Thick sets Contractors and separators Thick separators Test-case. Thick separators. L. Jaulin, B. Desrochers CoProd 2016, Uppsala.

Size: px
Start display at page:

Download "Thick sets Contractors and separators Thick separators Test-case. Thick separators. L. Jaulin, B. Desrochers CoProd 2016, Uppsala."

Transcription

1 L. Jaulin, B. Desrochers CoProd 2016, Uppsala

2 Thick sets

3 A thin set is a subset of R n. A thick set X of R n is an interval of (P(R n ), ). X = X,X = {X P(R n ) X X X }. A thickset X is also the partition { X in,x?,x out}, where X in = X X? = X \X X out = Z. The subset X? is called the penumbra.

4 Redermor DGA-TN, Brest

5 Penumbra

6 Contractors Thick sets

7 C ([x]) [x] [x] [y] C ([x]) C ([y]) (contractance) (monotonicity)

8

9

10 Properties Thick sets

11 Inclusion Thick sets C 1 C 2 [x] IR n, C 1 ([x]) C 2 ([x]).

12 A set S is consistent with C (we write S C ) if C ([x]) S = [x] S.

13 C is minimal if Thick sets S C S C 1 } C C 1.

14 Separators Thick sets

15 A separator S is pair of contractors { S in,s out} such that S in ([x]) S out ([x]) = [x] (complementarity).

16 A set S is consistent with S (we write S S ), if S S out and S S in.

17

18 Properties Thick sets

19 Inclusion Thick sets S 1 S 2 S in 1 S in 2 and S out 1 S out 2. Here means more accurate.

20 S is minimal if Thick sets S 1 S S 1 = S. i.e., if S in and S out are both minimal.

21 Algebra Thick sets

22 If S i = { S in i Thick sets,si out },i 1, are separators, we define S 1 S 2 = { S1 in S 2 in,s out 1 S2 out } (intersection) S 1 S 2 = { S1 in S 2 in,s out 1 S2 out } (union) S 1 \S 2 = S 1 S 2. (difference)

23 Theorem. If S i are subsets of R n, we have (i) S 1 S 2 S 1 S 2 (ii) S 1 S 2 S 1 S 2 (iii) S i S i (iv) S i Si k, k 0 (vi) S 1 \S 2 S 1 \S 2.

24 Set M

25 Rot(M)

26 Rot(M) M

27 Thick sets

28 A thick separator S for X is a 3-uple of contractors { S in,s?,s out} such that, for all [x] IR n S in ([x]) X in = [x] X in S? ([x]) X? = [x] X? S out ([x]) X out = [x] X out

29 Algebra Thick sets

30 Intersection. Consider two thick separators S X = { SX in,s X? },S out X and SY = { S in separator S Z = { SZ in,s Z? },S out Z for Y,S? Y Z = Z,Z = X Y },S out Y. A thick is { S in X SY in,( S X? S Y in ) ( S? X S Y? ) ( S in X S Y? ),S out X S Y out }.

31 Intersection of two thick sets

32 Illustration. Take one box [x].

33 We have Thick sets { } S X ([x]) = SX in,s X? out,sx ([x]) = {[a],[x], /0} where [a] the white box. Moreover, { S Y ([x]) = SY in,s Y?,S out Y } ([x]) = {/0,[x], /0}.

34 { S Z = S in Z,S Z? },S out Z ([x]) = { ( SX in S Y in([x]), = S? X SY in ) ( S? X S Y? ) ( S in X S Y)? ([x]), = SX out S Y out([x]) } = { [a] /0,([x] /0) ([x] [x]) ([a] [x]), /0 /0 } = {/0,[x], /0} We conclude that [x] Z in.

35 Using Karnaugh maps

36

37 Union. For Thick sets we read from the Karnaugh map Z = X Y, Z in = X in Y in Z? = ( X? Y out) ( X? Y?) ( X out Y?) Z out = X out Y out. A thick separator S Z = { S in Z,S? Z,S out Z } for Z is { S in X SY in,( S X? S Y out ) ( S? X S Y? ) ( S out X S Y? ),S out X S Y out }

38 XOR. For Thick sets Z = X Y = X \ Y Y \ X, we read Z in = ( X in Y out) ( X out Y in) Z? = X? Y? Z out = ( X in Y in) (X out Y out ).

