Artificial Intelligence II

Size: px
Start display at page:

Download "Artificial Intelligence II"

Transcription

1 Artificial Intelligence II 2013/ Prof: Daniele Nardi, Joachim Hertzberg Exercitation 3 - Roberto Capobianco Planning: STRIPS, Partial Order Plans, Planning Graphs 1

2 STRIPS (Recap-1) Start situation; Goal conditions; Operator schemata Preconditions; Postconditions; Plan: pair O, < of a set O of operator instances and an ordering relation < on O. Operator: pair R, S of sets R, S of ground facts. R: operator s preconditions (what must be true to execute it?); S: postconditions (what are the effects of its execution?); Progression or Regression: Progression: search forward from initial state to goal; Regression: search backward from goal to initial state. 2

3 STRIPS (Recap-2) STRIPS Algorithm, with Regression: 3

4 STRIPS & Shakey Stanford Robot controlled by STRIPS; At the time planner could find plans beyond robots abilities; Actions: Move; Pushing movable objects; Climb onto and down from objects; Turn light switches on and off. 4

5 Shakey Problem (1) Describe Shakey s Actions in STRIPS: Go(x, y) where x and y are locations in the same room (there is a door between the rooms); Push(b, x, y) to push box b from x to y (both locations in the same room); ClimbUp(b, x) and ClimbDown(b, x) TurnOn(s, x) and TurnOff(s, x); 5

6 Shakey Problem (2) Describe: The initial state in figure; The goal state where Box2 is in Shakey s initial position; Construct a plan using Progression and one using Regression. 6

7 Shakey s Actions (1) Action( GoTo(x, y), PRECOND : At(Shakey, x) x y sameroom(x, y) EFFECT : At(Shakey, x) At(Shakey, y) ) Action( Push(b, x, y), PRECOND : Box(b) At(b, x) x y sameroom(x, y) At(Shakey, x) EFFECT : At(b, x) At(b, y)) At(Shakey, x) At(Shakey, y) ) 7

8 Shakey s Actions (2) Action( ClimbUp(b, x), PRECOND : Box(b) At(Shakey, x) At(b, x) OnABox EFFECT : On(b) OnABox ) Action( ClimbDown(b, x), PRECOND : Box(b) At(Shakey, x) At(b, x) On(b) OnABox EFFECT : On(b) OnABox ) 8

9 Shakey s Actions (3) Action( TurnOn(s, x), PRECOND : SwitchOff(s) Switch(s) At(Shakey, x) At(s, x) OnABox EFFECT : SwitchOff(s) ) Action( TurnOff(s, x), PRECOND : SwitchOff(s) Switch(s) At(Shakey, x) At(s, x) OnABox EFFECT : SwitchOff(s) ) 9

10 Shakey s Initial State Boxes: Box(B1) Box(B2) Positions: At(Shakey, I) At(B1, PB1) At(B2, PB2) At(S1, PS1) At(S2, PS2) Switches: Switch(s1) Switch(s2) SwitchOn(s2) SwitchOff(s1) Doors: sameroom(pb1, PB2) sameroom(pb2, PB1) sameroom(pb1, PS2) sameroom(ps2, PB1) sameroom(pb2, PS2) sameroom(ps2, PB2) sameroom(i, PS1) sameroom(ps1, I) Goal: At(B2, I) 10

11 Shakey s Solution There is no plan! (No door between the rooms). 11

12 PDDL PDDL (Planning Domain Definition Language); Definition of: Predicates; Actions/Operators; Objects; Initial state; Goal; Planning tasks specified in PDDL are separated into: A domain file for predicates and actions; A problem file for objects, initial state and goal specification. 12

13 PDDL Files Domain file: (define (domain <domain name>) <PDDL code for predicates> <PDDL code for first action> [...] <PDDL code for last action> ) Problem file: (define (problem <problem name>) (:domain <domain name>) <PDDL code for objects> <PDDL code for initial state> <PDDL code for goal specification> ) 13

14 Shakey Problem in PDDL (1) Predicates: (:predicates (at?x?y) (on?x?y) (in?x?y) (box?x) (turnedon?x)) Actions: (:action Go :parameters (?x?y?r) :precondition (and (on Shakey Floor) (at Shakey?x) (in?x?r) (in?y?r)) :effect (and (at Shakey?y) (not (at Shakey?x)))) (:action Push :parameters (?b?x?y?r) :precondition (and (on Shakey Floor) (at Shakey?x) (box?b) (at?b?x) (in?x?r) (in?y?r)) :effect (and (at Shakey?y) (at?b?y) (not (at Shakey?x)) (not (at?b?x)))) 14

15 Shakey Problem in PDDL (2) (:action ClimbUp :parameters (?x?b) :precondition (and (on Shakey Floor) (at Shakey?x) (at?b?x) (box?b)) :effect (and (on Shakey?b) (not (on Shakey Floor)))) (:action ClimbDown :parameters (?b) :precondition (and (on Shakey?b) (box?b)) :effect (and (on Shakey Floor) (not (on Shakey?b)))) (:action TurnOn :parameters (?s?b) :precondition (and (on Shakey?b) (box?b) (at?b?s)) :effect (turnedon?s)) 15

16 Shakey Problem in PDDL (3) (:action TurnOff :parameters (?s?b) :precondition (and (on Shakey?b) (box?b) (at?b?s)) :effect (not (turnedon?s))) Objects: (:objects Shakey Floor START Room1 Room2 Door1 Door2 Switch1 Switch2 Box1 Box2 BX1 BX2) 16

