An Embedded Boundary Method with Adaptive Mesh Refinements

Size: px
Start display at page:

Download "An Embedded Boundary Method with Adaptive Mesh Refinements"

Transcription

1 An Embedded Boundary Method with Adaptive Mesh Refinements Marcos Vanella and Elias Balaras 8 th World Congress on Computational Mechanics, WCCM8 5 th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2008 June 30 July 5, Venice, Italy.

2 Outline Motivation Adaptive Mesh Refinement Method Embedded Boundary strategy Accuracy Study Numerical Results Summary

3 Motivation Flows with Moving boundaries are problems of great practical importance in engineering and biology disciplines. Commonly adopted boundary conforming formulations (ALE) are difficult in problems involving large boundary motions, deformations. Immersed boundary approaches are tied to Cartesian grids that do not allow flexibility in grid refinement. Combine advantages of Cartesian grids with adaptively increasing resolution in particular zones of the flow domain. 30c

4 Motivation Develop a scheme that allows for the grid high resolution to follow zones of the flow where high gradients take place. Save computational effort in outer regions. Two flexible profiles swimming upstream. Vorticity Contours.

5 AMR Method Adaptive Mesh Refinement Topology: Divide the domain in sub-blocks. Each subgrid block has a structured Cartesian topology, and is part of a tree data structure that covers the entire computational domain. Local refinement of a sub-grid block is performed by bisection in each coordinate direction. Number of cells in each sub-block remains constant. Level 0 Level 1 Level 2 Level3

6 AMR Method Spatial-Temporal discretization: Explicit Fractional step method. A single-block Cartesian grid solver is employed in each sub-grid block: standard staggered grid in each subblock second-order central finitedifferences We use the Paramesh toolkit (developed by P. MacNeice and K. Olson)* for the implementation of the AMR process. A multigrid solver is used for the Poisson equation. standard staggered grid coarse-fine interface * MacNeice, P., Olson, K. M., Mobarry, C., defainchtein, R., and Packer, C. Paramesh: a parallel adaptive mesh renement community toolkit. Comput. Phys. Commun. 126 (2000),

7 AMR Method Guard Cell filling: Step 1: coarse guard-cell filling Step 2: coarse guard-cell filling coarse-fine interface Guard-cells must be filled at block edges in order to complete the differencing stencil At least quadratic interpolation is required to maintain 2nd order accuracy of numerical method. Normal velocities to interface jumps are fixed on the coarse boundaries to match the fine mass fluxes.

8 Embedded Boundary Method Direct Forcing at Lagrangian Points The discretized momentum equation using the fractional step method is: u u p k i k k 1 k 1 i i ( k 1) ( k 2) k = γkhui + ρkhui αk + fi t xi By an interpolation step, intermediate velocities are obtained on each surface marker from surrounding Eulerian points U k = I( u ) The body force term is evaluated at the Lagrangian marker point F U U RHS t k k UΨ Ui k k 1 k i =, i = i + i i Uhlmann M., (2005). An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2):

9 Embedded Boundary Method Direct Forcing at Lagrangian Points U k k = I( u ) i i is interpolated to the marker point using a 5 or 7 point stencil and moving least squares interpolation (MLS) k F i U ne k = l k i φeu ie e= 1 is extrapolated to the Eulerian points of the stencil using the same operator as the interpolation, properly scaled. A h nl l l k l k i = lφ e il l = 1 ; l = V El f c F c The Momentum transfer is preserved by the extrapolation process. Lancaster P. and Salkauskas K. (1981). Surfaces generated by moving squares methods. Math. Comput. 37,

10 Accuracy Study Taylor Green Vortex Compare numerical solution to analytical solution of 2D Navier-Stokes equations Domain: [π/2, 5π/2]x [π/2, 5π/2] Homogeneous Dirichlet/Neumann velocity boundary conditions and Neumann pressure boundary condition u = e 2t cos x sin y v = e 2t sin x cos y p = e 4 t 4 ( cos2x + cos2y) u p

11 Accuracy Study Taylor Green Vortex Domain with 2 refinement levels linear interpolation Domain with 2 refinement levels quadratic interpolation Uniform domain Linear interpolation does not maintain 2nd order accuracy of numerical scheme

