Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes

Size: px
Start display at page:

Download "Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes"

Transcription

1 Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes ICFD 25 year Anniversary Conference th September 2008 Oxford University Andrew Barlow AWE

2 Introduction This talk will attempt to describe the state of the art in numerical methods for hydrocodes. The key future challenges over the next decade will also be identified.

3 ALE and Eulerian methods ALE The two main types of hydrocode in use today are Arbitrary Lagrangian Eulerian (ALE) and Eulerian codes. This talk will concentrate on ALE methods since ALE codes offer significant advantages for multimaterial problems. However it is recognised that Eulerian codes are often used for robustness and ease of use. Eulerian AMR

4 Arbitrary Lagrangian Eulerian methods Most multi-material ALE hydrocodes employ staggered grid hydrodynamics schemes, where each timestep is divided into Lagrangian, rezone and remap steps. This talk will focus on the following key parts of the ALE algorithm that are considered most in need of further development for hydrocodes: Lagrangian methods Lagrangian treatment of material interfaces Mesh movement algorithms Interface reconstruction methods ALE/AMR

5 Compatible Hydrodynamics 1 State of the art ALE codes usually employ Compatible or Mimetic finite volume or finite element discretization methods for the Lagrangian step. Essentially this implies the internal energy is updated compatibly: where f are the corner forces calculated during the momentum step. Corner masses are also treated as Lagrangian objects like the zone masses. E. J. Caramana, D. E. Burton, M. J. Shashkov and P. P. Whalen, The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy., J. Comput. Phys. 146 (1):227, A. J. Barlow, A compatible finite element multi-material ALE hydrodynamics algorithm., Int. J. Numer. Meth. Fluids 2008; 56:

6 Compatible Hydrodynamics 2 Compatible hydro offers: Total energy conservation to round off for the Lagrangian step. Increased flexibilty in types of forces that can be allowed within a zone (e.g. sub-zonal pressures and edge artificial viscosities). This flexibility can be used to improve accuracy and robustness.

7 Sub-zonal pressures can be introduced by subdividing each computational zone into sub-elements. The initial mass for which are stored at the start of the calculation and used each time step to define sub-zonal densities. Sub-Zonal pressures Subzonal pressure perturbations can then estimated from the sound speed. 2 Δp p, z = cs, zδρ p, z E. J. Caramana and M. J. Shashkov, Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures., J. Comput. Phys. 142 (2):521, 1998.

8 Monotonic edge artificial viscosity The force exerted by the artificial viscosity between nodes 1 and 2 is: f visc 21 = ( 1 ψ 21 ) ρ ( c c, c v 21 )[ v 21. S ˆ z l s z + q Δ Δ 1 ] Δ v 21 where ρ z and c s,z are the density and sound speed; Δv 12 = v 2 -v 1 is the difference in velocity along edge 21; S i are median mesh vectors and [.] is a compression switch. E. J. Caramana, M. J. Shashkov and P. P. Whalen, Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations., J. Comput. Phys. 144 (1):70, 1998.

9 Test Problem Results Saltzman s Piston Noh

10 Projectile impact problem 0.2 cm/μs Aluminium Steel projectile

11 Projectile impact problem

12 Challenges for Lagrangian methods 2D and 3D Symmetry preservation 2D cylindrical symmetry with non-uniform angular zoning or reduced connectivity Spherical symmetry in 3D Mesh dependence of artificial viscosity Edge artificial viscosity is less mesh dependent than a element centred scalar monotonic artificial viscosity, but still shows mesh dependence Porous and spalling material shows greatest sensitivity Sound speed dependence of sub-zonal pressure scheme A well defined sound speed is required for sub-zonal pressure schemes to be effective Treatment of disjoint node or dendritic mesh boundaries The well known artificial vorticity problem is observed when a shock crosses a mesh refinement boundary

13 Potential improvements to Lagrangian methods Tensor edge viscosity could further reduce mesh dependence and may improve symmetry A cell centred Lagrangian schemes should remove need for artificial viscosity and subzonal pressure schemes The challenge is how to move the vertices in a consistent manner. High order mixed finite element methods may provide a means of improving symmetry in 2D RZ and 3D These methods often result in node centred pressures which may provide robustness in a similar manner to the subzonal pressures schemes currently in use. J. C. Campbell and M. J. Shashkov, A tensor artificial viscosity using a mimetic finite difference algorithm., J. Comput. Phys. 172 (2):739:765, P-H. Maire and J. Breil, A second-order cell-centered Lagrangian scheme for twodimensional compressible flow problems., Int. J. Numer. Meth. Fluids (in press). Published online in Wiley InterScience (

14 Lagrangian Treatment of multi-material cells State of the art multi-material ALE codes can model material interfaces with slide and contact or volume of fluid (VOF) algorithms. A VOF treatment is used for robustness to allow mesh relaxation across material interfaces when severe material deformation occurs at a material interface. This introduces multi-material cells, where the amount of each material present is given by a volume fraction variable.