17 Shakey Problem in PDDL (4) Initial state: (init: (on Shakey Floor) (at Shakey START) (in START Room1) (box Box1) (at Box1 BX1) (in BX1 Room2) (box Box2) (at Box2 BX2) (in BX2 Room2) (in Door1 Room1) (in Switch1 Room1) (not (turnedon Switch1)) (in Door2 Room2) (in Switch2 Room2) (turnedon Switch2) Goal: (:goal (and ( ) ( )) Get your plan (e.g., use blackbox: 17

18 PDDL Exercise (in Class) Gripper task with four balls: There is a robot that can move between two rooms and pick up or drop balls with either of his two arms. Initially, all balls and the robot are in the first room. We want the balls to be in the second room. Objects: 2 rooms, 4 balls and 2 robot arms. Predicates: room(x), ball(x), at-ball(b, r), free(x), etc.; Initial state: all balls and the robot are in the first room, all robot arms are empty, etc.; Goal specification: all balls must be in the second room. Actions/Operators: the robot can move between rooms, pick up a ball or drop a ball. 18

19 STRIPS Exercise (in Class - 1) An explorer robot must go on a journey with a jeep. To be able to travel he must: refill the jeep s tank and an fill extra tank to put in the car trunk; put in his backpack a bottle of wine and a sandwich; put the prepared backpack, the binoculars and a map in the jeep. Before filling the bottle he must clean it. Suppose that in the initial state the robot is close to the jeep, and all the object and goods required are close to the jeep. The goal state is to have the robot ready to travel. 19

20 STRIPS Exercise (in Class 2) Using STRIPS: Describe the initial state. Describe the goal state. Describe the actions. 20

21 Partially Ordered Plans (Recap) How to practically get POPs: 1. Initial plan, containing two steps called «start» and «finish»: «start» has the initial conditions as its effects; «finish» has the goal conditions as its preconditions; 2. Iterate until the plan is complete (i.e., every precondition at each step is satisfied by the effect of some other step): a. Choose a subgoal (i.e., a precondition p not yet satisfied); b. Choose an operator that can satisfy p; c. Check that the work done in the previous step doesn t violate any of our previous causal links: if it happens, resolve the threat. 21

22 POPs: Choose (Recap) We want p to be true: Find some step already in the existing plan, having p as an effect OR add a new step to the plan; Choose: arbitrary choose for execution one operator within a set of possible things that could be done; Fail: if you fail (i.e., there is no operator that makes p true) just go back to the most recent choice and try a different option; If they have all been tried: go recursively (i.e., go back to the most recent choice); If you fail up to the top level of the program, there is no plan. 22

23 POPs: Causal Links (Recap) If you find an operator that can make p true: Choose that step from the already available plan or add a new step to the plan by instantiating that operator; Add a causal link between the two steps; Add an ordering constraint between the two steps (the new step goes before the one requiring p); If needed: Add a variable binding constraint (e.g., for binding a variable in the new step with p); If the new constraint is incompatible with the existing constraints, fail (i.e., go back to ). 23

24 POPs: Resolve Threats (Recap) A step s could violate a causal link by undoing the «work» previously done to estabilish a certain value of p, making it impossible to execute successive operators; How to deal with threats: Promotion: move s in such a way that it comes before the operator establishing the value of p; Demotion: move s in such a way that it comes after the value of p is used for the execution of successive operators; If promotion fails, try demotion; If both fail, try a different way to satisfy p; If variables appear in the operator, try to constraint the variables in such a way that it has not negative effects in s; 24

25 POP Example (1) Define the ordering constraints and the causal links among the actions, and produce a partially ordered plan to solve the problem. 25

26 POP Example (2) 26

27 POP Example (3) 27

28 POP Example (3) NOTE: PutOn(A,B) clobbers Cl(B): order after PutOn(B,C) 28

29 POP Example (4) NOTE: PutOn(B,C) clobbers Cl(C): order after PutOnTable(C) 29

30 POP Example (5) 30

31 POP Exercise (in Class) Produce the POP for the following problem: Action Buy(x, store) Go(x, y) PRECOND: At(store), Sells(store, x) EFFECT: Have(x) PRECOND: At(x) EFFECT: At(y), At(x) Goal Have(Milk) Have(Banana) Have(Drill) 31

32 Planning Graphs (Recap - 1) Two (different!) operators in a layer are exclusive: in layer O 0 iff they interfere; in layer O i >0 iff they interfere or compete; Two operators interfere iff one destroys a precondition or an effect of the other; Two operators compete in layer O i, iff they have facts among their preconditions that are exclusive on the previous layer F i ; Two facts f, g are exclusive in layer F i >0 iff there are only exclusive operators in the previous layer O i 1 that produce f and g. 32

33 Planning Graphs (Recap 2) Generate solving planning graph; Extract mutex-free plan; If no mutex-free plan found, extend planning graph; Expansion of a planning graph G n = N,E of the order n: add operator layer O n, fact layer F n+1, and mutex arcs; An expansion fixed point is a planning graph, in which two fact layers and all their mutex conditions are identical. 33

34 Planning Graphs (Recap 3) 34

35 Planning Graphs Example (1) Initial state: garbage cleanhands quiet Goal state: dinner present garbage Actions: Cook: PRECOND: cleanhands; EFFECT: dinner Wrap: PRECOND: quiet; EFFECT: present Carry: EFFECT: garbage cleanhands Dolly: EFFECT: garbage quiet 35

36 Planning Graphs Example (2) wrap and dolly are mutex because dolly negates the precondition of wrap; carry and the no-op are mutex because one negates the effect of the other; present and quiet are mutex because the actions achieving them, wrap and dolly, are mutex. 36

37 Planning Graphs Example (3) 37

38 Thank you! 38

Planning (Chapter 10)

Planning (Chapter 10) Planning (Chapter 10) http://en.wikipedia.org/wiki/rube_goldberg_machine Planning Example problem: I m at home and I need milk, bananas, and a drill. What do I do? How is planning different from regular