39

40 Therefore a thick separator for the thick set Z = X Y is { S in X SY in,( S X? S Y out ) ( S? X S Y? ) ( S out X S Y? ),S out X S Y out }.

41 Thick sets

42 Example from [Kreinovich, Shary, 2016]: { [2,4] x1 + [ 2,0] x 2 [ 1,1] [ 1,1] x 1 + [2,4] x 2 [0,2]

43

Thick separators. Luc Jaulin and Benoît Desrochers. Lab-STICC, ENSTA Bretagne, Brest, France

Thick separators. Luc Jaulin and Benoît Desrochers. Lab-STICC, ENSTA Bretagne, Brest, France Thick separators Luc Jaul and Benoît Desrochers Lab-TICC, ENTA Bretagne, Brest, France Abstract. If an terval of R is an uncerta real number, a thick set is an uncerta subset of R n. More precisely, a

More information

Avoiding Fake Boundaries in Set Interval Computing

Avoiding Fake Boundaries in Set Interval Computing Journal of Uncertain Systems Vol.11, No.2, pp.137-148, 2017 Online at: www.jus.org.uk Avoiding Fake Boundaries in Set Interval Computing Anthony Welte 1, Luc Jaulin 1, Martine Ceberio 2, Vladik Kreinovich

More information

Introduction to the Algebra of Separators with Application to Path Planning

Introduction to the Algebra of Separators with Application to Path Planning ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, VOL. 33, PP 141-147, AUGUST 2014 1 Introduction to the Algebra of Separators with Application to Path Planning Luc Jaulin and Benoît Desrochers ENSTA-Bretagne,

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY ALGEBRAIC METHODS IN LOGIC AND IN COMPUTER SCIENCE BANACH CENTER PUBLICATIONS, VOLUME 28 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1993 ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

(Pre-)Algebras for Linguistics

(Pre-)Algebras for Linguistics 2. Introducing Preordered Algebras Linguistics 680: Formal Foundations Autumn 2010 Algebras A (one-sorted) algebra is a set with one or more operations (where special elements are thought of as nullary

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

Boolean relationships on Venn Diagrams

Boolean relationships on Venn Diagrams Boolean relationships on Venn Diagrams The fourth example has A partially overlapping B. Though, we will first look at the whole of all hatched area below, then later only the overlapping region. Let's

More information

The CYK Algorithm. We present now an algorithm to decide if w L(G), assuming G to be in Chomsky Normal Form.

The CYK Algorithm. We present now an algorithm to decide if w L(G), assuming G to be in Chomsky Normal Form. CFG [1] The CYK Algorithm We present now an algorithm to decide if w L(G), assuming G to be in Chomsky Normal Form. This is an example of the technique of dynamic programming Let n be w. The natural algorithm

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Software Properties as Axioms and Theorems

Software Properties as Axioms and Theorems Applied Software Properties as Axioms and Theorems proofs by induction or How to Write Reliable Software and know it's reliable Applied 1 Example: Multiplexor Function Problem: Multiplex two sequences

More information

Lecture-12: Closed Sets

Lecture-12: Closed Sets and Its Examples Properties of Lecture-12: Dr. Department of Mathematics Lovely Professional University Punjab, India October 18, 2014 Outline Introduction and Its Examples Properties of 1 Introduction

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

Algebra of Sets (Mathematics & Logic A)

Algebra of Sets (Mathematics & Logic A) Algebra of Sets (Mathematics & Logic A) RWK/MRQ October 28, 2002 Note. These notes are adapted (with thanks) from notes given last year by my colleague Dr Martyn Quick. Please feel free to ask me (not

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

Generell Topologi. Richard Williamson. May 6, 2013

Generell Topologi. Richard Williamson. May 6, 2013 Generell Topologi Richard Williamson May 6, 2013 1 8 Thursday 7th February 8.1 Using connectedness to distinguish between topological spaces I Proposition 8.1. Let (, O ) and (Y, O Y ) be topological spaces.

More information

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12.

AMS /672: Graph Theory Homework Problems - Week V. Problems to be handed in on Wednesday, March 2: 6, 8, 9, 11, 12. AMS 550.47/67: Graph Theory Homework Problems - Week V Problems to be handed in on Wednesday, March : 6, 8, 9,,.. Assignment Problem. Suppose we have a set {J, J,..., J r } of r jobs to be filled by a

More information

T. Background material: Topology

T. Background material: Topology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 T. Background material: Topology For convenience this is an overview of basic topological ideas which will be used in the course. This material

More information

Parameterized coloring problems on chordal graphs

Parameterized coloring problems on chordal graphs Parameterized coloring problems on chordal graphs Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary dmarx@cs.bme.hu

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

On competition numbers of complete multipartite graphs with partite sets of equal size. Boram PARK, Suh-Ryung KIM, and Yoshio SANO.