15 Closure models for multi-material cells Given the lack of information about the velocity field within multi-material cells a closure model is required to define how the volume fractions evolve during the Lagrangian step. Closure model for multi-material cells are typically based either on pressure relaxation schemes or a sub-cell dynamics model. A. J. Barlow, A new Lagrangian scheme for multi-material cells, Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS Computational Fluid Dynamics Conference 2001, Swansea, Wales, UK. M. Shashkov, Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes., Int. J. Numer. Meth. Fluids (in press). Published online in Wiley InterScience (

16 Challenges for multi-material cell closure models To develop a closure model that fully emulates all the interface physics that can be represented by slide and contact algorithms Void closure Void opening Compatibility with material strength Slide (separate velocities required per material component) Friction

17 Potential improvements to multi-material cell closure models Recent work at AWE has produced a physics based sub-cell dynamics method which allows expansion and compression to occur simultaneously. The new method starts from the assumption of equal volumetric strain, but then uses an acoustic Riemann solver to define volume exchanges between adjacent materials. The volume exchange is limited to maintain an average cell pressure which is bounded by the maximum and minimum pressures of the multimaterial cells components

18 Modified Sod Problem L R γ U 0 0 ρ ε p Ideal gas EOS p = ( γ 1)ρε

19 Modified Sod Problem

20 Water/air problem L R γ U 0 0 ρ 1.0e+3 5.0e+2 P 1.0e+9 1.0e+6 P 6.0e+8 0 Stiffened gas EOS p = ( γ 1)ρε γp

21 Water/air problem

22 Mesh Movement 1 In most cases Lagrangian mesh motion is what is desired. Mesh movement are used as the mesh becomes distorted to improve mesh quality and to achieve robustness. Typically equipotential mesh movement algorithms like Winslow s method are used with additional constraints to limit relaxation. A. M. Winslow, Equipotential zoning of two-dimensional meshes. Technical report UCRL-7312, Lawrence Livermore National Laboratory, 1963.

23 Mesh Movement 2 Separate mesh movement algorithms are normally applied to reposition nodes along slide lines before the internal mesh movement is performed. The constraints may be physics based e.g. nodes can t relax until zone has fully detonated. Alternatively geometric criteria may be used to detect zone distortion or cell collapse e.g. measurement of corner angle or collapse of corner area.

24 Challenges for mesh movement algorithms The challenge for mesh movement algorithms is to develop algorithms that will move the mesh in such a way as maintain robustness while staying as close as possible to the Lagrangian mesh motion. Robustness must be possible without user intervention. But user needs to retain sufficient control if required to be able to focus resolution in areas of interest or follow physics of interest. P. M. Knupp, L.G. Margolin and M. J. Shashkov, Reference Jacobian optimization-based rezone strategies for Arbitrary Lagrangian-Eulerian methods., J. Comput. Phys. 176 (2002)

25 NIF Can Mesh at t=0.0 ns

26 NIF Can Mesh at t=300.0 ps

27 NIF Can Mesh at t=500.0 ps

28 NIF Can Mesh at t=700.0 ps

29 NIF Can Mesh at t=900.0 ps

30 NIF Can Mesh at t= ps

31 Interface reconstruction 1 Youngs interface reconstruction method is used most state of the art hydrocodes. Youngs method represents the material interface as an inclined straight line.

32 Interface reconstruction 2 The slope of the line is obtained from the neighbouring cell volume fractions. The line is then moved along its normal until the volume fractions in the cell are matched.

33 Interface reconstruction 3 The reconstructed interface is used to partition the donor fluxing volume for the cell. This defines the volume fraction fluxes being donated and enables first order donor cell advection of the state variables for the material components.

34 Challenges for interface reconstruction methods Youngs interface reconstruction is first order, produces discontinuous interfaces and for more than two materials interfaces can cross. A second order method is required which preserves continuous interface where possible. It must also avoid the cross over problem and handle T-junctions.

35 HELMIT Basic idea - extend interface from a single line to two connected or hinged lines: Hinged Line Method of Interface Tracking

36 Final result looks like this: Youngs interfaces HELMIT interfaces

37 Moment of fluid method Moment of fluid method looks most promising new interface reconstruction method. Makes use of centroid data in addition to local volume fractions. Tracks centroids through Lagrangian step, then adjusts interface normal until gets closest agreement between centroid for reconstructed material interface and tracked centroid position. The tracked centroid position may however need to be modified if a closure model changes volume fractions! V. Dyadechko and M. Shashkov, Moment-of-fluid interface reconstruction. Technical report LA-UR , Los Alamos National Laboratory, 2005.

38 ALE mesh adaption is efficient but mesh resolution is limited by its penalty nature. A hybrid ALE/AMR capability should maintain the benefits of the ALE, but allow extra resolution to be added locally when physics requires it e.g. reactive flow. ALE/AMR 1

39 ALE/AMR 2 A hybrid ALE/AMR method is currently under development at AWE. Cell by cell refinement strategy. Efficient data structures based on existing connectivity arrays. Disjoint nodes used at refinement boundaries for Lagrangian step and in applying mesh relaxation. Only solve on finest level. J. M. Morrell, P. K. Sweby and A. J. Barlow, A cell by cell anisotropic adaptive mesh ALE scheme for numerical solution of the Euler equations., J. Comput. Phys :1180, 2007.