More information

Planning II. Introduction to Artificial Intelligence CSE 150 Lecture 12 May 15, 2007

Planning II. Introduction to Artificial Intelligence CSE 150 Lecture 12 May 15, 2007 Planning II Introduction to Artificial Intelligence CSE 150 Lecture 12 May 15, 2007 Administration Your second to last Programming Assignment is up - start NOW, you don t have a lot of time The PRIZE:

More information

Artificial Intelligence. Planning

Artificial Intelligence. Planning Artificial Intelligence Planning Planning Planning agent Similar to previous problem solving agents Constructs plans that achieve its goals, then executes them Differs in way it represents and searches

More information

3. Knowledge Representation, Reasoning, and Planning

3. Knowledge Representation, Reasoning, and Planning 3. Knowledge Representation, Reasoning, and Planning 3.1 Common Sense Knowledge 3.2 Knowledge Representation Networks 3.3 Reasoning Propositional Logic Predicate Logic: PROLOG 3.4 Planning Planning vs.

More information

3. Knowledge Representation, Reasoning, and Planning

3. Knowledge Representation, Reasoning, and Planning 3. Knowledge Representation, Reasoning, and Planning 3.1 Common Sense Knowledge 3.2 Knowledge Representation Networks 3.3 Reasoning Propositional Logic Predicate Logic: PROLOG 3.4 Planning Introduction

More information

Introduction to Planning COURSE: CS40002

Introduction to Planning COURSE: CS40002 1 Introduction to Planning COURSE: CS40002 Pallab Dasgupta Professor, Dept. of Computer Sc & Engg 2 Outline Planning versus Search Representation of planning problems Situation calculus STRIPS ADL Planning

More information

Chapter 6 Planning-Graph Techniques

Chapter 6 Planning-Graph Techniques Lecture slides for Automated Planning: Theory and Practice Chapter 6 Planning-Graph Techniques Dana S. Nau CMSC 722, AI Planning University of Maryland, Spring 2008 1 Motivation A big source of inefficiency

More information

KI-Programmierung. Planning

KI-Programmierung. Planning KI-Programmierung Planning Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2007/2008 B. Beckert: KI-Programmierung p.1 Outline Search vs. planning STRIPS operators Partial-order planning The real

More information

Activity Planning and Execution I: Operator-based Planning and Plan Graphs. Assignments

Activity Planning and Execution I: Operator-based Planning and Plan Graphs. Assignments Activity Planning and Execution I: Operator-based Planning and Plan Graphs Slides draw upon material from: Prof. Maria Fox, Univ Strathclyde Brian C. Williams 16.410-13 October 4 th, 2010 Assignments Remember:

More information

Planning Graphs and Graphplan

Planning Graphs and Graphplan Sec. 11.4 p.1/20 Planning Graphs and Graphplan Section 11.4 Sec. 11.4 p.2/20 Outline The planning graph Planning graph example The graphplan algorithm Using planning graphs for heuristics Additional reference

More information

Intelligent Agents. Planning Graphs - The Graph Plan Algorithm. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University

Intelligent Agents. Planning Graphs - The Graph Plan Algorithm. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University Intelligent Agents Planning Graphs - The Graph Plan Algorithm Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: July 9, 2015 U. Schmid (CogSys) Intelligent Agents

More information

Commitment Least you haven't decided where to go shopping. Or...suppose You can get milk at the convenience store, at the dairy, or at the supermarket

Commitment Least you haven't decided where to go shopping. Or...suppose You can get milk at the convenience store, at the dairy, or at the supermarket Planning as Search-based Problem Solving? Imagine a supermarket shopping scenario using search-based problem solving: Goal: buy milk and bananas Operator: buy Heuristic function: does = milk

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Lecturer 7 - Planning Lecturer: Truong Tuan Anh HCMUT - CSE 1 Outline Planning problem State-space search Partial-order planning Planning graphs Planning with propositional logic

More information

INF Kunstig intelligens. Agents That Plan. Roar Fjellheim. INF5390-AI-06 Agents That Plan 1

INF Kunstig intelligens. Agents That Plan. Roar Fjellheim. INF5390-AI-06 Agents That Plan 1 INF5390 - Kunstig intelligens Agents That Plan Roar Fjellheim INF5390-AI-06 Agents That Plan 1 Outline Planning agents Plan representation State-space search Planning graphs GRAPHPLAN algorithm Partial-order

More information

Planning. Search vs. planning STRIPS operators Partial-order planning. CS 561, Session 20 1

Planning. Search vs. planning STRIPS operators Partial-order planning. CS 561, Session 20 1 Planning Search vs. planning STRIPS operators Partial-order planning CS 561, Session 20 1 What we have so far Can TELL KB about new percepts about the world KB maintains model of the current world state

More information

Classical Planning. CS 486/686: Introduction to Artificial Intelligence Winter 2016

Classical Planning. CS 486/686: Introduction to Artificial Intelligence Winter 2016 Classical Planning CS 486/686: Introduction to Artificial Intelligence Winter 2016 1 Classical Planning A plan is a collection of actions for performing some task (reaching some goal) If we have a robot

More information

Cognitive Robotics. Planning: Plan Domain Description Language. Matteo Matteucci

Cognitive Robotics. Planning: Plan Domain Description Language. Matteo Matteucci Cognitive Robotics Planning: Plan Domain Description Language Matteo Matteucci matteo.matteucci@polimi.it Artificial Intelligence and Robotics Lab - Politecnico di Milano Planning Problems in Artificial