On competition numbers of complete multipartite graphs with partite sets of equal size. Boram PARK, Suh-Ryung KIM, and Yoshio SANO. RIMS-1644 On competition numbers of complete multipartite graphs with partite sets of equal size By Boram PARK, Suh-Ryung KIM, and Yoshio SANO October 2008 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

Chapter 1: Interval computation

Chapter 1: Interval computation Chapter 1: Interval computation July 8, 2017 Problem. Given f : R n R and a box [x] R n, prove that x [x],f (x) 0. Interval arithmetic can solve efficiently this problem. Example. Is the function f (x)

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Inner and outer approximation of capture basin using interval analysis

Inner and outer approximation of capture basin using interval analysis Inner and outer approximation of capture basin using interval analysis M. Lhommeau 1 L. Jaulin 2 L. Hardouin 1 1 Laboratoire d'ingénierie des Systèmes Automatisés ISTIA - Université d'angers 62, av. Notre

More information

Distributed localization and control of underwater robots

Distributed localization and control of underwater robots Distributed localization and control of underwater robots L. Jaulin ENSTA Bretagne, LabSTICC Methods and Tools for Distributed Hybrid Systems DHS 2018, June 4, Palaiseau Interval analysis Problem. Given

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Range Reporting. Range reporting problem 1D range reporting Range trees 2D range reporting Range trees Predecessor in nested sets kd trees

Range Reporting. Range reporting problem 1D range reporting Range trees 2D range reporting Range trees Predecessor in nested sets kd trees Range Reporting Range reporting problem 1D range reporting Range trees 2D range reporting Range trees Predecessor in nested sets kd trees Philip Bille Range Reporting Range reporting problem 1D range reporting

More information

Some Properties of Regular Semigroups. Possess a Medial Idempotent

Some Properties of Regular Semigroups. Possess a Medial Idempotent International Journal of Algebra, Vol. 4, 2010, no. 9, 433-438 Some Properties of Regular Semigroups Possess a Medial Idempotent S. Hussain 1, T. Anwer 1, H. Chien 2 1 Higher Education Department, Pakistan

More information

Lecture 6 Sections 4.3, 4.6, 4.7. Wed, Sep 9, 2009

Lecture 6 Sections 4.3, 4.6, 4.7. Wed, Sep 9, 2009 Lecture 6 Sections 4.3, 4.6, 4.7 Hampden-Sydney College Wed, Sep 9, 2009 Outline 1 2 3 4 re are three mutually orthogonal axes: the x-axis, the y-axis, and the z-axis. In the standard viewing position,

More information

COUNTING AND PROBABILITY

COUNTING AND PROBABILITY CHAPTER 9 COUNTING AND PROBABILITY Copyright Cengage Learning. All rights reserved. SECTION 9.3 Counting Elements of Disjoint Sets: The Addition Rule Copyright Cengage Learning. All rights reserved. Counting

More information

Quasilinear First-Order PDEs

Quasilinear First-Order PDEs MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 16 Lecture 3 Quasilinear First-Order PDEs A first order quasilinear PDE is of the form a(x, y, z) + b(x, y, z) x y = c(x, y, z). (1) Such equations

More information

Chapter 11. Topological Spaces: General Properties

Chapter 11. Topological Spaces: General Properties 11.1. Open Sets, Closed Sets, Bases, and Subbases 1 Chapter 11. Topological Spaces: General Properties Section 11.1. Open Sets, Closed Sets, Bases, and Subbases Note. In this section, we define a topological

More information

On Unbounded Tolerable Solution Sets

On Unbounded Tolerable Solution Sets Reliable Computing (2005) 11: 425 432 DOI: 10.1007/s11155-005-0049-9 c Springer 2005 On Unbounded Tolerable Solution Sets IRENE A. SHARAYA Institute of Computational Technologies, 6, Acad. Lavrentiev av.,

More information

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University)