40 ALE/AMR 3 Programmed burn 4 Levels of refinement Factor of 10 speedup achieved verses uniform fine

41 ALE/AMR 4

42 Challenges for ALE/AMR Parallel scalability could be degraded by AMR! Refinement and derefinement is complicated by non-orthogonal ALE mesh Error estimators need to be developed that work well for all physics of interest Extension to 3D Can AMR techniques be applied to other problems such as explicit fracture modelling!

43 Explicit Fracture modelling Ideas from 2D ALE/AMR are now being used to develop an explicit fracture modelling capability in 3D at AWE

44 Conclusions This talk has described the state of the art in numerical methods for hydrocodes used to simulate the dynamic compression of condensed matter. A view has also been given of the key challenges for the next decade in this area and some suggestions made of areas where progress is expected.

ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems

ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems ALE and AMR Mesh Refinement Techniques for Multi-material Hydrodynamics Problems A. J. Barlow, AWE. ICFD Workshop on Mesh Refinement Techniques 7th December 2005 Acknowledgements Thanks to Chris Powell,

More information

Vector Image Polygon (VIP) limiters in ALE Hydrodynamics

Vector Image Polygon (VIP) limiters in ALE Hydrodynamics New Models and Hydrocodes, Paris, France,24-28 May 2010 Vector Image Polygon (VIP) limiters in ALE Hydrodynamics 6 4 8 3 5 2 79 1 2 1 1 1 Gabi Luttwak 1 and Joseph Falcovitz 2 1 Rafael, P.O. Box 2250,

More information

Sliding and multi-fluid velocities in Staggered Mesh Eulerian and MMALE codes

Sliding and multi-fluid velocities in Staggered Mesh Eulerian and MMALE codes Sliding and multi-fluid velocities in Staggered Mesh Eulerian and MMALE codes Gabi Luttwak 1 1 Rafael, P.O. Box 2250, Haifa 31021, Israel The Velocity in Eulerian and MMALE Codes Most Eulerian and MMALE

More information

A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method for the numerical solution of the Euler equations. J. M.

A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method for the numerical solution of the Euler equations. J. M. THE UNIVERSITY OF READING DEPARTMENT OF MATHEMATICS A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method for the numerical solution of the Euler equations. J. M. Morrell Thesis

More information

ARBITRARY LAGRANGIAN-EULERIAN (ALE) METHODS IN COMPRESSIBLE FLUID DYNAMICS. Milan Kuchařík, Richard Liska, Pavel Váchal, Mikhail Shashkov

ARBITRARY LAGRANGIAN-EULERIAN (ALE) METHODS IN COMPRESSIBLE FLUID DYNAMICS. Milan Kuchařík, Richard Liska, Pavel Váchal, Mikhail Shashkov ARBITRARY LAGRANGIAN-EULERIAN (ALE) METHODS IN COMPRESSIBLE FLUID DYNAMICS Milan Kuchařík, Richard Liska, Pavel Váchal, Mikhail Shashkov Abstract The aim of this paper is to present an Arbitrary Lagrangian-Eulerian

More information

ARBITRARY LAGRANGIAN EULERIAN METHOD FOR COMPRESSIBLE PLASMA SIMULATIONS

ARBITRARY LAGRANGIAN EULERIAN METHOD FOR COMPRESSIBLE PLASMA SIMULATIONS roceedings of Equadiff-11 2005, pp. 213 222 ISBN 978-80-227-2624-5 ARBITRARY LAGRANGIAN EULERIAN METHOD FOR COMRESSIBLE LASMA SIMULATIONS RICHARD LISKA AND MILAN KUCHAŘÍK Abstract. Laser plasma is modeled

More information

SIMULATION OF A DETONATION CHAMBER TEST CASE

SIMULATION OF A DETONATION CHAMBER TEST CASE SIMULATION OF A DETONATION CHAMBER TEST CASE Daniel Hilding Engineering Research Nordic AB Garnisonen I4, Byggnad 5 SE-582 10 Linköping www.erab.se daniel.hilding@erab.se Abstract The purpose of a detonation

More information

CTH: A Software Family for Multi-Dimensional Shock Physics Analysis E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J.

CTH: A Software Family for Multi-Dimensional Shock Physics Analysis E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. CTH: A Software Family for Multi-Dimensional Shock Physics Analysis E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M. McGlaun, S. V. Petney, S. A. Silling, P. A. Taylor,

More information

Example 13 - Shock Tube

Example 13 - Shock Tube Example 13 - Shock Tube Summary This famous experiment is interesting for observing the shock-wave propagation. Moreover, this case uses the representation of perfect gas and compares the different formulations:

More information

VIP (Vector Image Polygon) multi-dimensional slope limiters for scalar variables

VIP (Vector Image Polygon) multi-dimensional slope limiters for scalar variables VIP (Vector Image Polygon) multi-dimensional slope limiters for scalar variables Gabi Luttwak a, Joseph Falcovitz b a Rafael, Box 2250, Haifa 31021, Israel b Institute of Mathematics, The Hebrew University

More information

A cell-centered Arbitrary Lagrangian Eulerian method for two-dimensional multimaterial problems

A cell-centered Arbitrary Lagrangian Eulerian method for two-dimensional multimaterial problems A cell-centered Arbitrary Lagrangian Eulerian method for two-dimensional multimaterial problems Application to Inertial Confinement Fusion modeling in the direct drive context Pierre-Henri Maire, maire@celia.u-bordeaux1.fr

More information

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA.

LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA. 12 th International LS-DYNA Users Conference FSI/ALE(1) LS-DYNA 980 : Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part 1 Facundo Del

More information

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi

Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Computation in Astrophysics Seminar (Spring 2006) L. J. Dursi Lagrangian methods and Smoothed Particle Hydrodynamics (SPH) Eulerian Grid Methods The methods covered so far in this course use an Eulerian grid: Prescribed coordinates In `lab frame' Fluid elements flow

More information

Validation Test Case Suite for compressible hydrodynamics computation

Validation Test Case Suite for compressible hydrodynamics computation Validation Test Case Suite for compressible hydrodynamics computation Raphaël Loubère Theoretical Division, T-, Los Alamos National Laboratory MS-B, Los Alamos, NM,, USA loubere@lanl.gov September, Contents

More information

Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly!

Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly! : LA- UR 11-05852 Computing & Verifying Compressible Fluid Dynamics:! The Good, The Bad and The Ugly! Tariq Aslam! Los Alamos National Laboratory! WX-9: Shock and Detonation Physics! Slide 1 Background:!

More information

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar Philipp Hahn Acknowledgements Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar 2 Outline Motivation Lumped Mass Model Model properties Simulation

More information

ALE Adaptive Mesh Refinement in LS-DYNA

ALE Adaptive Mesh Refinement in LS-DYNA 12 th International LS-DYNA Users Conference FSI/ALE(2) ALE Adaptive Mesh Refinement in LS-DYNA Nicolas AQUELET Livermore Software Technology Corp. 7374 Las Positas Rd Livermore CA94550 aquelet@lstc.com

More information

Bubble Dynamics using Free Surfaces in a VOF framework

Bubble Dynamics using Free Surfaces in a VOF framework Bubble Dynamics using Free Surfaces in a VOF framework Sevilla Meeting: Numerical Challenges in two-phase flows 27 October 2014 Léon MALAN Supervisor: Prof. Stéphane ZALESKI 1 Contents Introduction: Simulation

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes

Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes Parallelization study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes L. Jofre, O. Lehmkuhl, R. Borrell, J. Castro and A. Oliva Corresponding author: cttc@cttc.upc.edu Centre Tecnològic

More information

An Embedded Boundary Method with Adaptive Mesh Refinements

An Embedded Boundary Method with Adaptive Mesh Refinements An Embedded Boundary Method with Adaptive Mesh Refinements Marcos Vanella and Elias Balaras 8 th World Congress on Computational Mechanics, WCCM8 5 th European Congress on Computational Methods in Applied

More information

Modelling of Impact on a Fuel Tank Using Smoothed Particle Hydrodynamics

Modelling of Impact on a Fuel Tank Using Smoothed Particle Hydrodynamics Modelling of Impact on a Fuel Tank Using Smoothed Particle Hydrodynamics R. Vignjevic a, T. De Vuyst a, J. Campbell a, N. Bourne b School of Engineering, Cranfield University, Bedfordshire, MK43 0AL, UK.

More information

Literature Report. Daniël Pols. 23 May 2018

Literature Report. Daniël Pols. 23 May 2018 Literature Report Daniël Pols 23 May 2018 Applications Two-phase flow model The evolution of the momentum field in a two phase flow problem is given by the Navier-Stokes equations: u t + u u = 1 ρ p +

More information

14 Dec 94. Hydrocode Micro-Model Concept for Multi-Component Flow in Sediments Hans U. Mair

14 Dec 94. Hydrocode Micro-Model Concept for Multi-Component Flow in Sediments Hans U. Mair Hydrocode Micro-Model Concept for Multi-Component Flow in Sediments Hans U. Mair mairh@asme.org Background Hydrocodes are Computational Mechanics tools that simulate the compressible dynamics (i.e., shock

More information

Solving Partial Differential Equations on Overlapping Grids

Solving Partial Differential Equations on Overlapping Grids **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Solving Partial Differential Equations on Overlapping Grids William D. Henshaw Centre for Applied Scientific

More information

A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations

A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations Juan Cheng and Chi-Wang Shu 2 Abstract Based on the high order essentially non-oscillatory (ENO)

More information

Fluid-Structure Interaction in LS-DYNA: Industrial Applications

Fluid-Structure Interaction in LS-DYNA: Industrial Applications 4 th European LS-DYNA Users Conference Aerospace / Fluid-Struct. Inter. Fluid-Structure Interaction in LS-DYNA: Industrial Applications M hamed Souli Universite des Sciences et Technologie de Lille Laboratoire

More information

ALE METHODS FOR DETERMINING STATIONARY SOLUTIONS OF METAL FORMING PROCESSES

ALE METHODS FOR DETERMINING STATIONARY SOLUTIONS OF METAL FORMING PROCESSES European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000 Barcelona, 11-14 September 2000 c ECCOMAS ALE METHODS FOR DETERMINING STATIONARY SOLUTIONS OF METAL FORMING PROCESSES

More information

SPH: Why and what for?