12 Numerical Results Flow around a fixed sphere at Re = 300: Domain size 40 D x 20 D x 20 D Boundary Conditions: Uc=1 and Convective in x, periodic in y, z. Level 0: 64 x 32 x 32 grid cells. Blocks 16 3 cells. 4 Levels to advance 130 time units. 5 Levels in the following 6 shedding periods ( =0.019 of an average of 5 points in the B.L. thickness). 6.4 million points. The resulting St = 0.132, while in Johnson and Patel (1999) St = 0.137

13 Numerical Results AMR Johnson and Patel (1999)* Roos and Willmarth (1971)** CDmean Amplitude CD CLmean Amplitude CL * Johnson T. A. and Patel V. C. Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378 (1999), ** Roos, F. W., and Willmarth, W. W. Some experimental results on sphere and disk drag. AIAA J. 9 (1971),

14 Numerical Results Mean and rms streamwise vorticity in the axial direction behind the sphere. Last 4 periods of computation were used for these statistics. Isosurface of Q colored by values of streamwise vorticity for t = Vorticity ranges from -1 (blue) to +1 (red) using 40 contours.

15 Development Hovering Musca Domestica at Re = 300: (a) Re = Utmax*Lr/ν = 300. Boundary Conditions: Dirichlet in z, periodic in x, y. Level 0: 32 x 32 x 32 grid cells. Blocks 16 3 cells. Coarse calculation maximum 3 levels of refinement ( x =0.019). Integration for 4 flapping cycles. Harmonic prescriptions for beating angle and geometric angle of attack. IB Treatment of the wings as membranes. (c) (b)

16 Development Hovering Musca Domestica at Re = 300: p = -0.3, and 0.3 pressure contours (blue to orange). Slice at 0.85 span. Q = 0.5 isocontour.

17 Summary Combine the computational efficiency of IB Cartesian solvers with the resolution capabilities of the AMR scheme. Concentrate the computational resources in the zones where large gradients are found. Follow in time the evolution of the solids/fluid system reducing the total number of grid points. The AMR method exhibits similar accuracy using refined grids as a single block solver applied to a mesh of the same level of highest resolution. Evaluation of different 3D problems, including insect flight, and the response of the method on fluid-structure interaction problems.

18 Thank You

19 Accuracy Studies Lid Driven Cavity Flow with Immersed Cylinder Assess the error on the solution as the grid resolution is increased, for the problem with immersed boundary. Ulid Reynolds number = Unitary tangential velocity on top lid with no penetration and no slip on other boundaries. Cylinder in center of Cavity D = 0.4LR Grids: - 36 x x x x LR x 540 LR

20 Accuracy Studies Lid Driven Cavity Flow with Immersed Cylinder Second order space accuracy is found in L2 and Linf norms of the error on velocities respect to the finer grid result.

Tutorial School on Fluid Dynamics: Topics in Turbulence May 24-28, 2010

Tutorial School on Fluid Dynamics: Topics in Turbulence May 24-28, 2010 Applications of Large-eddy Simulation to Biological Flows Tutorial School on Fluid Dynamics: Topics in Turbulence May 24-28, 2010 Methodologies & Applications Elias Balaras Fischell Department of Bioengineering

More information

cuibm A GPU Accelerated Immersed Boundary Method

cuibm A GPU Accelerated Immersed Boundary Method cuibm A GPU Accelerated Immersed Boundary Method S. K. Layton, A. Krishnan and L. A. Barba Corresponding author: labarba@bu.edu Department of Mechanical Engineering, Boston University, Boston, MA, 225,

More information

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects Tenth International Conference on Computational Fluid Dynamics (ICCFD10), Barcelona,Spain, July 9-13, 2018 ICCFD10-047 ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving

More information

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) Computational Methods and Experimental Measurements XVII 235 Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) K. Rehman Department of Mechanical Engineering,

More information

ITU/FAA Faculty of Aeronautics and Astronautics

ITU/FAA Faculty of Aeronautics and Astronautics S. Banu YILMAZ, Mehmet SAHIN, M. Fevzi UNAL, Istanbul Technical University, 34469, Maslak/Istanbul, TURKEY 65th Annual Meeting of the APS Division of Fluid Dynamics November 18-20, 2012, San Diego, CA

More information

A higher-order finite volume method with collocated grid arrangement for incompressible flows

A higher-order finite volume method with collocated grid arrangement for incompressible flows Computational Methods and Experimental Measurements XVII 109 A higher-order finite volume method with collocated grid arrangement for incompressible flows L. Ramirez 1, X. Nogueira 1, S. Khelladi 2, J.