More information

1 What is Planning? automatic programming. cis716-spring2004-parsons-lect17 2

1 What is Planning? automatic programming. cis716-spring2004-parsons-lect17 2 PLANNING 1 What is Planning? Key problem facing agent is deciding what to do. We want agents to be taskable: give them goals to achieve, have them decide for themselves how to achieve them. Basic idea

More information

Cognitive Robotics Introduction Matteo Matteucci

Cognitive Robotics Introduction Matteo Matteucci Cognitive Robotics Introduction About me and my lectures Lectures given by Matteo Matteucci +39 02 2399 3470 matteo.matteucci@polimi.it http://www.deib.polimi.it/people/matteucci Research Topics (several

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013 Set 9: Planning Classical Planning Systems ICS 271 Fall 2013 Outline: Planning Classical Planning: Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning graphs Readings:

More information

Lecture Overview. CSE3309 Artificial Intelligence. The lottery paradox. The Bayesian claim. The lottery paradox. A Bayesian model of rationality

Lecture Overview. CSE3309 Artificial Intelligence. The lottery paradox. The Bayesian claim. The lottery paradox. A Bayesian model of rationality CSE3309 Lecture Overview The lottery paradox A Bayesian model of rationality Lecture 15 Planning Dr. Kevin Korb School of Computer Science and Software Eng. Building 75 (STRIP), Rm 117 korb@csse.monash.edu.au

More information

CSC2542 Planning-Graph Techniques

CSC2542 Planning-Graph Techniques 1 Administrative Announcements Discussion of tutorial time Email me to set up a time to meet to discuss your project in the next week. Fridays are best CSC2542 Planning-Graph Techniques Sheila McIlraith

More information

Planning. Some material taken from D. Lin, J-C Latombe

Planning. Some material taken from D. Lin, J-C Latombe RN, Chapter 11 Planning Some material taken from D. Lin, J-C Latombe 1 Logical Agents Reasoning [Ch 6] Propositional Logic [Ch 7] Predicate Calculus Representation [Ch 8] Inference [Ch 9] Implemented Systems

More information

Planning as Search. Progression. Partial-Order causal link: UCPOP. Node. World State. Partial Plans World States. Regress Action.

Planning as Search. Progression. Partial-Order causal link: UCPOP. Node. World State. Partial Plans World States. Regress Action. Planning as Search State Space Plan Space Algorihtm Progression Regression Partial-Order causal link: UCPOP Node World State Set of Partial Plans World States Edge Apply Action If prec satisfied, Add adds,

More information

15-381: Artificial Intelligence Assignment 4: Planning

15-381: Artificial Intelligence Assignment 4: Planning 15-381: Artificial Intelligence Assignment 4: Planning Sample Solution November 5, 2001 1. Consider a robot domain as shown in Figure 1. The domain consists a house that belongs to Pat, who has a robot-butler.

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014 Set 9: Planning Classical Planning Systems ICS 271 Fall 2014 Planning environments Classical Planning: Outline: Planning Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning

More information

Planning. Chapter 11. Chapter Outline. Search vs. planning STRIPS operators Partial-order planning. Chapter 11 2

Planning. Chapter 11. Chapter Outline. Search vs. planning STRIPS operators Partial-order planning. Chapter 11 2 Planning hapter 11 hapter 11 1 Outline Search vs. planning STRIPS operators Partial-order planning hapter 11 2 Search vs. planning onsider the task get milk, bananas, and a cordless drill Standard search

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CSC348 Unit 4: Reasoning, change and planning Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Artificial Intelligence: Lecture Notes

More information

CMU-Q Lecture 6: Planning Graph GRAPHPLAN. Teacher: Gianni A. Di Caro

CMU-Q Lecture 6: Planning Graph GRAPHPLAN. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 6: Planning Graph GRAPHPLAN Teacher: Gianni A. Di Caro PLANNING GRAPHS Graph-based data structure representing a polynomial-size/time approximation of the exponential search tree Can

More information

Planning. Philipp Koehn. 30 March 2017

Planning. Philipp Koehn. 30 March 2017 Planning Philipp Koehn 30 March 2017 Outline 1 Search vs. planning STRIPS operators Partial-order planning The real world Conditional planning Monitoring and replanning 2 search vs. planning Search vs.

More information

GPS: The general problem solver. developed in 1957 by Alan Newel and Herbert Simon. (H. Simon, 1957)

GPS: The general problem solver. developed in 1957 by Alan Newel and Herbert Simon. (H. Simon, 1957) GPS: The general problem solver developed in 1957 by Alan Newel and Herbert Simon (H. Simon, 1957) GPS: The general problem solver developed in 1957 by Alan Newel and Herbert Simon - Was the first program

More information

Planning. Chapter 11. Chapter 11 1

Planning. Chapter 11. Chapter 11 1 Planning hapter 11 hapter 11 1 Outline Search vs. planning STRIPS operators Partial-order planning hapter 11 2 Search vs. planning onsider the task get milk, bananas, and a cordless drill Standard search

More information

Dipartimento di Elettronica Informazione e Bioingegneria. Cognitive Robotics. SATplan. Act1. Pre1. Fact. G. Gini Act2

Dipartimento di Elettronica Informazione e Bioingegneria. Cognitive Robotics. SATplan. Act1. Pre1. Fact. G. Gini Act2 Dipartimento di Elettronica Informazione e Bioingegneria Cognitive Robotics SATplan Pre1 Pre2 @ 2015 Act1 Act2 Fact why SAT (satisfability)? 2 Classical planning has been observed as a form of logical

More information

Planning. Introduction

Planning. Introduction Planning Introduction Planning vs. Problem-Solving Representation in Planning Systems Situation Calculus The Frame Problem STRIPS representation language Blocks World Planning with State-Space Search Progression

More information

Planning. Outside Materials (see Materials page)

Planning. Outside Materials (see Materials page) Planning Outside Materials (see Materials page) What is Planning? Given: A way to describe the world An ini

More information

A deterministic action is a partial function from states to states. It is partial because not every action can be carried out in every state

A deterministic action is a partial function from states to states. It is partial because not every action can be carried out in every state CmSc310 Artificial Intelligence Classical Planning 1. Introduction Planning is about how an agent achieves its goals. To achieve anything but the simplest goals, an agent must reason about its future.