SPH: Why and what for? SPH: Why and what for? 4 th SPHERIC training day David Le Touzé, Fluid Mechanics Laboratory, Ecole Centrale de Nantes / CNRS SPH What for and why? How it works? Why not for everything? Duality of SPH SPH

More information

Navier-Stokes & Flow Simulation

Navier-Stokes & Flow Simulation Last Time? Navier-Stokes & Flow Simulation Pop Worksheet! Teams of 2. Hand in to Jeramey after we discuss. Sketch the first few frames of a 2D explicit Euler mass-spring simulation for a 2x3 cloth network

More information

The Development of a Volume-of-Fluid Interface Tracking Method for Modeling Problems in Mantle Convection

The Development of a Volume-of-Fluid Interface Tracking Method for Modeling Problems in Mantle Convection The Development of a Volume-of-Fluid Interface Tracking Method for Modeling Problems in Mantle Convection Jonathan Robey 1 September 12, 2016 1 Funded in part by a GAANN Fellowship 1 Motivation Mantle

More information

A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction

A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction Stéphane Galera a,, Pierre-Henri Maire a,, Jérôme Breil a a UMR CELIA, Université Bordeaux I 35,

More information

Finite Volume Discretization on Irregular Voronoi Grids

Finite Volume Discretization on Irregular Voronoi Grids Finite Volume Discretization on Irregular Voronoi Grids C.Huettig 1, W. Moore 1 1 Hampton University / National Institute of Aerospace Folie 1 The earth and its terrestrial neighbors NASA Colin Rose, Dorling

More information

Volume Tracking on Adaptively Refined Grids with Curvature Based Refinement

Volume Tracking on Adaptively Refined Grids with Curvature Based Refinement Volume Tracking on Adaptively Refined Grids with Curvature Based Refinement Mayank Malik, Markus Bussmann Department of Mechanical & Industrial Engineering, University of Toronto mayank.malik@utoronto.ca,

More information

AREPO: a moving-mesh code for cosmological hydrodynamical simulations

AREPO: a moving-mesh code for cosmological hydrodynamical simulations AREPO: a moving-mesh code for cosmological hydrodynamical simulations E pur si muove: Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh Springel, 2010 arxiv:0901.4107 Rubens

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information

FEM techniques for interfacial flows

FEM techniques for interfacial flows FEM techniques for interfacial flows How to avoid the explicit reconstruction of interfaces Stefan Turek, Shu-Ren Hysing (ture@featflow.de) Institute for Applied Mathematics University of Dortmund Int.

More information

Simulating Reinforced Concrete Beam-Column Against Close-In Detonation using S-ALE Solver

Simulating Reinforced Concrete Beam-Column Against Close-In Detonation using S-ALE Solver Simulating Reinforced Concrete Beam-Column Against Close-In Detonation using S-ALE Solver Shih Kwang Tay, Roger Chan and Jiing Koon Poon Ministry of Home Affairs, Singapore 1 Abstract A 3-stage loading

More information

ExactPack: A Master Code of Exact Solutions for Code Verification

ExactPack: A Master Code of Exact Solutions for Code Verification ExactPack: A Master Code of Exact Solutions for Code Verification Robert L. Singleton Jr. Los Alamos National Laboratory bobs1@lanl.gov Collaborators: Scott Doebling Daniel Israel James Kamm ASME V&V Symposium

More information

Coastal impact of a tsunami Review of numerical models

Coastal impact of a tsunami Review of numerical models Coastal impact of a tsunami Review of numerical models Richard Marcer 2 Content Physics to simulate Different approaches of modelling 2D depth average Full 3D Navier-Stokes 3D model Key point : free surface

More information

Calculation of Blast Loading in the High Performance Magazine with AUTODYN-3D

Calculation of Blast Loading in the High Performance Magazine with AUTODYN-3D Calculation of Blast Loading in the High Performance Magazine with AUTODYN-3D Naury K. Birnbaum * James Tancreto ** Kevin Hager ** * Century Dynamics, Inc., Oakland, CA ** Naval Facilities Engineering

More information

NUMERICAL SIMULATION OF STRUCTURAL DEFORMATION UNDER SHOCK AND IMPACT LOADS USING A COUPLED MULTI-SOLVER APPROACH

NUMERICAL SIMULATION OF STRUCTURAL DEFORMATION UNDER SHOCK AND IMPACT LOADS USING A COUPLED MULTI-SOLVER APPROACH NUMERICAL SIMULATION OF STRUCTURAL DEFORMATION UNDER SHOCK AND IMPACT LOADS USING A COUPLED MULTI-SOLVER APPROACH X. Quan, N. K. Birnbaum, M.S. Cowler, B. I. Gerber Century Dynamics, Inc., 1001 Galaxy