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

Solving Partial Differential Equations on Overlapping Grids

Solving Partial Differential Equations on Overlapping Grids **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Solving Partial Differential Equations on Overlapping Grids William D. Henshaw Centre for Applied Scientific

More information

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Level Set Methods Overview Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Convection Upwind ddifferencingi

More information

J4.3 LARGE-EDDY SIMULATION ACROSS A GRID REFINEMENT INTERFACE USING EXPLICIT FILTERING AND RECONSTRUCTION

J4.3 LARGE-EDDY SIMULATION ACROSS A GRID REFINEMENT INTERFACE USING EXPLICIT FILTERING AND RECONSTRUCTION J4.3 LARGE-EDDY SIMULATION ACROSS A GRID REFINEMENT INTERFACE USING EXPLICIT FILTERING AND RECONSTRUCTION Lauren Goodfriend 1, Fotini K. Chow 1, Marcos Vanella 2, and Elias Balaras 2 1 Civil and Environmental

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

High-Fidelity Simulation of Unsteady Flow Problems using a 3rd Order Hybrid MUSCL/CD scheme. A. West & D. Caraeni

High-Fidelity Simulation of Unsteady Flow Problems using a 3rd Order Hybrid MUSCL/CD scheme. A. West & D. Caraeni High-Fidelity Simulation of Unsteady Flow Problems using a 3rd Order Hybrid MUSCL/CD scheme ECCOMAS, June 6 th -11 th 2016, Crete Island, Greece A. West & D. Caraeni Outline Industrial Motivation Numerical

More information

Three-dimensional numerical simulations of flapping wings at low Reynolds numbers

Three-dimensional numerical simulations of flapping wings at low Reynolds numbers Three-dimensional numerical simulations of flapping wings at low Reynolds numbers OpenFOAM Workshop, Zagreb Frank Bos, Bas van Oudheusden, Hester Bijl 7-9 June 2007 1/22 Delft University of Technology

More information

Moving Interface Problems: Methods & Applications Tutorial Lecture II

Moving Interface Problems: Methods & Applications Tutorial Lecture II Moving Interface Problems: Methods & Applications Tutorial Lecture II Grétar Tryggvason Worcester Polytechnic Institute Moving Interface Problems and Applications in Fluid Dynamics Singapore National University,

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with: The Lecture deals with: Some more Suggestions for Improvement of Discretization Schemes Some Non-Trivial Problems with Discretized Equations file:///d /chitra/nptel_phase2/mechanical/cfd/lecture13/13_1.htm[6/20/2012

More information

Verification of Moving Mesh Discretizations

Verification of Moving Mesh Discretizations Verification of Moving Mesh Discretizations Krzysztof J. Fidkowski High Order CFD Workshop Kissimmee, Florida January 6, 2018 How can we verify moving mesh results? Goal: Demonstrate accuracy of flow solutions

More information

A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries

A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries Journal of Computational Physics 174, 345 380 (2001) doi:10.1006/jcph.2001.6916, available online at http://www.idealibrary.com on A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex

More information

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Siva Nadarajah Antony Jameson Stanford University 15th AIAA Computational Fluid Dynamics Conference

More information

LES Applications in Aerodynamics

LES Applications in Aerodynamics LES Applications in Aerodynamics Kyle D. Squires Arizona State University Tempe, Arizona, USA 2010 Tutorial School on Fluid Dynamics: Topics in Turbulence Center for Scientific Computation and Mathematical

More information

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions Milovan Perić Contents The need to couple STAR-CCM+ with other theoretical or numerical solutions Coupling approaches: surface and volume

More information

Numerical Simulation of Coupled Fluid-Solid Systems by Fictitious Boundary and Grid Deformation Methods

Numerical Simulation of Coupled Fluid-Solid Systems by Fictitious Boundary and Grid Deformation Methods Numerical Simulation of Coupled Fluid-Solid Systems by Fictitious Boundary and Grid Deformation Methods Decheng Wan 1 and Stefan Turek 2 Institute of Applied Mathematics LS III, University of Dortmund,

More information

Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent

Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent MEGR 7090-003, Computational Fluid Dynamics :1 7 Spring 2015 Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent Rahul R Upadhyay Master of Science, Dept of Mechanical

More information

An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids

An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids R. Elliot English, Linhai Qiu, Yue Yu, Ronald Fedkiw Stanford University, 353 Serra Mall Room 27, Stanford,

