Tsai Outline Example Intensity-based registration SSD error function Image mapping Function minimization: Gradient descent Derivative calculation

More information

Symbolic Subdifferentiation in Python

Symbolic Subdifferentiation in Python Symbolic Subdifferentiation in Python Maurizio Caló and Jaehyun Park EE 364B Project Final Report Stanford University, Spring 2010-11 June 2, 2011 1 Introduction 1.1 Subgradient-PY We implemented a Python

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

LECTURE NOTES Non-Linear Programming

LECTURE NOTES Non-Linear Programming CEE 6110 David Rosenberg p. 1 Learning Objectives LECTURE NOTES Non-Linear Programming 1. Write out the non-linear model formulation 2. Describe the difficulties of solving a non-linear programming model

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015

CPSC 340: Machine Learning and Data Mining. Robust Regression Fall 2015 CPSC 340: Machine Learning and Data Mining Robust Regression Fall 2015 Admin Can you see Assignment 1 grades on UBC connect? Auditors, don t worry about it. You should already be working on Assignment

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Lecture 12: convergence. Derivative (one variable)

Lecture 12: convergence. Derivative (one variable) Lecture 12: convergence More about multivariable calculus Descent methods Backtracking line search More about convexity (first and second order) Newton step Example 1: linear programming (one var., one

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

Modern Methods of Data Analysis - WS 07/08

Modern Methods of Data Analysis - WS 07/08 Modern Methods of Data Analysis Lecture XV (04.02.08) Contents: Function Minimization (see E. Lohrmann & V. Blobel) Optimization Problem Set of n independent variables Sometimes in addition some constraints

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Machine Learning Basics. Sargur N. Srihari

Machine Learning Basics. Sargur N. Srihari Machine Learning Basics Sargur N. srihari@cedar.buffalo.edu 1 Overview Deep learning is a specific type of ML Necessary to have a solid understanding of the basic principles of ML 2 Topics Stochastic Gradient

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari

Machine Learning Basics: Stochastic Gradient Descent. Sargur N. Srihari Machine Learning Basics: Stochastic Gradient Descent Sargur N. srihari@cedar.buffalo.edu 1 Topics 1. Learning Algorithms 2. Capacity, Overfitting and Underfitting 3. Hyperparameters and Validation Sets

More information

CS 179 Lecture 16. Logistic Regression & Parallel SGD

CS 179 Lecture 16. Logistic Regression & Parallel SGD CS 179 Lecture 16 Logistic Regression & Parallel SGD 1 Outline logistic regression (stochastic) gradient descent parallelizing SGD for neural nets (with emphasis on Google s distributed neural net implementation)

More information

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016

Simulation. Lecture O1 Optimization: Linear Programming. Saeed Bastani April 2016 Simulation Lecture O Optimization: Linear Programming Saeed Bastani April 06 Outline of the course Linear Programming ( lecture) Integer Programming ( lecture) Heuristics and Metaheursitics (3 lectures)

More information

Constrained and Unconstrained Optimization

Constrained and Unconstrained Optimization Constrained and Unconstrained Optimization Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Oct 10th, 2017 C. Hurtado (UIUC - Economics) Numerical

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

M. Sc. (Artificial Intelligence and Machine Learning)

M. Sc. (Artificial Intelligence and Machine Learning) Course Name: Advanced Python Course Code: MSCAI 122 This course will introduce students to advanced python implementations and the latest Machine Learning and Deep learning libraries, Scikit-Learn and

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation Learning Learning agents Inductive learning Different Learning Scenarios Evaluation Slides based on Slides by Russell/Norvig, Ronald Williams, and Torsten Reil Material from Russell & Norvig, chapters

More information

Introduction to CVX. Olivier Fercoq and Rachael Tappenden. 24 June pm, ICMS Newhaven Lecture Theatre

Introduction to CVX. Olivier Fercoq and Rachael Tappenden. 24 June pm, ICMS Newhaven Lecture Theatre Introduction to CVX Olivier Fercoq and Rachael Tappenden 24 June 2014 4-5 pm, ICMS Newhaven Lecture Theatre What is optimization? Wikipedia: an optimization problem consists of maximizing or minimizing

More information

Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers Alternating Direction Method of Multipliers CS 584: Big Data Analytics Material adapted from Stephen Boyd (https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf) & Ryan Tibshirani (http://stat.cmu.edu/~ryantibs/convexopt/lectures/21-dual-meth.pdf)

More information

Solution Methods Numerical Algorithms

Solution Methods Numerical Algorithms Solution Methods Numerical Algorithms Evelien van der Hurk DTU Managment Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (6) 09/10/2017 Class