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

On the thickness of discontinuities computed by THINC and RK schemes

On the thickness of discontinuities computed by THINC and RK schemes The 9th Computational Fluid Dynamics Symposium B7- On the thickness of discontinuities computed by THINC and RK schemes Taku Nonomura, ISAS, JAXA, Sagamihara, Kanagawa, Japan, E-mail:nonomura@flab.isas.jaxa.jp

More information

HYBRID SCHEMES FOR EULER EQUATIONS IN LAGRANGIAN COORDINATES

HYBRID SCHEMES FOR EULER EQUATIONS IN LAGRANGIAN COORDINATES Proceedings of ALGORITMY 25 pp. 83 92 HYBRID SCHEMES FOR EULER EQUATIONS IN LAGRANGIAN COORDINATES PAVEL BUREŠ AND RICHARD LISKA. Astract. Many fluid dynamics prolems modeled y Euler equations involve

More information

A Novel Approach to High Speed Collision

A Novel Approach to High Speed Collision A Novel Approach to High Speed Collision Avril Slone University of Greenwich Motivation High Speed Impact Currently a very active research area. Generic projectile- target collision 11 th September 2001.

More information

A METHOD TO INCREASE THE TIP VELOCITY OF A SHAPED CHARGE JET. William P. Walters and Daniel R. Scheffler

A METHOD TO INCREASE THE TIP VELOCITY OF A SHAPED CHARGE JET. William P. Walters and Daniel R. Scheffler 23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-20 APRIL 2007 A METHOD TO INCREASE THE TIP VELOCITY OF A SHAPED CHARGE JET William P. Walters and Daniel R. Scheffler US Army Research Laboratory,

More information

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved.

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. Convergent Science White Paper COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved. This document contains information that is proprietary to Convergent Science. Public dissemination of this document

More information

A brief description of the particle finite element method (PFEM2). Extensions to free surface

A brief description of the particle finite element method (PFEM2). Extensions to free surface A brief description of the particle finite element method (PFEM2). Extensions to free surface flows. Juan M. Gimenez, L.M. González, CIMEC Universidad Nacional del Litoral (UNL) Santa Fe, Argentina Universidad

More information

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere

A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere A Semi-Lagrangian Discontinuous Galerkin (SLDG) Conservative Transport Scheme on the Cubed-Sphere Ram Nair Computational and Information Systems Laboratory (CISL) National Center for Atmospheric Research

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching Paul Groenenboom ESI Group Delft, Netherlands Martin Siemann German Aerospace Center (DLR) Stuttgart, Germany

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

Numerical Methods. (Additional Notes from Talks by PFH)

Numerical Methods. (Additional Notes from Talks by PFH) Numerical Methods (Additional Notes from Talks by PFH) SPH Challenge: POPULAR METHODS FOR HYDRODYNAMICS HAVE PROBLEMS Lucy 77, Gingold & Monaghan 77 Reviews by: Springel 11, Price 12 Smoothed-Particle

More information

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS

LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS 14 th European Conference on Mixing Warszawa, 10-13 September 2012 LATTICE-BOLTZMANN METHOD FOR THE SIMULATION OF LAMINAR MIXERS Felix Muggli a, Laurent Chatagny a, Jonas Lätt b a Sulzer Markets & Technology

More information

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things:

Water. Notes. Free surface. Boundary conditions. This week: extend our 3D flow solver to full 3D water We need to add two things: Notes Added a 2D cross-section viewer for assignment 6 Not great, but an alternative if the full 3d viewer isn t working for you Warning about the formulas in Fedkiw, Stam, and Jensen - maybe not right

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

3D simulations of concrete penetration using SPH formulation and the RHT material model

3D simulations of concrete penetration using SPH formulation and the RHT material model 3D simulations of concrete penetration using SPH formulation and the RHT material model H. Hansson Weapons and Protection, Swedish Defence Research Agency (FOI), Sweden Abstract This paper describes work

More information

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique C.W. Hirt and J.E. Richardson, Flow Science, Inc., 1257 40th, Los Alamos, NM 87544 and Ken S. Chen, Sandia

More information

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow Homogenization and numerical Upscaling Unsaturated flow and two-phase flow Insa Neuweiler Institute of Hydromechanics, University of Stuttgart Outline Block 1: Introduction and Repetition Homogenization

More information

Modeling External Compressible Flow

Modeling External Compressible Flow Tutorial 3. Modeling External Compressible Flow Introduction The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a nonzero angle of attack. You will use the Spalart-Allmaras

More information

Free Surface Flow Simulations

Free Surface Flow Simulations Free Surface Flow Simulations Hrvoje Jasak h.jasak@wikki.co.uk Wikki Ltd. United Kingdom 11/Jan/2005 Free Surface Flow Simulations p.1/26 Outline Objective Present two numerical modelling approaches for

More information

SLICE-3D: A three-dimensional conservative semi-lagrangian scheme for transport problems. Mohamed Zerroukat. Met Office, Exeter, UK

SLICE-3D: A three-dimensional conservative semi-lagrangian scheme for transport problems. Mohamed Zerroukat. Met Office, Exeter, UK SLICE-D: A three-dimensional conservative semi-lagrangian scheme for transport problems Mohamed Zerroukat (Nigel wood & Andrew Staniforth) Met Office, Exeter, UK SRNWP-NT, Zagreb, c Crown Copyright Content