More information

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder Aerospace Application Areas Aerodynamics Subsonic through Hypersonic Aeroacoustics Store release & weapons bay analysis High lift devices

More information

A MESH ADAPTATION METHOD FOR SIMULATION OF UNSTEADY FLOWS

A MESH ADAPTATION METHOD FOR SIMULATION OF UNSTEADY FLOWS A MESH ADAPTATION METHOD FOR SIMULATION OF UNSTEAD FLOWS C. H. Zhou* * Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Nanjing, 6, China Keywords: mesh adaptation, unsteady

More information

Sharp-Interface Cartesian Method for Simulating Flow past 3D Flexible Bodies

Sharp-Interface Cartesian Method for Simulating Flow past 3D Flexible Bodies Sharp-Interface Cartesian Method for Simulating Flow past 3D Flexible Bodies ANVAR GILMANOV & FOTIS SOTIROPOULOS School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta, GA

More information

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Masanori Hashiguchi 1 1 Keisoku Engineering System Co., Ltd. 1-9-5 Uchikanda, Chiyoda-ku,

More information

Immersed Boundary Method in FOAM

Immersed Boundary Method in FOAM Immersed Boundary Method in FOAM Theory, Implementation and Use Hrvoje Jasak and Željko Tuković Chalmers University, Gothenburg Faculty of Mechanical Engineering and Naval Architecture, Zagreb Immersed

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

Characteristic Aspects of SPH Solutions

Characteristic Aspects of SPH Solutions Characteristic Aspects of SPH Solutions for Free Surface Problems: Source and Possible Treatment of High Frequency Numerical Oscillations of Local Loads. A. Colagrossi*, D. Le Touzé & G.Colicchio* *INSEAN

More information

Implementation of a new discrete Immersed Boundary Method in OpenFOAM

Implementation of a new discrete Immersed Boundary Method in OpenFOAM Implementation of a new discrete Immersed Boundary Method in OpenFOAM CONSTANT Eddy*, COLIN-BELLOT Clothilde, FAVIER Julien, MELIGA Philippe, SERRE Éric Aix-Marseille Université, CNRS, Ecole Centrale Marseille,

More information

Development of a Computational Framework for Block-Based AMR Simulations

Development of a Computational Framework for Block-Based AMR Simulations Procedia Computer Science Volume 29, 2014, Pages 2351 2359 ICCS 2014. 14th International Conference on Computational Science Development of a Computational Framework for Block-Based AMR Simulations Hideyuki

More information

Comparison Between Different Immersed Boundary Conditions for Simulation of Complex Fluid Flows

Comparison Between Different Immersed Boundary Conditions for Simulation of Complex Fluid Flows Copyright 2011 Tech Science Press FDMP, vol.7, no.3, pp.241-258, 2011 Comparison Between Different Immersed Boundary Conditions for Simulation of Complex Fluid Flows A. Mark 1 2, R. Rundqvist 1 and F.

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering

High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering Daniel J. Garmann and Miguel R. Visbal Air Force Research Laboratory, Wright-Patterson

More information

A THREE-DIMENSIONAL ADAPTIVE WAVELET METHOD FOR FLUID STRUCTURE INTERACTION

A THREE-DIMENSIONAL ADAPTIVE WAVELET METHOD FOR FLUID STRUCTURE INTERACTION A THREE-DIMENSIONAL ADAPTIVE WAVELET METHOD FOR FLUID STRUCTURE INTERACTION N.K.-R. Kevlahan 1, O.V. Vasilyev 2, D. Goldstein 2, and A. Jay 1,3 kevlahan@mcmaster.ca 1 Department of Mathematics & Statistics,

More information

An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries

An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries Journal of Computational Physics 156, 209 240 (1999) Article ID jcph.1999.6356, available online at http://www.idealibrary.com on An Accurate Cartesian Grid Method for Viscous Incompressible Flows with

More information

Pressure Correction Scheme for Incompressible Fluid Flow

Pressure Correction Scheme for Incompressible Fluid Flow AALTO UNIVERSITY School of Chemical Technology CHEM-E7160 Fluid Flow in Process Units Pressure Correction Scheme for Incompressible Fluid Flow Ong Chin Kai 620503 Lee De Ming Benedict 620448 Page 1 Abstract