Math 395: Topology. Bret Benesh (College of Saint Benedict/Saint John s University) Math 395: Topology Bret Benesh (College of Saint Benedict/Saint John s University) October 30, 2012 ii Contents Acknowledgments v 1 Topological Spaces 1 2 Closed sets and Hausdorff spaces 7 iii iv CONTENTS

More information

Journal of mathematics and computer science 13 (2014),

Journal of mathematics and computer science 13 (2014), Journal of mathematics and computer science 13 (2014), 231-237 Interval Interpolation by Newton's Divided Differences Ali Salimi Shamloo Parisa Hajagharezalou Department of Mathematics, Shabestar Branch,

More information

The Language of Sets and Functions

The Language of Sets and Functions MAT067 University of California, Davis Winter 2007 The Language of Sets and Functions Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (January 7, 2007) 1 The Language of Sets 1.1 Definition and Notation

More information

Section 16. The Subspace Topology

Section 16. The Subspace Topology 16. The Subspace Product Topology 1 Section 16. The Subspace Topology Note. Recall from Analysis 1 that a set of real numbers U is open relative to set X if there is an open set of real numbers O such

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

Global Optimization based on Contractor Programming: an Overview of the IBEX library

Global Optimization based on Contractor Programming: an Overview of the IBEX library Global Optimization based on Contractor Programming: an Overview of the IBEX library Jordan Ninin ENSTA-Bretagne, LabSTIC, IHSEV team, 2 rue Francois Verny, 29806 Brest, France, jordan.ninin@ensta-bretagne.fr

More information

Procedure DataCollection

Procedure DataCollection Spatial Filtering/Semwal and Ohya 5 S Slice and its t pattern S1 S2 Left Middle Right Active space creation Figure 1: Imprint set (S1,S2,S3) for point S. S1, S2, and S3 are 2D points on the respective

More information

Modeling with Uncertainty Interval Computations Using Fuzzy Sets

Modeling with Uncertainty Interval Computations Using Fuzzy Sets Modeling with Uncertainty Interval Computations Using Fuzzy Sets J. Honda, R. Tankelevich Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO, U.S.A. Abstract A new method

More information

Automatic Proofs for Symmetric Encryption Modes

Automatic Proofs for Symmetric Encryption Modes Automatic Proofs for Symmetric Encryption Modes Martin Gagné 2 Pascal Lafourcade 1 Yassine Lakhnech 1 Reihaneh Safavi-Naini 2 1 Université Grenoble 1, CNRS,Verimag, FRANCE 2 Department of Computer Science,

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

INTRODUCTION Joymon Joseph P. Neighbours in the lattice of topologies Thesis. Department of Mathematics, University of Calicut, 2003

INTRODUCTION Joymon Joseph P. Neighbours in the lattice of topologies Thesis. Department of Mathematics, University of Calicut, 2003 INTRODUCTION Joymon Joseph P. Neighbours in the lattice of topologies Thesis. Department of Mathematics, University of Calicut, 2003 INTRODUCTION The collection C(X) of all topologies on a fixed non-empty

More information

Animating orientation. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Animating orientation. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Animating orientation CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Orientation in the plane θ (cos θ, sin θ) ) R θ ( x y = sin θ ( cos θ sin θ )( x y ) cos θ Refresher: Homogenous

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 14: Set Theory: Definitions and Properties 1. Let C = {n Z n = 6r 5 for

More information

Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER

Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER Gate-Level Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to

More information

1.2 Venn Diagrams and Partitions

1.2 Venn Diagrams and Partitions 1.2 Venn Diagrams and Partitions Mark R. Woodard Furman U 2010 Mark R. Woodard (Furman U) 1.2 Venn Diagrams and Partitions 2010 1 / 9 Outline 1 Venn Diagrams 2 Partitions 3 Fundamentals of Counting Mark

More information

On sufficient conditions of the injectivity : development of a numerical test algorithm via interval analysis

On sufficient conditions of the injectivity : development of a numerical test algorithm via interval analysis On sufficient conditions of the injectivity : development of a numerical test algorithm via interval analysis S. Lagrange (lagrange@istia.univ-angers.fr) LISA, UFR Angers, 62 avenue Notre Dame du Lac,

More information

Fuzzy set theory after its introduction by. L.A. Zadeh [39] has become important with application

Fuzzy set theory after its introduction by. L.A. Zadeh [39] has become important with application INTRODUCTION Fuzzy set theory after its introduction by L.A. Zadeh [39] has become important with application in almost all areas of mathematics, of which one is the area of topology. Zadeh took the closed