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

More information

NOTATION AND TERMINOLOGY

NOTATION AND TERMINOLOGY 15.053x, Optimization Methods in Business Analytics Fall, 2016 October 4, 2016 A glossary of notation and terms used in 15.053x Weeks 1, 2, 3, 4 and 5. (The most recent week's terms are in blue). NOTATION

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

ME 555: Distributed Optimization

ME 555: Distributed Optimization ME 555: Distributed Optimization Duke University Spring 2015 1 Administrative Course: ME 555: Distributed Optimization (Spring 2015) Instructor: Time: Location: Office hours: Website: Soomin Lee (email:

More information

Motivation. Problem: With our linear methods, we can train the weights but not the basis functions: Activator Trainable weight. Fixed basis function

Motivation. Problem: With our linear methods, we can train the weights but not the basis functions: Activator Trainable weight. Fixed basis function Neural Networks Motivation Problem: With our linear methods, we can train the weights but not the basis functions: Activator Trainable weight Fixed basis function Flashback: Linear regression Flashback:

More information

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008

A Brief Overview of Optimization Problems. Steven G. Johnson MIT course , Fall 2008 A Brief Overview of Optimization Problems Steven G. Johnson MIT course 18.335, Fall 2008 Why optimization? In some sense, all engineering design is optimization: choosing design parameters to improve some

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information

Lec13p1, ORF363/COS323

Lec13p1, ORF363/COS323 Lec13 Page 1 Lec13p1, ORF363/COS323 This lecture: Semidefinite programming (SDP) Definition and basic properties Review of positive semidefinite matrices SDP duality SDP relaxations for nonconvex optimization

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Multivariate Numerical Optimization

Multivariate Numerical Optimization Jianxin Wei March 1, 2013 Outline 1 Graphics for Function of Two Variables 2 Nelder-Mead Simplex Method 3 Steepest Descent Method 4 Newton s Method 5 Quasi-Newton s Method 6 Built-in R Function 7 Linear

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R.

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R. Lecture 24: Learning 3 Victor R. Lesser CMPSCI 683 Fall 2010 Today s Lecture Continuation of Neural Networks Artificial Neural Networks Compose of nodes/units connected by links Each link has a numeric

More information

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course?

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Lec4 Page 1 Lec4p1, ORF363/COS323 This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Instructor: Amir Ali Ahmadi

More information

Beyond Classical Search: Local Search. CMPSCI 383 September 23, 2011

Beyond Classical Search: Local Search. CMPSCI 383 September 23, 2011 Beyond Classical Search: Local Search CMPSCI 383 September 23, 2011 1 Today s lecture Local Search Hill-climbing Simulated annealing Local beam search Genetic algorithms Genetic programming Local search

More information

Minima, Maxima, Saddle points

Minima, Maxima, Saddle points Minima, Maxima, Saddle points Levent Kandiller Industrial Engineering Department Çankaya University, Turkey Minima, Maxima, Saddle points p./9 Scalar Functions Let us remember the properties for maxima,

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens.

16. LECTURE 16. I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. 6. LETURE 6 Objectives I understand how to find the rate of change in any direction. I understand in what direction the maximum rate of change happens. So far, we ve learned the definition of the gradient

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

CPSC 340: Machine Learning and Data Mining. Logistic Regression Fall 2016

CPSC 340: Machine Learning and Data Mining. Logistic Regression Fall 2016 CPSC 340: Machine Learning and Data Mining Logistic Regression Fall 2016 Admin Assignment 1: Marks visible on UBC Connect. Assignment 2: Solution posted after class. Assignment 3: Due Wednesday (at any

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

A Systematic Overview of Data Mining Algorithms

A Systematic Overview of Data Mining Algorithms A Systematic Overview of Data Mining Algorithms 1 Data Mining Algorithm A well-defined procedure that takes data as input and produces output as models or patterns well-defined: precisely encoded as a

More information

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA MACHINE LEARNING It is the science of getting computer to learn without being explicitly programmed. Machine learning is an area of artificial

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Cost Functions in Machine Learning

Cost Functions in Machine Learning Cost Functions in Machine Learning Kevin Swingler Motivation Given some data that reflects measurements from the environment We want to build a model that reflects certain statistics about that data Something

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey Chapter 4 : Optimization for Machine Learning Summary of Chapter 2 Chapter 2: Convex Optimization with Sparsity