More information

IMPLEMENTATION OF AN IMMERSED BOUNDARY METHOD IN SPECTRAL-ELEMENT SOFTWARE

IMPLEMENTATION OF AN IMMERSED BOUNDARY METHOD IN SPECTRAL-ELEMENT SOFTWARE Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9- December 29 IMPLEMENTATION OF AN IMMERSED BOUNDARY METHOD IN SPECTRAL-ELEMENT SOFTWARE Daniel

More information

Adaptive Cartesian Immersed Boundary Method for Simulation of Flow over Flexible Lifting Surfaces

Adaptive Cartesian Immersed Boundary Method for Simulation of Flow over Flexible Lifting Surfaces 20th AIAA Computational Fluid Dynamics Conference 27-30 June 2011, Honolulu, Hawaii AIAA 2011-3384 Adaptive Cartesian Immersed Boundary Method for Simulation of Flow over Flexible Lifting Surfaces Robert

More information

Continuum-Microscopic Models

Continuum-Microscopic Models Scientific Computing and Numerical Analysis Seminar October 1, 2010 Outline Heterogeneous Multiscale Method Adaptive Mesh ad Algorithm Refinement Equation-Free Method Incorporates two scales (length, time

More information

An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids

An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids An adaptive discretization of incompressible flow using a multitude of moving Cartesian grids R. Elliot English, Linhai Qiu,YueYu, Ronald Fedkiw Stanford University, 353 Serra Mall Room 27, Stanford, CA

More information

Profile Catalogue for Airfoil Sections Based on 3D Computations

Profile Catalogue for Airfoil Sections Based on 3D Computations Risø-R-58(EN) Profile Catalogue for Airfoil Sections Based on 3D Computations Franck Bertagnolio, Niels N. Sørensen and Jeppe Johansen Risø National Laboratory Roskilde Denmark December 26 Author: Franck

More information

SIMULATION OF FLOW AROUND KCS-HULL

SIMULATION OF FLOW AROUND KCS-HULL SIMULATION OF FLOW AROUND KCS-HULL Sven Enger (CD-adapco, Germany) Milovan Perić (CD-adapco, Germany) Robinson Perić (University of Erlangen-Nürnberg, Germany) 1.SUMMARY The paper describes results of

More information

PRACE Workshop, Worksheet 2

PRACE Workshop, Worksheet 2 PRACE Workshop, Worksheet 2 Stockholm, December 3, 2013. 0 Download files http://csc.kth.se/ rvda/prace files ws2.tar.gz. 1 Introduction In this exercise, you will have the opportunity to work with a real

More information

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS International Journal of Mechanical Engineering and Technology (IJMET Volume 9 Issue 10 October 2018 pp. 179 189 Article ID: IJMET_09_10_11 Available online at http://www.iaeme.com/ijmet/issues.asp?jtypeijmet&vtype9&itype10

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS Dr W. Malalasekera Version 3.0 August 2013 1 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE

More information

Numerical Methods in Aerodynamics. Fluid Structure Interaction. Lecture 4: Fluid Structure Interaction

Numerical Methods in Aerodynamics. Fluid Structure Interaction. Lecture 4: Fluid Structure Interaction Fluid Structure Interaction Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark

More information

Finite Volume Discretization on Irregular Voronoi Grids

Finite Volume Discretization on Irregular Voronoi Grids Finite Volume Discretization on Irregular Voronoi Grids C.Huettig 1, W. Moore 1 1 Hampton University / National Institute of Aerospace Folie 1 The earth and its terrestrial neighbors NASA Colin Rose, Dorling

More information

Steady Flow: Lid-Driven Cavity Flow

Steady Flow: Lid-Driven Cavity Flow STAR-CCM+ User Guide Steady Flow: Lid-Driven Cavity Flow 2 Steady Flow: Lid-Driven Cavity Flow This tutorial demonstrates the performance of STAR-CCM+ in solving a traditional square lid-driven cavity

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014818 TITLE: Toward Immersed Boundary Simulation of High Reynolds Number Flows DISTRIBUTION: Approved for public release, distribution

More information

Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method

Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method INTERNATIONAL JOURNAL OR NUMERICAL METHODS IN LUIDS Int. J. Numer. Meth. luids 28; 58:263 286 Published online 7 January 28 in Wiley InterScience (www.interscience.wiley.com)..76 Assessment of regularized

More information

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ by G. J. Grigoropoulos and I..S. Kefallinou 1. Introduction and setup 1. 1 Introduction The