More information

Animation Curves and Splines 2

Animation Curves and Splines 2 Animation Curves and Splines 2 Animation Homework Set up Thursday a simple avatar E.g. cube/sphere (or square/circle if 2D) Specify some key frames (positions/orientations) Associate Animation a time with

More information

1.7 The Heine-Borel Covering Theorem; open sets, compact sets

1.7 The Heine-Borel Covering Theorem; open sets, compact sets 1.7 The Heine-Borel Covering Theorem; open sets, compact sets This section gives another application of the interval halving method, this time to a particularly famous theorem of analysis, the Heine Borel

More information

Recognizing Interval Bigraphs by Forbidden Patterns

Recognizing Interval Bigraphs by Forbidden Patterns Recognizing Interval Bigraphs by Forbidden Patterns Arash Rafiey Simon Fraser University, Vancouver, Canada, and Indiana State University, IN, USA arashr@sfu.ca, arash.rafiey@indstate.edu Abstract Let

More information

Range Reporting. Range Reporting. Range Reporting Problem. Applications

Range Reporting. Range Reporting. Range Reporting Problem. Applications Philip Bille Problem problem. Preprocess at set of points P R 2 to support report(x1, y1, x2, y2): Return the set of points in R P, where R is rectangle given by (x1, y1) and (x2, y2). Applications Relational

More information

For fine ti.ito vvt* have hcen in IS PUBLISHED EVERY. OF LOWELL. n t m r n T i l t " ^ n a i I Howk & White, CAPITAL, ,000.

For fine ti.ito vvt* have hcen in IS PUBLISHED EVERY. OF LOWELL. n t m r n T i l t  ^ n a i I Howk & White, CAPITAL, ,000. G G 7 87 - G G * - -» *» - - -8 6 8 ( - * - - - [- -- ( G - ( X * ( - --» - ( - - G» # - - - x- G»»» * 6 q q 6» - * 6 76 G» q 6 * - Q * /» q ** - X - * (( G» - * * * 8 8» * * X - - - (»-» * - - G - - G

More information

The topology of the independence complex

The topology of the independence complex The topology of the independence complex Richard EHRENBORG and Gábor HETYEI Abstract We introduce a large self-dual class of simplicial complexes about which we show that each complex in it is contractible

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

On local structures of cubicity 2 graphs

On local structures of cubicity 2 graphs On local structures of cubicity 2 graphs Sujoy Kumar Bhore (a), Dibyayan Chakraborty (b), Sandip Das (b), Sagnik Sen (c) arxiv:1603.09570v1 [cs.dm] 31 Mar 2016 (a) Ben-Gurion University, Beer-Sheva, Israel

More information

Math 205B - Topology. Dr. Baez. February 23, Christopher Walker

Math 205B - Topology. Dr. Baez. February 23, Christopher Walker Math 205B - Topology Dr. Baez February 23, 2007 Christopher Walker Exercise 60.2. Let X be the quotient space obtained from B 2 by identifying each point x of S 1 with its antipode x. Show that X is homeomorphic

More information

Foundations of Computer Science Spring Mathematical Preliminaries

Foundations of Computer Science Spring Mathematical Preliminaries Foundations of Computer Science Spring 2017 Equivalence Relation, Recursive Definition, and Mathematical Induction Mathematical Preliminaries Mohammad Ashiqur Rahman Department of Computer Science College

More information

Section 13. Basis for a Topology

Section 13. Basis for a Topology 13. Basis for a Topology 1 Section 13. Basis for a Topology Note. In this section, we consider a basis for a topology on a set which is, in a sense, analogous to the basis for a vector space. Whereas a

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0.

1) Give a set-theoretic description of the given points as a subset W of R 3. a) The points on the plane x + y 2z = 0. ) Give a set-theoretic description of the given points as a subset W of R. a) The points on the plane x + y z =. x Solution: W = {x: x = [ x ], x + x x = }. x b) The points in the yz-plane. Solution: W

More information

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1 Notes on Topology Andrew Forrester January 28, 2009 Contents 1 Notation 1 2 The Big Picture 1 3 Fundamental Concepts 2 4 Topological Spaces and Topologies 2 4.1 Topological Spaces.........................................