More information

Large Scale Simulation of Cloud Cavitation Collapse

Large Scale Simulation of Cloud Cavitation Collapse PRACEdays17 Barcelona, May 16-18, 2017 Large Scale Simulation of Cloud Cavitation Collapse Ursula Rasthofer with: Fabian Wermelinger, Petr Karnakov, Panagiotis Hadjidoukas, Petros Koumoutsakos CSElab Computational

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Modeling and Simulation of Underwater Shock Problems Using a Coupled Lagrangian-Eulerian Analysis Approach

Modeling and Simulation of Underwater Shock Problems Using a Coupled Lagrangian-Eulerian Analysis Approach Calhoun: The NPS Institutional Archive Faculty and Researcher Publications Faculty and Researcher Publications Collection 1997 Modeling and Simulation of Underwater Shock Problems Using a Coupled Lagrangian-Eulerian

More information

Two-dimensional laminar shock wave / boundary layer interaction

Two-dimensional laminar shock wave / boundary layer interaction Two-dimensional laminar shock wave / boundary layer interaction J.-Ch. Robinet (), V. Daru (,) and Ch. Tenaud () () SINUMEF Laboratory, ENSAM-PARIS () LIMSI-CNRS 5, Bd. de l Hôpital, PARIS 753, France

More information

SPH: Towards the simulation of wave-body interactions in extreme seas

SPH: Towards the simulation of wave-body interactions in extreme seas SPH: Towards the simulation of wave-body interactions in extreme seas Guillaume Oger, Mathieu Doring, Bertrand Alessandrini, and Pierre Ferrant Fluid Mechanics Laboratory (CNRS UMR6598) Ecole Centrale

More information

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research

Realtime Water Simulation on GPU. Nuttapong Chentanez NVIDIA Research 1 Realtime Water Simulation on GPU Nuttapong Chentanez NVIDIA Research 2 3 Overview Approaches to realtime water simulation Hybrid shallow water solver + particles Hybrid 3D tall cell water solver + particles

More information

Numerical Methods for (Time-Dependent) HJ PDEs

Numerical Methods for (Time-Dependent) HJ PDEs Numerical Methods for (Time-Dependent) HJ PDEs Ian Mitchell Department of Computer Science The University of British Columbia research supported by National Science and Engineering Research Council of

More information

Continuum-Microscopic Models

Continuum-Microscopic Models Scientific Computing and Numerical Analysis Seminar October 1, 2010 Outline Heterogeneous Multiscale Method Adaptive Mesh ad Algorithm Refinement Equation-Free Method Incorporates two scales (length, time

More information

A MULTI-DOMAIN ALE ALGORITHM FOR SIMULATING FLOWS INSIDE FREE-PISTON DRIVEN HYPERSONIC TEST FACILITIES

A MULTI-DOMAIN ALE ALGORITHM FOR SIMULATING FLOWS INSIDE FREE-PISTON DRIVEN HYPERSONIC TEST FACILITIES A MULTI-DOMAIN ALE ALGORITHM FOR SIMULATING FLOWS INSIDE FREE-PISTON DRIVEN HYPERSONIC TEST FACILITIES Khalil Bensassi, and Herman Deconinck Von Karman Institute for Fluid Dynamics Aeronautics & Aerospace

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling CIVL 7/8117 1/43 Chapter 7 Learning Objectives To present concepts that should be considered when modeling for a situation by the finite element method, such as aspect ratio, symmetry, natural subdivisions,

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

A Brief Description of New Algorithms incorporated into CTH: A model for Rigid Obstacles and an Interface for Coupling with Structural Codes

A Brief Description of New Algorithms incorporated into CTH: A model for Rigid Obstacles and an Interface for Coupling with Structural Codes A Brief Description of New Algorithms incorporated into CTH: A model for Rigid Obstacles and an Interface for Coupling with Structural Codes David L. Littlefield Texas Institute for Computational and Applied

More information

Aurélien Thinat Stéphane Cordier 1, François Cany

Aurélien Thinat Stéphane Cordier 1, François Cany SimHydro 2012:New trends in simulation - Hydroinformatics and 3D modeling, 12-14 September 2012, Nice Aurélien Thinat, Stéphane Cordier, François Cany Application of OpenFOAM to the study of wave loads

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

Numerical Simulation of Near-Field Explosion

Numerical Simulation of Near-Field Explosion Journal of Applied Science and Engineering, Vol. 16, No. 1, pp. 61 67 (2013) 61 Numerical Simulation of Near-Field Explosion Ding-Shing Cheng 1, Cheng-Wei Hung 2 and Sheng-Jung Pi 2 * 1 Department of Environmental

More information

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics H. Y. Schive ( 薛熙于 ) Graduate Institute of Physics, National Taiwan University Leung Center for Cosmology and Particle Astrophysics

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Characteristic Aspects of SPH Solutions

Characteristic Aspects of SPH Solutions Characteristic Aspects of SPH Solutions for Free Surface Problems: Source and Possible Treatment of High Frequency Numerical Oscillations of Local Loads. A. Colagrossi*, D. Le Touzé & G.Colicchio* *INSEAN

More information

Table of contents for: Waves and Mean Flows by Oliver Bühler Cambridge University Press 2009 Monographs on Mechanics. Contents.