More information

cis32-ai lecture # 22 wed-26-apr-2006 Partial Order Planning Partially ordered plans Representation

cis32-ai lecture # 22 wed-26-apr-2006 Partial Order Planning Partially ordered plans Representation cis32-ai lecture # 22 wed-26-apr-2006 Partial Order Planning today s topics: partial-order planning decision-theoretic planning The answer to the problem we ended the last lecture with is to use partial

More information

Where are we? Informatics 2D Reasoning and Agents Semester 2, Planning with state-space search. Planning with state-space search

Where are we? Informatics 2D Reasoning and Agents Semester 2, Planning with state-space search. Planning with state-space search Informatics 2D Reasoning and Agents Semester 2, 2018 2019 Alex Lascarides alex@inf.ed.ac.uk Where are we? Last time... we defined the planning problem discussed problem with using search and logic in planning

More information

Artificial Intelligence Planning

Artificial Intelligence Planning Artificial Intelligence Planning Instructor: Vincent Conitzer Planning We studied how to take actions in the world (search) We studied how to represent objects, relations, etc. (logic) Now we will combine

More information

Outline. Planning and Execution in a Changing World. Readings and Assignments. Autonomous Agents

Outline. Planning and Execution in a Changing World. Readings and Assignments. Autonomous Agents Planning and in a Changing World Total Order Plan Contains Irrelevant Committments cleanh carry nogarb Slides draw upon materials from: Dan Weld Stuart Russell & Peter Norvig Brian C. Williams

More information

EMPLOYING DOMAIN KNOWLEDGE TO IMPROVE AI PLANNING EFFICIENCY *

EMPLOYING DOMAIN KNOWLEDGE TO IMPROVE AI PLANNING EFFICIENCY * Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 29, No. B1 Printed in The Islamic Republic of Iran, 2005 Shiraz University EMPLOYING DOMAIN KNOWLEDGE TO IMPROVE AI PLANNING EFFICIENCY

More information

Planning Algorithms Properties Soundness

Planning Algorithms Properties Soundness Chapter MK:VI III. Planning Agent Systems Deductive Reasoning Agents Planning Language Planning Algorithms State-Space Planning Plan-Space Planning HTN Planning Complexity of Planning Problems Extensions

More information

Planning. Planning. What is Planning. Why not standard search?

Planning. Planning. What is Planning. Why not standard search? Based on slides prepared by Tom Lenaerts SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie Modifications by Jacek.Malec@cs.lth.se Original slides can be found at http://aima.cs.berkeley.edu

More information

Automated Planning. Plan-Space Planning / Partial Order Causal Link Planning

Automated Planning. Plan-Space Planning / Partial Order Causal Link Planning Automated Planning Plan-Space Planning / Partial Order Causal Link Planning Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University Partly adapted

More information

: Principles of Automated Reasoning and Decision Making Sample Midterm

: Principles of Automated Reasoning and Decision Making Sample Midterm 16.410-13: Principles of Automated Reasoning and Decision Making Sample Midterm October 20 th, 2010 Name E-mail Note: Budget your time wisely. Some parts of this quiz could take you much longer than others.

More information

CPS 270: Artificial Intelligence Planning

CPS 270: Artificial Intelligence   Planning CPS 270: Artificial Intelligence http://www.cs.duke.edu/courses/fall08/cps270/ Planning Instructor: Vincent Conitzer Planning We studied how to take actions in the world (search) We studied how to represent

More information

Classical Planning Problems: Representation Languages

Classical Planning Problems: Representation Languages jonas.kvarnstrom@liu.se 2017 Classical Planning Problems: Representation Languages History: 1959 3 The language of Artificial Intelligence was/is logic First-order, second-order, modal, 1959: General

More information

Plan Generation Classical Planning

Plan Generation Classical Planning Plan Generation Classical Planning Manuela Veloso Carnegie Mellon University School of Computer Science 15-887 Planning, Execution, and Learning Fall 2016 Outline What is a State and Goal What is an Action

More information

Components of a Planning System

Components of a Planning System Planning Components of a Planning System In any general problem solving systems, elementary techniques to perform following functions are required Choose the best rule (based on heuristics) to be applied

More information

AUTOMATED PLANNING Automated Planning sequence of actions goal

AUTOMATED PLANNING Automated Planning sequence of actions goal AUTOMATED PLANNING Automated Planning is an important problem solving activity which consists in synthesizing a sequence of actions performed by an agent that leads from an initial state of the world to

More information

CS 5100: Founda.ons of Ar.ficial Intelligence

CS 5100: Founda.ons of Ar.ficial Intelligence CS 5100: Founda.ons of Ar.ficial Intelligence AI Planning Prof. Amy Sliva October 13, 2011 Outline Review A* Search AI Planning State space search Planning graphs Situation calculus Best- first search

More information

: Principles of Automated Reasoning and Decision Making Midterm

: Principles of Automated Reasoning and Decision Making Midterm 16.410-13: Principles of Automated Reasoning and Decision Making Midterm October 20 th, 2010 Name E-mail Note: Budget your time wisely. Some parts of this quiz could take you much longer than others. Move

More information

CS 2750 Foundations of AI Lecture 17. Planning. Planning

CS 2750 Foundations of AI Lecture 17. Planning. Planning S 2750 Foundations of I Lecture 17 Planning Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Planning Planning problem: find a sequence of actions that achieves some goal an instance of a search