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information

SIMULATION OF FLOW FIELD AROUND AND INSIDE SCOUR PROTECTION WITH PHYSICAL AND REALISTIC PARTICLE CONFIGURATIONS

SIMULATION OF FLOW FIELD AROUND AND INSIDE SCOUR PROTECTION WITH PHYSICAL AND REALISTIC PARTICLE CONFIGURATIONS XIX International Conference on Water Resources CMWR 2012 University of Illinois at Urbana-Champaign June 17-22, 2012 SIMULATION OF FLOW FIELD AROUND AND INSIDE SCOUR PROTECTION WITH PHYSICAL AND REALISTIC

More information

Introduction to the immersed boundary method

Introduction to the immersed boundary method Introduction to the immersed boundary method Motivation. Hydrodynamics and boundary conditions The incompressible Navier-Stokes equations, ( ) u ρ + (u )u = p + ρν 2 u + f, () t are partial differential

More information

Abstract. Introduction

Abstract. Introduction EULER SOLUTIONS AS LIMIT OF INFINITE REYNOLDS NUMBER FOR SEPARATION FLOWS AND FLOWS WITH VORTICES Wolfgang Schmidt and Antony Jameson Dornier GmbH, D-7990 Friedrichshafen, FRG and Princeton University,

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems

ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems A. J. Barlow, AWE. ICFD Workshop on Mesh Refinement Techniques 7th December 2005 Acknowledgements Thanks to Chris Powell,

More information

Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation

Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation Parallel Algorithms: Adaptive Mesh Refinement (AMR) method and its implementation Massimiliano Guarrasi m.guarrasi@cineca.it Super Computing Applications and Innovation Department AMR - Introduction Solving

More information

Aero-Vibro Acoustics For Wind Noise Application. David Roche and Ashok Khondge ANSYS, Inc.

Aero-Vibro Acoustics For Wind Noise Application. David Roche and Ashok Khondge ANSYS, Inc. Aero-Vibro Acoustics For Wind Noise Application David Roche and Ashok Khondge ANSYS, Inc. Outline 1. Wind Noise 2. Problem Description 3. Simulation Methodology 4. Results 5. Summary Thursday, October

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

COUPLING OF 3D NUMERICAL SOLUTION METHOD BASED ON NAVIER-STOKES EQUATIONS WITH SOLUTIONS BASED ON SIMPLER THEORIES

COUPLING OF 3D NUMERICAL SOLUTION METHOD BASED ON NAVIER-STOKES EQUATIONS WITH SOLUTIONS BASED ON SIMPLER THEORIES COUPLING OF 3D NUMERICAL SOLUTION METHOD BASED ON NAVIER-STOKES EQUATIONS WITH SOLUTIONS BASED ON SIMPLER THEORIES Sven Enger Milovan Perić sven.enger@cd-adapco.com milovan.peric@cd-adapco.com CD-adapco

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS 14 th European Conference on Mixing Warszawa, 10-13 September 2012 LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS Felix Muggli a, Laurent Chatagny a, Jonas Lätt b a Sulzer Markets & Technology

More information

LES Analysis on Shock-Vortex Ring Interaction

LES Analysis on Shock-Vortex Ring Interaction LES Analysis on Shock-Vortex Ring Interaction Yong Yang Jie Tang Chaoqun Liu Technical Report 2015-08 http://www.uta.edu/math/preprint/ LES Analysis on Shock-Vortex Ring Interaction Yong Yang 1, Jie Tang

More information

A NEW RESIDUAL LEAST SQUARES ERROR ESTIMATOR FOR FINITE VOLUME METHODS APPLICATIONS TO LAMINAR FLOWS

A NEW RESIDUAL LEAST SQUARES ERROR ESTIMATOR FOR FINITE VOLUME METHODS APPLICATIONS TO LAMINAR FLOWS VI International Conference on Adaptive Modeling and Simulation ADMOS 2013 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) A NEW RESIDUAL LEAST SQUARES ERROR ESTIMATOR FOR FINITE VOLUME

More information

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA.