Table of contents for: Waves and Mean Flows by Oliver Bühler Cambridge University Press 2009 Monographs on Mechanics. Contents. Table of contents for: Waves and Mean Flows by Oliver Bühler Cambridge University Press 2009 Monographs on Mechanics. Preface page 2 Part I Fluid Dynamics and Waves 7 1 Elements of fluid dynamics 9 1.1

More information

Adaptive Mesh Refinement

Adaptive Mesh Refinement Aleander Knebe, Universidad Autonoma de Madrid Adaptive Mesh Refinement AMR codes Poisson s equation ΔΦ( ) = 4πGρ( ) Poisson s equation F ( ) = m Φ( ) ΔΦ( ) = 4πGρ( ) particle approach F ( Gm i ) = i m

More information

ALE and Fluid-Structure Interaction in LS-DYNA March 2004

ALE and Fluid-Structure Interaction in LS-DYNA March 2004 ALE and Fluid-Structure Interaction in LS-DYNA March 2004 Workshop Models 1. Taylor bar impact 2. One-dimensional advection test 3. Channel 4. Underwater explosion 5. Bar impacting water surface 6. Sloshing

More information

ANSYS/LS-Dyna. Modeling. Prepared by. M Senior Engineering Manager

ANSYS/LS-Dyna. Modeling. Prepared by. M Senior Engineering Manager ANSYS/LS-Dyna Multi-Material M t i l ALE Modeling Prepared by Steven Hale, M.S.M.E. M Senior Engineering Manager Multi-Material ALE Basics What is the Multi-Material ALE method (MMALE) MMALE stands for

More information

A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS

A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS Muthukumaran.C.K.

More information

Numerical and theoretical analysis of shock waves interaction and reflection

Numerical and theoretical analysis of shock waves interaction and reflection Fluid Structure Interaction and Moving Boundary Problems IV 299 Numerical and theoretical analysis of shock waves interaction and reflection K. Alhussan Space Research Institute, King Abdulaziz City for

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Level Set Methods and Fast Marching Methods

Level Set Methods and Fast Marching Methods Level Set Methods and Fast Marching Methods I.Lyulina Scientific Computing Group May, 2002 Overview Existing Techniques for Tracking Interfaces Basic Ideas of Level Set Method and Fast Marching Method

More information

An explicit and conservative remapping strategy for semi-lagrangian advection

An explicit and conservative remapping strategy for semi-lagrangian advection An explicit and conservative remapping strategy for semi-lagrangian advection Sebastian Reich Universität Potsdam, Potsdam, Germany January 17, 2007 Abstract A conservative semi-lagrangian advection scheme

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

Advances in 3-D Forging Process Modeling

Advances in 3-D Forging Process Modeling Advances in 3-D Forging Process Modeling W J Slagter, C J L Florie and A C J Venis MSC.Software Corporation, Groningenweg 6, 2803 PV Gouda, The Netherlands MSC/SuperForge is a new code developed for performing

More information

A Coupled Eulerian/Lagrangian Simulation of Blast Dynamics

A Coupled Eulerian/Lagrangian Simulation of Blast Dynamics Proceedings of the IMPLAST 2010 Conference October 12-14 2010 Providence, Rhode Island USA 2010 Society for Experimental Mechanics, Inc. A Coupled Eulerian/Lagrangian Simulation of Blast Dynamics David

More information

Drop Impact Simulation with a Velocity-Dependent Contact Angle

Drop Impact Simulation with a Velocity-Dependent Contact Angle ILASS Americas 19th Annual Conference on Liquid Atomization and Spray Systems, Toronto, Canada, May 2006 Drop Impact Simulation with a Velocity-Dependent Contact Angle S. Afkhami and M. Bussmann Department

More information

Hoch P. 1, Marchal S. 2, Vasilenko Y. 3 and Feiz A. A. 4

Hoch P. 1, Marchal S. 2, Vasilenko Y. 3 and Feiz A. A. 4 ESAIM: PROCEEDINGS, August 28, Vol. 24, p. -29 C. Dobrzynski, P. Frey, Ph. Pebay, Editors NON CONFORMAL ADAPTATION AND MESH SMOOTHING FOR COMPRESSIBLE LAGRANGIAN FLUID DYNAMICS Hoch P., Marchal S. 2, Vasilenko

More information

High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA )

High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA ) High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA9550-07-0195) Sachin Premasuthan, Kui Ou, Patrice Castonguay, Lala Li, Yves Allaneau,

More information

cuibm A GPU Accelerated Immersed Boundary Method

cuibm A GPU Accelerated Immersed Boundary Method cuibm A GPU Accelerated Immersed Boundary Method S. K. Layton, A. Krishnan and L. A. Barba Corresponding author: labarba@bu.edu Department of Mechanical Engineering, Boston University, Boston, MA, 225,

More information