More information

Artificial Neural Networks Lecture Notes Part 5. Stephen Lucci, PhD. Part 5

Artificial Neural Networks Lecture Notes Part 5. Stephen Lucci, PhD. Part 5 Artificial Neural Networks Lecture Notes Part 5 About this file: If you have trouble reading the contents of this file, or in case of transcription errors, email gi0062@bcmail.brooklyn.cuny.edu Acknowledgments:

More information

Multidimensional scaling

Multidimensional scaling Multidimensional scaling Lecture 5 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Cinderella 2.0 2 If it doesn t fit,

More information

Today. Gradient descent for minimization of functions of real variables. Multi-dimensional scaling. Self-organizing maps

Today. Gradient descent for minimization of functions of real variables. Multi-dimensional scaling. Self-organizing maps Today Gradient descent for minimization of functions of real variables. Multi-dimensional scaling Self-organizing maps Gradient Descent Derivatives Consider function f(x) : R R. The derivative w.r.t. x

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

Scalable Data Analysis

Scalable Data Analysis Scalable Data Analysis David M. Blei April 26, 2012 1 Why? Olden days: Small data sets Careful experimental design Challenge: Squeeze as much as we can out of the data Modern data analysis: Very large

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

Outline. CS 6776 Evolutionary Computation. Numerical Optimization. Fitness Function. ,x 2. ) = x 2 1. , x , 5.0 x 1.

Outline. CS 6776 Evolutionary Computation. Numerical Optimization. Fitness Function. ,x 2. ) = x 2 1. , x , 5.0 x 1. Outline CS 6776 Evolutionary Computation January 21, 2014 Problem modeling includes representation design and Fitness Function definition. Fitness function: Unconstrained optimization/modeling Constrained

More information

Algebraic Iterative Methods for Computed Tomography

Algebraic Iterative Methods for Computed Tomography Algebraic Iterative Methods for Computed Tomography Per Christian Hansen DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Per Christian Hansen Algebraic

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

Linear Regression Implementation

Linear Regression Implementation Linear Regression Implementation 1 When you experience regression, you go back in some way. The process of regressing is to go back to a less perfect or less developed state. Modeling data is focused on

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION 1 Invariant shape similarity Alexer & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 2 Invariant shape similarity 048921 Advanced topics in vision Processing Analysis

More information

Linear Regression Optimization

Linear Regression Optimization Gradient Descent Linear Regression Optimization Goal: Find w that minimizes f(w) f(w) = Xw y 2 2 Closed form solution exists Gradient Descent is iterative (Intuition: go downhill!) n w * w Scalar objective:

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

CS281 Section 3: Practical Optimization

CS281 Section 3: Practical Optimization CS281 Section 3: Practical Optimization David Duvenaud and Dougal Maclaurin Most parameter estimation problems in machine learning cannot be solved in closed form, so we often have to resort to numerical

More information

PATTERN CLASSIFICATION AND SCENE ANALYSIS

PATTERN CLASSIFICATION AND SCENE ANALYSIS PATTERN CLASSIFICATION AND SCENE ANALYSIS RICHARD O. DUDA PETER E. HART Stanford Research Institute, Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane

More information

IE598 Big Data Optimization Summary Nonconvex Optimization

IE598 Big Data Optimization Summary Nonconvex Optimization IE598 Big Data Optimization Summary Nonconvex Optimization Instructor: Niao He April 16, 2018 1 This Course Big Data Optimization Explore modern optimization theories, algorithms, and big data applications

More information

Classification of Optimization Problems and the Place of Calculus of Variations in it

Classification of Optimization Problems and the Place of Calculus of Variations in it Lecture 1 Classification of Optimization Problems and the Place of Calculus of Variations in it ME256 Indian Institute of Science G. K. Ananthasuresh Professor, Mechanical Engineering, Indian Institute

More information

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c)

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c) Convex Optimization (for CS229) Erick Delage, and Ashutosh Saxena October 20, 2006 1 Convex Sets Definition: A set G R n is convex if every pair of point (x, y) G, the segment beteen x and y is in A. More

More information

Introduction to Design Optimization: Search Methods

Introduction to Design Optimization: Search Methods Introduction to Design Optimization: Search Methods 1-D Optimization The Search We don t know the curve. Given α, we can calculate f(α). By inspecting some points, we try to find the approximated shape

More information

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Search & Optimization Search and Optimization method deals with

More information

Case Study 1: Estimating Click Probabilities

Case Study 1: Estimating Click Probabilities Case Study 1: Estimating Click Probabilities SGD cont d AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade March 31, 2015 1 Support/Resources Office Hours Yao Lu:

More information

Lecture 25 Nonlinear Programming. November 9, 2009

Lecture 25 Nonlinear Programming. November 9, 2009 Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

More information