More information

Principles of Automated Reasoning and Decision Making

Principles of Automated Reasoning and Decision Making Massachusetts Institute of Technology 16.410 Principles of Automated Reasoning and Decision Making Problem Set #5 Problem 1: Planning for Space Operations (30 points) In this problem you will construct

More information

Daniel S. Weld. University of Washington, Box Seattle, WA 98195{2350 USA. Technical Report UW-CSE ; to appear in AI Magazine, 1999

Daniel S. Weld. University of Washington, Box Seattle, WA 98195{2350 USA. Technical Report UW-CSE ; to appear in AI Magazine, 1999 Recent Advances in AI Planning Daniel S. Weld Department of Computer Science & Engineering University of Washington, Box 352350 Seattle, WA 98195{2350 USA Technical Report UW-CSE-98-10-01; to appear in

More information

APPLYING CONSTRAINT SATISFACTION TECHNIQUES TO AI PLANNING PROBLEMS. Daniel Buettner A THESIS. Presented to the Faculty of

APPLYING CONSTRAINT SATISFACTION TECHNIQUES TO AI PLANNING PROBLEMS. Daniel Buettner A THESIS. Presented to the Faculty of APPLYING CONSTRAINT SATISFACTION TECHNIQUES TO AI PLANNING PROBLEMS by Daniel Buettner A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of

More information

AI Planning. Introduction to Artificial Intelligence! CSCE476/876, Spring 2012:! Send questions to Piazza!

AI Planning. Introduction to Artificial Intelligence! CSCE476/876, Spring 2012:!  Send questions to Piazza! AI! CSCE476/876, Spring 2012:! www.cse.unl.edu/~choueiry/s12-476-876/! Send questions to Piazza! Berthe Y. Choueiry (Shu-we-ri)! Avery Hall, Room 360! Tel: +1(402)472-5444! 1 Reading! Required reading!

More information

Vorlesung Grundlagen der Künstlichen Intelligenz

Vorlesung Grundlagen der Künstlichen Intelligenz Vorlesung Grundlagen der Künstlichen Intelligenz Reinhard Lafrenz / Prof. A. Knoll Robotics and Embedded Systems Department of Informatics I6 Technische Universität München www6.in.tum.de lafrenz@in.tum.de

More information

CS 4649/7649 Robot Intelligence: Planning

CS 4649/7649 Robot Intelligence: Planning CS 4649/7649 Robot Intelligence: Planning Hierarchical Network Planning Sungmoon Joo School of Interactive Computing College of Computing Georgia Institute of Technology S. Joo (sungmoon.joo@cc.gatech.edu)

More information

1 Introduction. 2 Proposed Planning System. 2.1 Goal Test. 2.2 Heuristic Function

1 Introduction. 2 Proposed Planning System. 2.1 Goal Test. 2.2 Heuristic Function CS 2710 Fall 2015 (Foundations of Artificial Intelligence) Assignment 4: A Planning System Mohammad Hasanzadeh Mofrad (hasanzadeh@cs.pitt.edu) 1 Introduction A Partial Order Planning (POP) algorithms tries

More information

SHOP2. Modelling for and using a hierarchical planner. Ilche Georgievski Room: IAAS

SHOP2. Modelling for and using a hierarchical planner. Ilche Georgievski Room: IAAS SHOP2 Modelling for and using a hierarchical planner Ilche Georgievski ilche.georgievski@iaas.uni-stuttgart.de Room: IAAS 0.353 2017/2018 Spring Why hierarchies? Easily understandable Different levels

More information

Lecture 10: Planning and Acting in the Real World

Lecture 10: Planning and Acting in the Real World Lecture 10: Planning and Acting in the Real World CS 580 (001) - Spring 2018 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA Apr 11, 2018 Amarda Shehu (580) 1 1 Outline

More information

Planning. Introduction

Planning. Introduction Introduction vs. Problem-Solving Representation in Systems Situation Calculus The Frame Problem STRIPS representation language Blocks World with State-Space Search Progression Algorithms Regression Algorithms

More information

CS 1571 Introduction to AI Lecture 17. Planning. CS 1571 Intro to AI. Planning

CS 1571 Introduction to AI Lecture 17. Planning. CS 1571 Intro to AI. Planning S 1571 Introduction to I Lecture 17 Planning Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square S 1571 Intro to I Planning Planning problem: find a sequence of actions that achieves some goal an instance

More information

Planning. Introduction to Planning. Failing to plan is planning to fail! Major Agent Types Agents with Goals. From Problem Solving to Planning

Planning. Introduction to Planning. Failing to plan is planning to fail! Major Agent Types Agents with Goals. From Problem Solving to Planning Introduction to Planning Planning Failing to plan is planning to fail! Plan: a sequence of steps to achieve a goal. Problem solving agent knows: actions, states, goals and plans. Planning is a special

More information

Artificial Intelligence 2005/06

Artificial Intelligence 2005/06 Planning: STRIPS 74.419 rtificial Intelligence 2005/06 Planning: STRIPS STRIPS (Nils J. Nilsson) actions are specified by preconditions and effects stated as restricted FOPL formulae planning is search

More information

Planning (What to do next?) (What to do next?)