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Topology Between Two Sets

Topology Between Two Sets Journal of Mathematical Sciences & Computer Applications 1 (3): 95 107, 2011 doi: 10.5147/jmsca.2011.0071 Topology Between Two Sets S. Nithyanantha Jothi 1 and P. Thangavelu 2* 1 Department of Mathematics,

More information

Math 205B - Topology. Dr. Baez. January 19, Christopher Walker. p(x) = (cos(2πx), sin(2πx))

Math 205B - Topology. Dr. Baez. January 19, Christopher Walker. p(x) = (cos(2πx), sin(2πx)) Math 205B - Topology Dr. Baez January 19, 2007 Christopher Walker Theorem 53.1. The map p : R S 1 given by the equation is a covering map p(x) = (cos(2πx), sin(2πx)) Proof. First p is continuous since

More information

International Training Workshop on FPGA Design for Scientific Instrumentation and Computing November 2013

International Training Workshop on FPGA Design for Scientific Instrumentation and Computing November 2013 2499-13 International Training Workshop on FPGA Design for Scientific Instrumentation and Computing 11-22 Digital CMOS Design Combinational and sequential circuits, contd. Pirouz Bazargan-Sabet Department

More information

Disjunctive and Conjunctive Normal Forms in Fuzzy Logic

Disjunctive and Conjunctive Normal Forms in Fuzzy Logic Disjunctive and Conjunctive Normal Forms in Fuzzy Logic K. Maes, B. De Baets and J. Fodor 2 Department of Applied Mathematics, Biometrics and Process Control Ghent University, Coupure links 653, B-9 Gent,

More information

Topology I Test 1 Solutions October 13, 2008

Topology I Test 1 Solutions October 13, 2008 Topology I Test 1 Solutions October 13, 2008 1. Do FIVE of the following: (a) Give a careful definition of connected. A topological space X is connected if for any two sets A and B such that A B = X, we

More information

1 Inference for Boolean theories

1 Inference for Boolean theories Scribe notes on the class discussion on consistency methods for boolean theories, row convex constraints and linear inequalities (Section 8.3 to 8.6) Speaker: Eric Moss Scribe: Anagh Lal Corrector: Chen

More information

Algebraic Structure Of Union Of Fuzzy Sub- Trigroups And Fuzzy Sub Ngroups

Algebraic Structure Of Union Of Fuzzy Sub- Trigroups And Fuzzy Sub Ngroups Algebraic Structure Of Union Of Fuzzy Sub- Trigroups And Fuzzy Sub Ngroups N. Duraimanickam, N. Deepica Assistant Professor of Mathematics, S.T.E.T Women s College, Mannargudi, Tamilnadu. India-Pin-614016

More information

The Relational Algebra

The Relational Algebra The Relational Algebra Relational Algebra Relational algebra is the basic set of operations for the relational model These operations enable a user to specify basic retrieval requests (or queries) 27-Jan-14

More information

Reconstruction of Filament Structure

Reconstruction of Filament Structure Reconstruction of Filament Structure Ruqi HUANG INRIA-Geometrica Joint work with Frédéric CHAZAL and Jian SUN 27/10/2014 Outline 1 Problem Statement Characterization of Dataset Formulation 2 Our Approaches

More information

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example Sets Slides by Christopher M. ourke Instructor: erthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

Combining Static and Dynamic Contract Checking for Curry

Combining Static and Dynamic Contract Checking for Curry Michael Hanus (CAU Kiel) Combining Static and Dynamic Contract Checking for Curry LOPSTR 2017 1 Combining Static and Dynamic Contract Checking for Curry Michael Hanus University of Kiel Programming Languages

More information

Computability Theory XI

Computability Theory XI Computability Theory XI Recursively Enumerable Set Guoqiang Li Shanghai Jiao Tong University Dec. 12&19, 2013 Assignment Assignment 4 was announced! The deadline is Dec. 26! An Exercise Let A, B N. Define

More information

Open and Closed Sets

Open and Closed Sets Open and Closed Sets Definition: A subset S of a metric space (X, d) is open if it contains an open ball about each of its points i.e., if x S : ɛ > 0 : B(x, ɛ) S. (1) Theorem: (O1) and X are open sets.