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA. 12 th International LS-DYNA Users Conference FSI/ALE(1) LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part 1 Facundo Del

More information

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND A CYLINDRICAL CAVITY IN CROSS FLOW G. LYDON 1 & H. STAPOUNTZIS 2 1 Informatics Research Unit for Sustainable Engrg., Dept. of Civil Engrg., Univ. College Cork,

More information

FEMLAB Exercise 1 for ChE366

FEMLAB Exercise 1 for ChE366 FEMLAB Exercise 1 for ChE366 Problem statement Consider a spherical particle of radius r s moving with constant velocity U in an infinitely long cylinder of radius R that contains a Newtonian fluid. Let

More information

Case Study - Computational Fluid Dynamics (CFD) using Graphics Processing Units

Case Study - Computational Fluid Dynamics (CFD) using Graphics Processing Units - Computational Fluid Dynamics (CFD) using Graphics Processing Units Aaron F. Shinn Mechanical Science and Engineering Dept., UIUC Summer School 2009: Many-Core Processors for Science and Engineering Applications,

More information

Direct numerical simulations of flow and heat transfer over a circular cylinder at Re = 2000

Direct numerical simulations of flow and heat transfer over a circular cylinder at Re = 2000 Journal of Physics: Conference Series PAPER OPEN ACCESS Direct numerical simulations of flow and heat transfer over a circular cylinder at Re = 2000 To cite this article: M C Vidya et al 2016 J. Phys.:

More information

Validation of the Immersed Boundary CFD Approach for Complex Aerodynamic Flows

Validation of the Immersed Boundary CFD Approach for Complex Aerodynamic Flows Validation of the Immersed Boundary CFD Approach for Complex Aerodynamic Flows B. Khalighi 1, S. Jindal 1, J.P. Johnson 1, K.H. Chen 1, G. Iaccarino 2 1 General Motors, USA 2 Stanford University, USA bahram.khalighi@gm.com

More information

Eulerian Techniques for Fluid-Structure Interactions - Part II: Applications

Eulerian Techniques for Fluid-Structure Interactions - Part II: Applications Published in Lecture Notes in Computational Science and Engineering Vol. 103, Proceedings of ENUMATH 2013, pp. 755-762, Springer, 2014 Eulerian Techniques for Fluid-Structure Interactions - Part II: Applications

More information

Computation of Incompressible Navier-Stokes Equations by Local RBF-based Differential Quadrature Method

Computation of Incompressible Navier-Stokes Equations by Local RBF-based Differential Quadrature Method Copyright c 25 Tech Science Press CMES, vol7, no2, pp95-25, 25 Computation of Incompressible Navier-Stokes Equations by Local RBF-based Differential Quadrature Method C Shu,2,HDing 2, KS Yeo 2 Abstract:

More information

Bidimensional modeling for incompressible viscous flow using the Circumcenter Based Approach in an unstructured grid

Bidimensional modeling for incompressible viscous flow using the Circumcenter Based Approach in an unstructured grid Advances in Fluid Mechanics VIII 115 Bidimensional modeling for incompressible viscous flow using the Circumcenter Based Approach in an unstructured grid A. L. Fazenda1 & J. S. Travelho2 1 Department of

More information

Potsdam Propeller Test Case (PPTC)

Potsdam Propeller Test Case (PPTC) Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Workshop: Propeller performance Potsdam Propeller Test Case (PPTC) Olof Klerebrant Klasson 1, Tobias Huuva 2 1 Core

More information

Aeroacoustic computations with a new CFD solver based on the Lattice Boltzmann Method

Aeroacoustic computations with a new CFD solver based on the Lattice Boltzmann Method Aeroacoustic computations with a new CFD solver based on the Lattice Boltzmann Method D. Ricot 1, E. Foquet 2, H. Touil 3, E. Lévêque 3, H. Machrouki 4, F. Chevillotte 5, M. Meldi 6 1: Renault 2: CS 3:

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information

DNV GL s 16th Technology Week

DNV GL s 16th Technology Week OIL & GAS DNV GL s 16th Technology Week Advanced Simulation for Offshore Application: Application of CFD for Computing VIM of Floating Structures 1 SAFER, SMARTER, GREENER OUTLINE Introduction Elements

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Non-Newtonian Transitional Flow in an Eccentric Annulus

Non-Newtonian Transitional Flow in an Eccentric Annulus Tutorial 8. Non-Newtonian Transitional Flow in an Eccentric Annulus Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D, turbulent flow of a non-newtonian fluid. Turbulent

More information

Stream Function-Vorticity CFD Solver MAE 6263

Stream Function-Vorticity CFD Solver MAE 6263 Stream Function-Vorticity CFD Solver MAE 66 Charles O Neill April, 00 Abstract A finite difference CFD solver was developed for transient, two-dimensional Cartesian viscous flows. Flow parameters are solved

More information

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved.