Planning (What to do next?) (What to do next?) Planning (What to do next?) (What to do next?) (What to do next?) (What to do next?) (What to do next?) (What to do next?) CSC3203 - AI in Games 2 Level 12: Planning YOUR MISSION learn about how to create

More information

Planning. Why not standard search? What is Planning. Planning language. Planning 1. Difficulty of real world problems

Planning. Why not standard search? What is Planning. Planning language. Planning 1. Difficulty of real world problems Planning Based on slides prepared by Tom Lenaerts SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie Modifications by Jacek.Malec@cs.lth.se Original slides can be found at http://aima.cs.berkeley.edu

More information

Learning a Negative Precondition

Learning a Negative Precondition From: Proceedings of the Twelfth International FLAIRS Conference. Copyright 1999, AAAI (www.aaai.org). All rights reserved. Learning Opposite concept for Machine Planning Kang Soo Tae Department of Computer

More information

Distributed Systems. Silvia Rossi 081. Intelligent

Distributed Systems. Silvia Rossi 081. Intelligent Distributed Systems Silvia Rossi srossi@na.infn.it 081 Intelligent 30% for attending classes Grading 30% for presenting a research paper 40% for writing and discussing paper (design of a multi-robot system),

More information

Primitive goal based ideas

Primitive goal based ideas Primitive goal based ideas Once you have the gold, your goal is to get back home s Holding( Gold, s) GoalLocation([1,1], s) How to work out actions to achieve the goal? Inference: Lots more axioms. Explodes.

More information

Search vs. planning. Planning. Search vs. planning contd. Outline

Search vs. planning. Planning. Search vs. planning contd. Outline Search vs. planning Planning onsider the task get milk, bananas, and a cordless drill Standard search algorithms seem to fail miserably: Go To Pet Store Talk to Parrot uy a Dog Go To School Go To lass

More information

Artificial Intelligence 2004 Planning: Situation Calculus

Artificial Intelligence 2004 Planning: Situation Calculus 74.419 Artificial Intelligence 2004 Planning: Situation Calculus Review STRIPS POP Hierarchical Planning Situation Calculus (John McCarthy) situations actions axioms Review Planning 1 STRIPS (Nils J. Nilsson)

More information

CS 621 Artificial Intelligence. Lecture 31-25/10/05. Prof. Pushpak Bhattacharyya. Planning

CS 621 Artificial Intelligence. Lecture 31-25/10/05. Prof. Pushpak Bhattacharyya. Planning CS 621 Artificial Intelligence Lecture 31-25/10/05 Prof. Pushpak Bhattacharyya Planning 1 Planning Definition : Planning is arranging a sequence of actions to achieve a goal. Uses core areas of AI like

More information

Planning in a Single Agent

Planning in a Single Agent What is Planning Planning in a Single gent Sattiraju Prabhakar Sources: Multi-agent Systems Michael Wooldridge I a modern approach, 2 nd Edition Stuart Russell and Peter Norvig Generate sequences of actions

More information

Intelligent Agents. State-Space Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 14.

Intelligent Agents. State-Space Planning. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 14. Intelligent Agents State-Space Planning Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 14. April 2016 U. Schmid (CogSys) Intelligent Agents last change: 14. April

More information

avid E, Smith 1 Introduction 2 Operator graphs

avid E, Smith 1 Introduction 2 Operator graphs From: AAAI-93 Proceedings. Copyright 1993, AAAI (www.aaai.org). All rights reserved. avid E, Smith Rockwell International 444 High St. Palo Alto, California 94301 de2smith@rpal.rockwell.com Department

More information

Cognitive Robotics 2016/2017

Cognitive Robotics 2016/2017 based on Manuela M. Veloso lectures on PLNNING, EXEUTION ND LERNING ognitive Robotics 2016/2017 Planning:, ctions and Goal Representation Matteo Matteucci matteo.matteucci@polimi.it rtificial Intelligence

More information

Ordering Problem Subgoals

Ordering Problem Subgoals Ordering Problem Subgoals Jie Cheng and Keki B. Irani Artificial Intelligence Laboratory Department of Electrical Engineering and Computer Science The University of Michigan, Ann Arbor, MI 48109-2122,

More information

ROOOT PROBLEM SOLVING * WITHOUT STATE VARIABLES. by Bertram Raphael. Artificial Intelligence Group Technical Note 30

ROOOT PROBLEM SOLVING * WITHOUT STATE VARIABLES. by Bertram Raphael. Artificial Intelligence Group Technical Note 30 11ay 1970 ROOOT PROBLEM SOLVING * WITHOUT STATE VARIABLES by Bertram Raphael Artificial Intelligence Group Technical Note 30 SRI Project 8259 This research is sponsored by the Advanced Research Projects

More information

Final Solution. CS510, Fall 2012, Drexel University Ariel Stolerman

Final Solution. CS510, Fall 2012, Drexel University Ariel Stolerman CS510 Final Solution 1 Ariel Stolerman Final Solution CS510, Fall 2012, Drexel University Ariel Stolerman 1) There is a refinement of the algorithm called the algorithm. Assume that you are given a heuristic

More information

Transformational Analogy: A General Framework, Semantics and Complexity

Transformational Analogy: A General Framework, Semantics and Complexity Transformational Analogy: A General Framework, Semantics and Complexity By Sarat Chandra Vithal Kuchibatla Venkata A Thesis Presented to the Graduate and Research Committee of Lehigh University in Candidacy

More information

COMBINING TASK AND MOTION PLANNING FOR COMPLEX MANIPULATION

COMBINING TASK AND MOTION PLANNING FOR COMPLEX MANIPULATION COMBINING TASK AND MOTION PLANNING FOR COMPLEX MANIPULATION 16-662: ROBOT AUTONOMY PROJECT Team: Gauri Gandhi Keerthana Manivannan Lekha Mohan Rohit Dashrathi Richa Varma ABSTRACT Robots performing household

More information

Chapter 12. Mobile Robots

Chapter 12. Mobile Robots Chapter 12. Mobile Robots The Quest for Artificial Intelligence, Nilsson, N. J., 2009. Lecture Notes on Artificial Intelligence, Spring 2012 Summarized by Kim, Soo-Jin Biointelligence Laboratory School