More information

L3: Representations of functions

L3: Representations of functions L3: Representations of functions Representations of Boolean functions Boolean expression Two level sum of product form, factorized form Truth tables Karnaugh maps Cubes (MIN,MAX) notation positional cube

More information

Tolerance Representations of Graphs in Trees Nancy Eaton. Tolerance Representations of Graphs in Trees Lecture I. Tree Representations of Graphs

Tolerance Representations of Graphs in Trees Nancy Eaton. Tolerance Representations of Graphs in Trees Lecture I. Tree Representations of Graphs Tolerance Representations of Graphs in Trees Nancy Eaton Tolerance Representations of Graphs in Trees Lecture I Tree Representations of Graphs Tolerance Representations Some background A conjecture on

More information

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets

Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Lecture 4: examples of topological spaces, coarser and finer topologies, bases and closed sets Saul Glasman 14 September 2016 Let s give the definition of an open subset of R. Definition 1. Let U R. We

More information

Vertex cuts and group splittings. Bernhard Krön

Vertex cuts and group splittings. Bernhard Krön Vertex cuts and group splittings XXI Escola de Algebra 2010 Bernhard Krön University of Vienna, Austria joint with Martin J. Dunwoody, Univ. of Southampton, UK Bernhard Krön (Univ. of Vienna) Vertex cuts

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

IntLinInc3D package User manual

IntLinInc3D package User manual IntLinInc3D package User manual Contents:. About the package 2. Purpose 3. Structure 4. Properties of visualized sets 5. Notation in figures 6. Recommendations on preparation and analysis of figures 6..

More information

Set Intersection and Consistency in Constraint Networks

Set Intersection and Consistency in Constraint Networks Journal of Artificial Intelligence Research 27 (2006) 441-464 Submitted 03/06; published 12/06 Set Intersection and Consistency in Constraint Networks Yuanlin Zhang Department of Computer Science, Texas

More information

Competitive Algorithms for Mulitstage Online Scheduling

Competitive Algorithms for Mulitstage Online Scheduling Competitive Algorithms for Mulitstage Online Scheduling Michael Hopf a,, Clemens Thielen a, Oliver Wendt b a University of Kaiserslautern, Department of Mathematics Paul-Ehrlich-Str. 14, D-67663 Kaiserslautern,

More information

COMBINATION OF ROUGH AND FUZZY SETS

COMBINATION OF ROUGH AND FUZZY SETS 1 COMBINATION OF ROUGH AND FUZZY SETS BASED ON α-level SETS Y.Y. Yao Department of Computer Science, Lakehead University Thunder Bay, Ontario, Canada P7B 5E1 E-mail: yyao@flash.lakeheadu.ca 1 ABSTRACT

More information

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 11

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 11 INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 11 RAVI VAKIL Contents 1. Products 1 1.1. Products in the category of affine varieties, and in the category of varieties 2 2. Coming soon 5 Problem sets can be

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Chapter 1 Preliminaries 1.1 Topological spaces 1.1.1 The notion of topological space The topology on a set X is usually defined by specifying its open subsets of X. However, in dealing with topological

More information

CHAPTER 5 Querying of the Information Retrieval System

CHAPTER 5 Querying of the Information Retrieval System 5.1 Introduction CHAPTER 5 Querying of the Information Retrieval System Information search and retrieval involves finding out useful documents from a store of information. In any information search and

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis Contents Chapter 1. Relations 8 1. Relations and Their Properties 8 1.1. Definition of a Relation 8 1.2. Directed Graphs 9 1.3. Representing Relations with Matrices 10 1.4. Example 1.4.1 10 1.5. Inverse

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Graphs and transformations 4G

Graphs and transformations 4G Graphs and transformations 4G a f(x + ) is a translation by one unit to the left. d A (0, ), B ( ),0, C (, 4), D (, 0) A (, ), B (0, 0), C (, 4), D (5, 0) e f(x) is a stretch with scale factor b f(x) 4

More information

Testing Continuous Distributions. Artur Czumaj. DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science

Testing Continuous Distributions. Artur Czumaj. DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science Testing Continuous Distributions Artur Czumaj DIMAP (Centre for Discrete Maths and it Applications) & Department of Computer Science University of Warwick Joint work with A. Adamaszek & C. Sohler Testing

More information

4 Basis, Subbasis, Subspace

4 Basis, Subbasis, Subspace 4 Basis, Subbasis, Subspace Our main goal in this chapter is to develop some tools that make it easier to construct examples of topological spaces. By Definition 3.12 in order to define a topology on a

More information