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. Convergent Science White Paper COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. This document contains information that is proprietary to Convergent Science. Public dissemination of this document

More information

Rotorcraft Noise Prediction with Multi-disciplinary Coupling Methods. Yi Liu NIA CFD Seminar, April 10, 2012

Rotorcraft Noise Prediction with Multi-disciplinary Coupling Methods. Yi Liu NIA CFD Seminar, April 10, 2012 Rotorcraft Noise Prediction with Multi-disciplinary Coupling Methods Yi Liu NIA CFD Seminar, April 10, 2012 Outline Introduction and Background Multi-disciplinary Analysis Approaches Computational Fluid

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

Validation of an Automatic Mesh Generation Technique in Engine Simulations

Validation of an Automatic Mesh Generation Technique in Engine Simulations International Multidimensional Engine Modeling User's Group Meeting April,, Detroit, Michigan Validation of an Automatic Mesh Generation Technique in Engine s Abstract Long Liang, Anthony Shelburn, Cheng

More information

Accelerated flow acoustic boundary element solver and the noise generation of fish

Accelerated flow acoustic boundary element solver and the noise generation of fish Accelerated flow acoustic boundary element solver and the noise generation of fish JUSTIN W. JAWORSKI, NATHAN WAGENHOFFER, KEITH W. MOORED LEHIGH UNIVERSITY, BETHLEHEM, USA FLINOVIA PENN STATE 27 APRIL

More information

Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes

Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes ICFD 25 year Anniversary Conference 15-16 th September 2008 Oxford University Andrew Barlow AWE Introduction

More information

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 4-28-2016 Application

More information

Assessment of the numerical solver

Assessment of the numerical solver Chapter 5 Assessment of the numerical solver In this chapter the numerical methods described in the previous chapter are validated and benchmarked by applying them to some relatively simple test cases

More information

Recent applications of overset mesh technology in SC/Tetra

Recent applications of overset mesh technology in SC/Tetra Recent applications of overset mesh technology in SC/Tetra NIA CFD Seminar October 6, 2014 Tomohiro Irie Software Cradle Co., Ltd. 1 Contents Introduction Software Cradle SC/Tetra Background of Demands

More information

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement L.I. Garipova *, A.N. Kusyumov *, G. Barakos ** * Kazan National Research Technical University n.a. A.N.Tupolev, ** School of Engineering - The University of Liverpool Keywords: CFD, aerofoil, URANS modeling,

More information

Explicit and Implicit Coupling Strategies for Overset Grids. Jörg Brunswig, Manuel Manzke, Thomas Rung

Explicit and Implicit Coupling Strategies for Overset Grids. Jörg Brunswig, Manuel Manzke, Thomas Rung Explicit and Implicit Coupling Strategies for s Outline FreSCo+ Grid Coupling Interpolation Schemes Implementation Mass Conservation Examples Lid-driven Cavity Flow Cylinder in a Channel Oscillating Cylinder

More information

in:flux - Intelligent CFD Software

in:flux - Intelligent CFD Software in:flux - Intelligent CFD Software info@insightnumerics.com Fire and Gas Mapping. Optimized. Slide 1 Introduction to in:flux in:flux is a CFD software product to be used for dispersion and ventilation

More information

Proof. Non-Graded Adaptive Grid Approaches to the Incompressible Navier-Stokes Equations. FDMP Galley Proof Only Please Return in 48 Hours.

Proof. Non-Graded Adaptive Grid Approaches to the Incompressible Navier-Stokes Equations. FDMP Galley Proof Only Please Return in 48 Hours. Copyright c 008 Tech Science Press FDMP, vol.066, no.1, pp.1-1, 008 Non-Graded Adaptive Grid Approaches to the Incompressible Navier-Stokes Equations Frédéric Gibou 1, Chohong Min, Hector D. Ceniceros

More information

Study of Swept Angle Effects on Grid Fins Aerodynamics Performance

Study of Swept Angle Effects on Grid Fins Aerodynamics Performance Journal of Physics: Conference Series PAPER OPEN ACCESS Study of Swept Angle Effects on Grid Fins Aerodynamics Performance To cite this article: G A Faza et al 2018 J. Phys.: Conf. Ser. 1005 012013 View

More information