More information

Planning with Primary Effects: Experiments and Analysis

Planning with Primary Effects: Experiments and Analysis Planning with Primary Effects: Experiments and Analysis Eugene Fink Computer Science, Carnegie Mellon University Pittsburgh, Pennsylvania 15213, USA eugene@cs.cmu.edu Qiang Yang Computer Science, University

More information

: Principles of Automated Reasoning and Decision Making Midterm

: Principles of Automated Reasoning and Decision Making Midterm 16.410-13: Principles of Automated Reasoning and Decision Making Midterm October 20 th, 2003 Name E-mail Note: Budget your time wisely. Some parts of this quiz could take you much longer than others. Move

More information

Acknowledgements. Outline

Acknowledgements. Outline Acknowledgements Heuristic Search for Planning Sheila McIlraith University of Toronto Fall 2010 Many of the slides used in today s lecture are modifications of slides developed by Malte Helmert, Bernhard

More information

STRIPS HW 1: Blocks World

STRIPS HW 1: Blocks World STRIPS HW 1: Blocks World Operator Precondition Delete List Add List Stack(x, y) CLEAR(y) CLEAR(y) HOLDING(x) HOLDING(x) ON(x, y) Unstack(x, y) ON(x, y) ON(x, y) HOLDING(x) CLEAR(x) CLEAR(y) PickUp(x)

More information

Planning. Artificial Intelligence 1: Planning. What is Planning. General language features. Planning language. Difficulty of real world problems

Planning. Artificial Intelligence 1: Planning. What is Planning. General language features. Planning language. Difficulty of real world problems Planning Artificial Intelligence 1: Planning Lecturer: Tom Lenaerts SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie The Planning problem Planning with State-space search Partial-order planning

More information

-the goal state which we are trying to attain does not belong to any of the partitions. Hence the goal is unattainable.

-the goal state which we are trying to attain does not belong to any of the partitions. Hence the goal is unattainable. Session 15 PROVING THE IMPOSSIBLE IS IMPOSSIBLE IS POSSIBLE: DISPROOFS BASED ON HEREDITARY PARTITIONS* L. Slklossy and J. Roach Department of Computer Sciences University of Texas, Austin, U.S.A. Robot

More information

The STRIPS Subset of PDDL for the Learning Track of IPC-08

The STRIPS Subset of PDDL for the Learning Track of IPC-08 The STRIPS Subset of PDDL for the Learning Track of IPC-08 Alan Fern School of Electrical Engineering and Computer Science Oregon State University April 9, 2008 This document defines two subsets of PDDL

More information

Repetition Through Recursion

Repetition Through Recursion Fundamentals of Computer Science I (CS151.02 2007S) Repetition Through Recursion Summary: In many algorithms, you want to do things again and again and again. For example, you might want to do something

More information

Planning. What is Planning. Why not standard search? Planning 1

Planning. What is Planning. Why not standard search? Planning 1 Planning Based on slides prepared by Tom Lenaerts SWITCH, Vlaams Interuniversitair Instituut voor Biotechnologie Modifications by Jacek.Malec@cs.lth.se Original slides can be found at http://aima.cs.berkeley.edu

More information

Unifying Classical Planning Approaches

Unifying Classical Planning Approaches Unifying Classical Planning Approaches Subbarao Kambhampati & Biplav Srivastava Department of Computer Science and Engineering Arizona State University, Tempe AZ 85287-5406 email: frao,biplavg@asu.edu

More information

Regression Planning. CPSC 322 Lecture 17. February 14, 2007 Textbook 11.2 and Regression Planning CPSC 322 Lecture 17, Slide 1

Regression Planning. CPSC 322 Lecture 17. February 14, 2007 Textbook 11.2 and Regression Planning CPSC 322 Lecture 17, Slide 1 CPSC 322 Lecture 17 February 14, 2007 Textbook 11.2 and 4.0 4.2 CPSC 322 Lecture 17, Slide 1 Lecture Overview 1 Recap 2 CPSC 322 Lecture 17, Slide 2 Forward Planning Idea: search in the state-space graph.

More information

Motivation for B-Trees

Motivation for B-Trees 1 Motivation for Assume that we use an AVL tree to store about 20 million records We end up with a very deep binary tree with lots of different disk accesses; log2 20,000,000 is about 24, so this takes

More information

Planning and Acting. CITS3001 Algorithms, Agents and Artificial Intelligence. 2018, Semester 2

Planning and Acting. CITS3001 Algorithms, Agents and Artificial Intelligence. 2018, Semester 2 Planning and Acting CITS3001 Algorithms, Agents and Artificial Intelligence Tim French School of Computer Science and Software Engineering The University of Western Australia 2018, Semester 2 Summary We

More information

COMPUTER SCIENCE TRIPOS

COMPUTER SCIENCE TRIPOS CST.2008.4.1 COMPUTER SCIENCE TRIPOS Part IB Tuesday 3 June 2008 1.30 to 4.30 PAPER 4 Answer five questions. Submit the answers in five separate bundles, each with its own cover sheet. On each cover sheet,

More information

Issues in Interleaved Planning and Execution

Issues in Interleaved Planning and Execution From: AAAI Technical Report WS-98-02. Compilation copyright 1998, AAAI (www.aaai.org). All rights reserved. Issues in Interleaved Planning and Execution Scott D. Anderson Spelman College, Atlanta, GA andorson

More information

Planning. CPS 570 Ron Parr. Some Actual Planning Applications. Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent)

Planning. CPS 570 Ron Parr. Some Actual Planning Applications. Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent) Planning CPS 570 Ron Parr Some Actual Planning Applications Used to fulfill mission objectives in Nasa s Deep Space One (Remote Agent) Particularly important for space operations due to latency Also used

More information